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ABSTRACT  47 
 48 
Protection against Plasmodium falciparum, which is primarily antibody-mediated, requires recurrent 49 
exposure to develop. The study of both naturally acquired limited immunity and vaccine induced protection 50 
against malaria remains critical for ongoing eradication efforts. Towards this goal, we deployed a 51 
customized P. falciparum PhIP-seq T7 phage display library containing 238,068 tiled 62-amino acid 52 
peptides, covering all known coding regions, including antigenic variants, to systematically profile antibody 53 
targets in 198 Ugandan children and adults from high and moderate transmission settings. Repeat elements 54 
– short amino acid sequences repeated within a protein – were significantly enriched in antibody targets. 55 
While breadth of responses to repeat-containing peptides was twofold higher in children living in the high 56 
versus moderate exposure setting, no such differences were observed for peptides without repeats, 57 
suggesting that antibody responses to repeat-containing regions may be more exposure dependent and/or 58 
less durable in children than responses to regions without repeats. Additionally, short motifs associated 59 
with seroreactivity were extensively shared among hundreds of antigens, potentially representing cross-60 
reactive epitopes. PfEMP1 shared motifs with the greatest number of other antigens, partly driven by the 61 
diversity of PfEMP1 sequences. These data suggest that the large number of repeat elements and potential 62 
cross-reactive epitopes found within antigenic regions of P. falciparum could contribute to the inefficient 63 
nature of malaria immunity.  64 
 65 
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INTRODUCTION  91 
 92 
Malaria, a disease caused by the single-celled eukaryotic parasite Plasmodium, caused an estimated 241 93 
million cases and 627,000 deaths in 2020, mostly by the species Plasmodium falciparum (P. falciparum) 94 
(WHO Report 2021). Various strategies have been adopted for elimination of malaria, focusing on vector 95 
control, chemoprevention and vaccines. In 2021, the World Health Organization (WHO) made its first 96 
recommendation for widespread use of a malaria vaccine, RTS,S. While this is an encouraging step, there 97 
is nevertheless need for improvement as the efficacy of RTS,S is only 30-40% and protection wanes in a 98 
few months despite a four-dose regimen (Clinical Trials Partnership, 2015; Olotu et al., 2016). To design 99 
more effective vaccines, a deeper understanding of the nature of acquired immunity to malaria is critical.  100 
Natural protection against malaria requires multiple exposures and wanes upon cessation of exposure 101 
(Doolan et al., 2009). This naturally acquired immunity develops gradually with age and increasing 102 
cumulative exposure to P. falciparum in endemic settings, where adults may obtain substantial protection 103 
from disease, and children under 5 face the highest risk of death(Doolan et al., 2009)(WHO Report 2020). 104 
While a comprehensive understanding of the factors influencing the slow development of immunity is still 105 
lacking, certain properties of parasite antigens have been proposed to contribute (Portugal et al., 2013). 106 
These include, amongst other properties, antigenic variation,  antigens containing repeat elements and 107 
cross-reactive epitopes (Anders, 1986; Reeder & Brown, 1996; Schofield, 1991). While antigenic variation 108 
has been extensively studied in malaria, a systematic investigation of repeat-containing antigens and cross-109 
reactive epitopes has been lacking.  110 
 111 
Repeat elements are those where identical or similar motifs are repeated in tandem or with spaces within a 112 
protein. Repeat elements are widely prevalent in the proteome of P. falciparum and have been described to 113 
be highly immunogenic in a few antigens (Davies et al., 2017), such as the short, linear “NANP” repeats 114 
from circumsporozoite protein (CSP) present in the RTS,S and R21 vaccines (Cockburn & Seder, 2018). 115 
Due to increased valency, epitopes in repeat elements can behave differently in comparison to the 116 
presentation of the same epitope as a single copy and have the potential to alter the nature of the resulting 117 
response. For instance, increased valency may lead to increased plasmablast formation by increasing the 118 
strength of the antigen-B-cell receptor (BCR) interaction, potentially altering the T-dependent response  and 119 
inducing a T-independent response (Feldmann & Basten, 1971; Kato et al., 2020; O’Connor et al., 2006; 120 
Ochiai et al., 2013; Paus et al., 2006; Schofield, 1991; Schwickert et al., 2011). Although a few repeat 121 
antigens in P. falciparum have been well characterized, there has not been a comprehensive investigation 122 
of repeat elements with respect to their seroreactivity and their associations with humoral development.   123 
 124 
The presence of biochemically similar epitopes can lead to cross-reactivity with antibodies and B-cell 125 
receptors (BCR). While non-identical repeat elements may represent such potential cross-reactive epitopes 126 
within a protein, similar epitopes may also be present across different proteins. How the quality of humoral 127 
response may be impacted by the presence of cross-reactive epitopes remains largely unexplored, although 128 
a study with viral variant antigens points to a frustrated affinity maturation process due to conflicting 129 
selection forces from variant epitopes (Wang et al., 2015). A handful of cross-reactive epitopes have been 130 
reported in P. falciparum (Wåhlin et al., 1992) and have been proposed to negatively impact the affinity 131 
maturation process, although direct evidence is lacking (Anders, 1986). To obtain a deeper understanding 132 
of how cross-reactive epitopes influence B cell immunity to malaria, a comprehensive atlas of cross-reactive 133 
epitopes across the P. falciparum proteome is first needed.  134 
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 135 
A systematic proteome-wide investigation of the humoral response to P. falciparum would provide 136 
important insights to our understanding of malaria immunity, including features such as repeat elements 137 
and cross-reactive epitopes. Specific technical challenges have impeded progress in this area. Although 138 
high-throughput approaches like protein arrays and alpha screens have reached a high coverage of the P. 139 
falciparum proteome (Camponovo et al., 2020; Morita et al., 2017), they do not allow for high-resolution, 140 
characterization of regions within antigenic proteins. In contrast, peptide arrays offer high resolution 141 
antigenic profiling but are inherently limited to the numbers of targets that can be produced and printed on 142 
an array, usually in the order of tens of proteins(Hou et al., 2020; Jaenisch et al., 2019).  143 
  144 
Here, we customized a programmable phage display system (PhIP-seq) (Larman et al., 2011), previously 145 
used for antigenic profiling in many diseases, including autoimmune disorders and viral infections (Mandel-146 
Brehm et al., 2019; Rajan et al., 2021; Vazquez et al., 2020; Zamecnik et al., 2020), for interrogation of the 147 
humoral response to P. falciparum infection. We designed a custom library (“Falciparome”) that features 148 
over 238,000 individual 62 amino acid peptides encoded in T7 Phage, tiled every 25 amino acids across all 149 
annotated P. falciparum open reading frames from 3D7/IT genomes with additional variant antigenic 150 
sequences. Importantly, PhIP-seq leverages advances in next generation sequencing to effectively convert 151 
serological assays into digital sequence counts. Furthermore, programmable phage display allows iterative 152 
enrichment, driving a high signal to background ratio with high specificity and sensitivity (O’Donovan et 153 
al., 2020).  154 
 155 
We performed PhIP-seq with the Falciparome phage library to characterize the targets of the naturally 156 
acquired antibody response to P. falciparum in high resolution, leveraging well defined cohorts composed 157 
of 198 Ugandan children and adults from two different transmission settings and compared these to a large 158 
set of US anonymous blood donors. The resulting high-resolution atlas of seroreactive peptides suggest that 159 
antibody responses to repeat-containing regions are more exposure-dependent and/or less durable in 160 
children, compared to antibody responses to regions without repeats. Further, an extensive presence of 161 
potential cross-reactive motifs was identified among antigenic peptides from many proteins highly targeted 162 
by the immune system. These results have important implications for understanding the nature of humoral 163 
response in malaria and the future vaccine designs.   164 
 165 
RESULTS  166 
  167 
PhIP-seq was performed on plasma samples selected from two Ugandan cohorts with household level data 168 
on entomologic exposure as well as detailed individual characteristics (Table 1). For this study, we selected 169 
a single sample from each of 200 age-stratified individuals (children aged 2-11 years and adults) from two 170 
different sites in Uganda: Tororo, a region which had very high malaria transmission at the time of sampling 171 
(annual entomological inoculation rate (EIR) - 49 infective bites per person) and Kanungu, a region of 172 
moderately high transmission (EIR - 5 infective bites per person)(Kamya et al., 2015).  While the majority 173 
of individuals from Tororo were positive for infection at the time of sampling, those from Kanungu were 174 
sampled at a median of 100 days after their previous infection. We have previously shown that children 175 
acquire clinical immunity to malaria more rapidly in Tororo than Kanungu, consistent with higher rates of 176 
exposure(Rodriguez-Barraquer et al., 2018), and that adults at both sites have substantial immunity (Rek et 177 
al., 2016).   178 
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  179 
Falciparome Library Design  180 
 181 
We constructed a T7 phage display library programmed to display the entire proteome of P. falciparum in 182 
62-amino acid peptides with 25-amino acid step size, resulting in 37-amino acid tiling, referred to as the 183 
Falciparome. (Methods, Figure 1). The complete design files are available at Dryad doi:10.7272/Q69S1P9G 184 
and protocol at dx.doi.org/10.17504/protocols.io.j8nlkkrr5l5r/v1. Overall, the library includes 238,068 185 
peptides from 8,980 protein sequences, including all known protein sequences from 2 reference strains 186 
(3D7 and IT) and extensive diversity of variant sequences from key antigens including PfEMP1s, RIFINs 187 
and STEVORs (Table 2, Figure S1a, Methods). Greater than 99.5% of the programmed peptides were 188 
represented in the final packaged phage library with relatively uniform distribution of abundance, with 90% 189 
of the peptides within a 16-fold difference (Figure S2a).  190 
  191 
PhIP-seq using the Falciparome library robustly identifies peptides that differentiate individuals in 192 
malaria endemic areas from US controls 193 
 194 
PhIP-seq was performed with Falciparome on less than 1ul plasma from the 200 Ugandan cohort samples, 195 
and 86 samples from New York Blood Center (US controls) were run for non-specific background 196 
correction, assuming most were unlikely to have been exposed. Two rounds of enrichment were performed. 197 
The scalability of the assay allowed for high-throughput processing of all 286 samples in replicates. High 198 
correlation observed between technical replicates (Pearson r: median (IQR) = 0.96 (0.92-0.98)) indicated 199 
that the technique was highly reproducible (Figure S2b). Prior to any filtering, a clean separation of 200 
Ugandan and US controls was observed (Figure S2b). Furthermore, expected target peptides were enriched 201 
in a sample-specific manner - PhIP-seq with a polyclonal control antibody a-GFAP highly enriched for 202 
GFAP peptides and seroreactivity against a common virus, Epstein-Barr virus (EBV), was higher across all 203 
human samples than in the control a-GFAP experiment (Figure S2c). Two Ugandan samples were dropped 204 
due to low quality data, resulting in 198 Ugandan samples for further analysis.  205 
 206 
A stringent analysis pipeline was implemented to identify malaria-specific enriched peptides while 207 
minimizing the potential for false positives. An increase in base read counts (enrichment) compared to US 208 
controls (Z-score >=3 in both replicates in a given sample) was implemented, plus a requirement that the 209 
enrichment be present in at least 5 Ugandan samples (Methods, Figure 1, Figure S2d) to identify malaria-210 
specific enriched peptides (‘seroreactive peptides’). Using this conservative approach, a total of 9927 211 
peptides were identified as seroreactive across all samples, representing the identified targets of antibodies 212 
in this study (Supplementary table 1).  213 
 214 
Overview of the malaria-specific seroreactive peptides identified with PhIP-seq  215 
 216 
The 9,927 seroreactive peptides identified by the pipeline were derived from 1,648 parasite proteins 217 
(‘seroreactive proteins’) and antigenic variants, many of which showed broad seroreactivity across pediatric 218 
and adult Ugandan samples, whereas these same peptides showed no or rare seroreactivity in US controls 219 
(Figure 2A). The number of peptides enriched (“breadth”) in children from moderate transmission settings 220 
was less than half of that in children in high transmission settings or adults in either setting (Figure 2B), an 221 
observation that we examined in greater detail below.  222 
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 223 
The 1648 seroreactive proteins identified here have reported expression across the lifecycle stages occurring 224 
in the human - sporozoite, asexual and sexual blood stages (Figure 2c). Although liver stage proteomic P. 225 
falciparum datasets were not available for comparison, several known liver stage antigens in the dataset 226 
(LSA1, LSA3, etc.) were detected. Notably, none of the proteins expressed in the mosquito oocyst stage 227 
were identified as seroreactive. Among the 40 seroreactive proteins with the highest seropositivity (percent 228 
of people enriching for at least one seroreactive peptide in that protein), protective antibodies have been 229 
reported for 20 of them (Supplementary table 2). Moreover, as expected, and consistent with previous 230 
studies, the top seroreactive proteins were enriched for those at the host-parasite interface (GO analysis – 231 
Fig S2e).   232 
 233 
The proteins identified here overlapped substantially with antigenic proteins identified in previous protein 234 
array screens (28%, 49% and 44% of those reported in (Camponovo et al., 2020; Crompton et al., 2010; 235 
Helb et al., 2015) respectively).  However, this whole-proteome approach also identified 952 proteins not 236 
identified in the above studies. Antigens identified in previous studies may have not been enriched here 237 
because of a known limitation of PhIP-seq - it detects predominantly linear epitopes, as opposed to 238 
conformational epitopes, which would account for loss of sensitivity with respect to particular proteins. In 239 
addition, prior studies were performed in different populations and may include false positives, e.g. by not 240 
accounting for cross-reactivity from non-malaria specific antibodies with unexposed human samples.  241 
 242 
Expected and new relationships between age, exposure, and breadth of seroreactive regions captured 243 
at high resolution by Falciparome  244 
 245 
Since our cohort was stratified by age and exposure, we next set out to investigate how the overall breadth 246 
of seroreactive regions varied with age and exposure. Breadth was evaluated in two ways – i) the total 247 
number of seroreactive peptides per person ii) the number of non-redundant seroreactive peptide groups in 248 
each person. The latter was calculated to minimize redundant counting of potential shared linear epitopes 249 
between seroreactive peptides due to the tiled nature of the library as well as common sequences across 250 
peptides (Methods). Breadth increased with age in both settings, occurring more rapidly in the higher 251 
transmission setting such that children reached a similar breadth as adults by age 11 (Figure 2b, Figure S2f). 252 
As a result, children in the higher transmission setting had a significantly higher breadth than children in 253 
the moderate transmission setting. In contrast, adults in both settings had comparable breadth. Overall, these 254 
results are consistent with expected expansion of the repertoire of antibody targets with recurrent exposure 255 
to P. falciparum (Crompton et al., 2010; Helb et al., 2015). 256 
 257 
Variant surface antigen (VSA) families are highly diverse, multi-member gene families in P. falciparum 258 
that are expressed on the surface of host erythrocytes and facilitate important functions of the parasite 259 
(Niang et al., 2014; Reeder & Brown, 1996; Saito et al., 2017; Tan et al., 2015; Xie et al., 2021). Expression 260 
of these genes is typically limited to one or few members of each family per parasite, presumably to evade 261 
the host immune system. Multiple variants from three VSA families were represented in the library - 262 
PfEMP1s (431 members from seven strains), RIFINs (157 3D7 + 118 IT) and STEVORs (32 3D7 + 32 IT 263 
variants), and the breadth of seroreactive variants was investigated across age and exposure based on the 264 
number of variant proteins in each family to which the VSA seroreactive peptides belonged in each person 265 
(Methods) (Figure 2d, Figure S2g). In the moderate transmission setting, adults had a significantly higher 266 
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breadth of PfEMP1 variants recognized than children, suggesting an age and/or cumulative exposure 267 
dependent increase in PfEMP1 breadth in this setting, as previously observed in (Cham et al., 2009). On 268 
the other hand, both children and adults in this setting poorly recognized RIFINs and STEVORs. In contrast, 269 
in the high transmission setting, children had a significantly higher breadth of variants recognized than 270 
adults for all three VSAs. Children of 2–6 years had the broadest responses to RIFINs (including in the 271 
variable V2 region) and STEVORS and children of 4–11 years to PfEMP1s (including in the variable DBL 272 
domains), suggesting a decline in responses to variants as children develop into adults in this setting. This 273 
is consistent with observations from a previous study investigating antibody responses to PfEMP1 DBLa 274 
domains in Papua New Guinea (Barry et al., 2011). The loss of VSA breadth in adults in the high 275 
transmission setting could be due to various reasons, including a decline in antibody levels to VSA variants 276 
due to reduced antigenic exposure, as adults have a lower parasitic load than children in this setting, or a 277 
shift in the focus of the immune response to less variant targets.  278 
 279 
Tiled design of library facilitates high resolution characterization of seroreactive proteins 280 
 281 
The short length and tiling design of the peptides in this library facilitated high resolution characterization 282 
of antigenic regions within seroreactive proteins. Representative examples from previously characterized 283 
proteins, such as Falciparum Interspersed Repeat Antigen (FIRA), Circumsporozoite Protein (CSP) and 284 
Liver Stage Antigen (LSA3) are shown (Figure 3a), where known epitopes consisted of short amino-acid 285 
motifs repeated multiple times within the proteins (‘repeat elements’). Comparison with a previous study 286 
using a high density linear peptide array covering a subset of antigens showed substantial overlap of the 287 
seroreactive regions within these antigens (Jaenisch et al., 2019) (Figure S3a), although some differences 288 
were apparent. Differences in the length of peptides as well as nature of display (linear 15-aa peptides on 289 
an array versus phage display of 62-aa peptides) are potential explanations for these discrepancies.  290 
 291 
Importantly, high-resolution maps of seroreactivity for over 1000  proteins were characterized for the first 292 
time in our dataset (Figure 3b). A notable example is, PHISTc (PF3D7_0801000), which has previously 293 
been described as an antigenic protein, but not dissected at high resolution (Baum et al., 2013; Dent et al., 294 
2015). It is exported from the parasite during the asexual blood stage and has unknown function, though 295 
mildly protective antibodies have been described against the N-terminal segment (Nagaoka et al., 2021). 296 
Another example is RON4 (Rhoptry Neck Protein 4), part of the moving junction during merozoite invasion 297 
of the host (Morahan 2009) and is also critical for sporozoite invasion of hepatocytes (Giovannini 2011).  298 
 299 
Beyond the overall breadth of seroreactive peptides, the dataset facilitated a high-resolution lens for 300 
investigating the effect of age and exposure on seroreactivity to individual proteins. For instance, as 301 
expected (Kazmin et al., 2017), we observed exposure-dependent seropositivity at the B-cell epitope in CSP 302 
targeted by the RTS,S vaccine (NANP repeating sequence) (Figure 3a). The magnitude of exposure- and 303 
age-related differences in proportion seropositive varied by individual protein and even within different 304 
regions of specific proteins (Figure 3, Supplementary Table S3), highlighting the importance of dissecting 305 
responses to different antigenic regions within seroreactive proteins.  306 
 307 
Seroreactive proteins contain more repeat elements than non-seroreactive proteins.  308 
 309 
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A prominent feature that stood out following high-resolution characterization of seroreactive regions was 310 
the presence of repeat elements, where identical or similar motifs were repeated in tandem or with gaps 311 
within a given protein (Fig 3). Previous studies focused on individual or targeted subsets of antigens in P. 312 
falciparum have highlighted the immunogenic nature of short amino acid repeat sequences (Davies et al., 313 
2017). The proteome of P. falciparum is notoriously rich in such sequences; however, their functions have 314 
remained enigmatic and their properties have been difficult to characterize. To systematically investigate 315 
the association of seroreactivity with these elements, repeats throughout all coding sequences were first 316 
identified using RADAR (Rapid Automatic Detection and Alignment of Repeats) (Madeira et al., 2019) 317 
and then compared to both PhIP-seq seroreactive and non-seroreactive proteins. The number of repeats in 318 
each protein sequence was significantly higher in the seroreactive proteins in comparison to non-319 
seroreactive proteins (median number of repeats per protein: seroreactive proteins – 20; non-seroreactive 320 
proteins – 6; p-value = <0.001, based on 1000 iterations (1,636 proteins per iteration) of random sampling 321 
of the non-seroreactive set) (Figure 4A).  322 
 323 
Seroreactive peptides, within seroreactive proteins, contain more repeat elements than non-324 
seroreactive peptides. 325 
 326 
Next, we investigated if seroreactive regions within seroreactive proteins were enriched for repeat elements. 327 
Because the Falciparome is composed of overlapping peptides tiled across each gene, the contribution of 328 
individual peptide sequences within each seroreactive protein can be further classified into those that are 329 
seroreactive vs. those from the same protein that are non-seroreactive. This enables a comparison of repeat 330 
elements among seroreactive and non-seroreactive peptides within each protein sequence.  331 
 332 
To accomplish this, a k-mer approach was used to characterize repeat elements (Figure 4b, Methods). 333 
Briefly, the frequency of all biochemically similar k-mers of sizes 6-9aa (approximately the size of a linear 334 
B-cell epitope) was calculated for each protein. Then, each peptide in the protein was assigned a repeat 335 
index based on the maximum intra-protein frequency of any repeat element it encompassed. To minimize 336 
redundant representation, multiple peptides from a given protein deriving their repeat indices from the same 337 
repeat element were collapsed such that a repeat element was represented only once for each protein (Figure 338 
4b). In this manner, the set of all 5171 non-VSA seroreactive-peptides was collapsed based on their repeat 339 
elements to a set of 3091 non-redundant seroreactive peptides. The non-seroreactive peptides within each 340 
seroreactive protein were also collapsed similarly.  341 
 342 
Overall, seroreactive peptides yielded significantly higher repeat indices than non-seroreactive peptides 343 
from seroreactive proteins, and this trend was more pronounced as a function of seropositivity (Figure 4c). 344 
The median repeat index for non-seroreactive peptides was 1, while the median index for >10% and >40% 345 
seropositivity was 3 and 13 respectively, for a kmer of size 7 (KS test p-value < 0.05 between successive 346 
distributions). These results suggest that seroreactive peptides are dominated by repeat elements and those 347 
with higher seropositivity also have progressively higher repeat indices.  Examination of individual 348 
proteins, including well characterized repeat-containing antigens such as FIRA, LSA1, LSA3, MESA and 349 
GLURP, illustrate the relationship between seropositivity and repeat index (Figure 4d). This relationship 350 
was consistently observed, regardless of kmer size from 6 to 9aa, and was insensitive to the level of 351 
degeneracy or biochemical similarity used for determining repeat matches (Fig S4a). However, the presence 352 
of a repeat element within any given peptide does not necessarily imply that the peptide will be seroreactive. 353 
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 354 
Taken together, these data indicate that seroreactive proteins tend to be repeat-containing proteins, and 355 
within these proteins, the individual seroreactive peptides tend to be those that contain the repeats. 356 
Furthermore, seroreactive regions that are shared widely among individuals tend to feature higher numbers 357 
of repeat elements.  358 
   359 
Seropositivity is more dependent on exposure for peptides containing repeat elements than those 360 
without repeat elements  361 
 362 
To investigate whether the breadth of seroreactive repeat-containing peptides differed depending on 363 
exposure-setting and age, seroreactive peptides were first binned into two categories: those with repeats, 364 
and those without. Specifically, seroreactive peptides with a 7-mer repeat index >=3 were binned together 365 
as “repeat-containing peptides” and those with a 7-mer repeat index <= 2 were binned as “non-repeat 366 
peptides”. For the set of non-repeat containing peptides, breadth (number of non-repeat peptides enriched 367 
per person) was significantly higher in adults than children in both exposure settings (percent increase in 368 
median breadth in adults over 4-6 year old children: moderate setting – 28%; high setting – 20%) (Fig 5A).  369 
However, within each set of age groups, there was no significant difference in breadth between the two 370 
exposure settings. 371 
  372 
For repeat-containing seroreactive peptides, breadth was calculated as follows. Each repeat-containing 373 
seroreactive peptide was defined by the 7-mer (repeat element) that was used to calculate its repeat index 374 
as described above. To avoid redundant counting, all repeat-containing peptides from a given protein 375 
defined by the same repeat element were collapsed and counted only once. Similar to non-repeat peptides, 376 
breadth of these peptides was higher in adults than children, reaching a similar level in both exposure 377 
settings (percent increase in median breadth in adults over 4–6 year-old children: moderate setting – 193%; 378 
high setting – 56%). In contrast to non-repeat peptides however, there was an exposure dependence in the 379 
responses to repeat-containing peptides with age, such that children living in the high versus moderate 380 
exposure setting had twice the breadth of repeat-containing peptides, reaching the same level in adulthood 381 
in both settings (Figure 5B). These results were consistently observed with different thresholds for 382 
categorizing repeat-containing peptides (repeat index >= 4 or 5) (Fig S5A).  383 
  384 
Investigation of individual repeat elements recapitulated this trend and showed higher seropositivity in the 385 
high exposure setting compared to moderate exposure in children, but not adults (Fig S5B). There were a 386 
small number of notable exceptions, including repeat elements from PHISTc (PF3D7_0801000), LSA3 387 
(PF3D7_0220000), FIRA (PF3D7_0501400), all of which did not show a transmission setting-dependent 388 
response in children (Supplementary Table S4). Overall, the above data show that antibody responses to 389 
repeat-containing peptides may be more efficiently acquired and/or maintained in children living in settings 390 
of high vs. moderate exposure, but plateau at the same level in adulthood.  391 
 392 
Extensive sharing of motifs observed between seroreactive proteins, particularly the PfEMP1 family 393 
 394 
While repeat elements within individual proteins were explored in the previous section, similar or identical 395 
motifs may also be shared among different proteins. If these motifs are a part of an epitope, then antibodies 396 
and B-cell receptors (BCR) specific to a motif can potentially cross-react with the motif variants in different 397 
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proteins, depending on accessibility and other factors. Identifying such shared motifs serves as the first step 398 
in exploring potential cross-reactivity between individual seroreactive proteins, and to identify them, a 399 
systematic investigation was performed.  400 
 401 
First, enriched kmers (6-9 amino acids) were identified by collecting those present in a significantly (FDR-402 
adjusted p-value < 0.001) higher number of seroreactive peptides (9927) than a random sampling (1000 403 
iterations) of 9927 peptides from the whole library. From this collection, enriched kmers that were shared 404 
by different seroreactive proteins were identified as “inter-protein motifs” (Fig 6a). Using a kmer size of 7, 405 
and allowing for up to two biochemically conservative substitutions, a total of 911 significantly enriched 406 
inter-protein motifs were identified, representing 509 seroreactive proteins (Supplementary table S5). 407 
Limiting the selection of inter-protein motifs to only the most significantly enriched motif per seroreactive 408 
peptide (the motif with the lowest p-value among all motifs in each peptide) yielded 417 significant inter-409 
protein motifs, from a similar number of proteins (507). As expected, increasing the kmer size, or further 410 
constraining the number of allowed substitutions resulted in fewer identified motifs (Supplementary table 411 
S6). For the subsequent analysis, we show results with a kmer size of 7, which is in the range of average 412 
length of a linear B-cell epitope (Buus et al., 2012). As expected, previously described cross-reactive 413 
epitopes between antigens were well represented, such as the glutamate-rich motifs in Pf11-1 and Ag332 414 
(Mattei et al. 1989), among others (Fig 6a). Taken as a group, the collected motifs had a lower 415 
hydrophobicity index (mean Kyle-Doolittle = -1.95), a lower net charge (mean = -0.47) (at pH 7), 416 
enrichment of charged glutamate, lysine, asparagine and aspartate residues and depletion of cysteine and 417 
hydrophobic residues than a random set of motifs in the proteome (Fig S6a). These biochemical 418 
characteristics are consistent with those observed in prior studies of residues in B cell epitopes (Akbar et 419 
al., 2021; Rubinstein et al., 2008).   420 
 421 
The design of the programmable phage display library used here features 62 amino acid peptides tiled with 422 
a 25 amino acid step size, yielding an overlap of 37 amino acids for sequential fragments, and 12 amino 423 
acids for every second fragment (Fig S6b).  The design provides for localization of seroreactive sequences 424 
to the region of overlap when considering adjacent fragments. For all except the first and last two peptides 425 
in each protein (85% of peptides in the library), the seroreactive region can theoretically be narrowed down 426 
to a 12-13aa segment within the peptide. Given that B cell linear epitopes are typically 5 -12 amino acids 427 
in length (Buus et al., 2012), the 12-13aa mapping provides a near-epitope resolution.  428 
 429 
To test the notion that the inter-protein motifs within each peptide are actually the elements associated with 430 
the observed seroreactivity, we leveraged the tiled peptide library design by comparing inter-protein motif 431 
carrying peptides with overlapping and adjacent peptides (Fig S6c). The maximum seropositivity among 432 
peptides containing an inter-protein motif was on average 54-fold higher than the maximum seropositivity 433 
among overlapping peptides not containing the motif (using a pseudo-seropositivity of 0.1% for peptides 434 
with 0% seropositivity to facilitate fold change calculation), suggesting a strong association between 435 
seroreactivity and the inter-protein motif itself, not just the whole peptide within which it resides 436 
(comparison of median seropositivity yielded a similar result). Furthermore, a similar result was observed 437 
when the same analysis was done with all the significantly enriched kmers (Fig S6d).  438 
 439 
On average, each inter-protein motif was shared by 3 seroreactive proteins.  Among the 509 seroreactive 440 
proteins, each of them shared inter-protein motifs with 6 other proteins on average (median = 3), 441 
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(Supplementary file 1, Fig S6e). Visualized as a network (Fig 6b), the PfEMP1 family of proteins formed 442 
a central hub to which a large number of other seroreactive proteins were connected. The PfEMP1 family 443 
of proteins possessed at least 90 shared inter-protein motifs, and this family shared those motifs with the 444 
greatest number of other seroreactive proteins (57) compared to all other proteins in this analysis.  445 
Approximately 5 times as many proteins shared connections with PfEMP1 than would be expected by 446 
chance (PfEMP1 shared motifs with 12-16 other proteins using a set of 9927 peptides consisting of PfEMP1 447 
seroreactive peptides + random non-PfEMP1 peptides). Seroreactive proteins sharing motifs with PfEMP1 448 
included many of the proteins with the highest measured seropositivity, such as RIFINs, SURFINs, FIRA, 449 
and PHISTc. This extent of sharing was driven, in part, by the number of PfEMP1 sequences included in 450 
the analysis. This was apparent when the same analysis performed with a reduced diversity of PfEMP1 451 
sequences in the seroreactive peptide set (using PfEMP1 peptides from only PF3D7 and PFIT genomes 452 
instead of 7 genomes) resulted in PfEMP1 sharing motifs with 32 seroreactive proteins instead of 57. This 453 
suggests that the extent of sharing for PfEMP1 observed in this study may only be a small fraction of that 454 
occurring in the extensive natural diversity of PfEMP1 variants in circulating parasites. 455 
 456 
Outside the main network driven by PfEMP1, 495 seroreactive proteins were also found to be highly 457 
connected to each other through motif sharing (Fig S6f). A large proportion of proteins with high 458 
seropositivity were connected (80% and 58% of proteins with >30% and 10-30% seropositivity 459 
respectively). This included proteins like GARP, LSA3, Pf332, Pf11-1, and MESA (Fig6b, Fig S6g). As 460 
observed for the full set of inter protein motifs, motifs shared by the subset of proteins with >30% 461 
seropositivity also consisted predominantly of charged glutamate, lysine, asparagine and aspartate residues 462 
(Fig S6g). Since the analysis used here to identify inter-protein motifs allowed only up to two conservative 463 
substitutions in 7-mer motifs, the similarity of motifs in the network in Fig. S6g suggests that with a less 464 
stringent threshold of identifying motifs, these proteins would be even more highly connected. Moreover, 465 
80% of proteins in this network had reported expression in the asexual blood stage of the lifecycle of P. 466 
falciparum (PlasmoDB), suggesting temporally concordant presence of proteins sharing motifs within their 467 
seroreactive regions. 468 
 469 
These results indicate that the interprotein motifs are strongly associated with seroreactivity and are 470 
extensively shared across seroreactive proteins, including among regions highly targeted by the antibodies. 471 
Furthermore, PfEMP1 shares motifs with the greatest number of other seroreactive proteins, partly driven 472 
by the sequence diversity of PfEMP1 variants.  473 
 474 
DISCUSSION  475 
 476 
Using a customized programmable phage display (PhIP-seq) library, we have evaluated the proteome-wide 477 
antigenic landscape of the malaria parasite P.  falciparum, using the sera of 198 individuals living in two 478 
distinct malaria endemic areas.  This approach readily identified previously known antigens, including 479 
proteins that are targets of protective antibodies, as well as novel antigens. In our study, we characterized 480 
features of P. falciparum antigens that could potentially contribute to the inefficient acquisition and 481 
maintenance of immunity to malaria. Repeat elements were found to be commonly targeted by antibodies, 482 
and had patterns of seropositivity that were more dependent on exposure than non-repeat peptides. 483 
Furthermore, extensive sharing of motifs associated with seroreactivity was observed among hundreds of 484 
parasite proteins, indicating potential for extensive cross-reactivity among antigens in P. falciparum. These 485 
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data suggest that repeat elements– a common feature of the P. falciparum proteome, and shared motifs 486 
between antigenic proteins could have important roles in shaping the nature and development of the immune 487 
response to malaria.  488 
 489 
To map the antigenic landscape, PhIP-seq for P. falciparum offers several attractive advantages. The library 490 
described here contains >99.5% of the proteome, including variants for several antigenic families, 491 
surpassing the coverage of other existing proteome-wide tools for P. falciparum (Camponovo et al., 2020; 492 
Morita et al., 2017), while simultaneously providing high-resolution characterization of antigens (up to 12-493 
13 aa regions within peptides). Unlike peptide arrays, the platform converts a proteomic assay into a 494 
genomic assay, leveraging the massive scale and low-cost nature of next-generation short-read sequencing. 495 
The result is a cost-effective and scalable system, allowing for the processing of hundreds of samples in 496 
parallel. Finally, an important aspect of all phage display systems is the ability to sequentially enrich, release 497 
phage, and repeat, thus greatly amplifying the signal to noise (O’Donovan et al., 2020; Smith & Petrenko, 498 
1997). Only one published study to date evaluates responses to more than a quarter of the proteome 499 
(Camponovo et al., 2020), inherently limiting the scope of potential targets interrogated. 28% of the hits 500 
described in this study of individuals living in Tanzania and exposed to various doses of PfSpz vaccine 501 
overlapped with the hit proteins described in our study  (Camponovo et al., 2020)). The limited overlap 502 
may be due to multiple factors, including differences in the characteristics of individuals sampled, the use 503 
of vaccine, and determination of seropositivity based on technical as opposed to biological controls (sera 504 
from unexposed individuals).   505 
 506 
The near-epitope resolution provided by this platform allowed a systematic investigation of targets of 507 
antibodies. Targets with high seropositivity were observed to be significantly enriched for repeat elements. 508 
In some previous reports, the elevated antigenic potential of repeat elements has been noted (Davies et al., 509 
2017), however the proteome-wide approach described here demonstrates that a large collection of proteins 510 
containing these elements are highly immunogenic. The high immunogenicity of repeat sequences observed 511 
here may be the result of competitive advantages that B cell clones could encounter when binding to higher 512 
valency epitopes, as opposed to single copy epitopes. Evidence from experimental inoculations of antigens 513 
with differing repeat numbers support this notion (Kato et al., 2020). Moreover, tandem repeat regions are 514 
predicted to be intrinsically disordered, which in turn have favorable predictions as linear B cell epitopes 515 
(Guy et al., 2015). Notably, this high immunogenicity can potentially restrict responses to other epitopes 516 
within the antigen, as has been reported for responses to protective non-repeat epitopes in the 517 
circumsporozoite protein (CSP). (Chatterjee et al., 2021). 518 
 519 
A key finding of this study is the exposure-setting dependent difference in seroreactivity to repeat-520 
containing peptides, with the breadth of seroreactivity increasing more quickly with age in the high versus 521 
moderate exposure setting. We note that the samples analyzed in this study differed between the two cohorts 522 
not just by exposure, but also with respect to time since most recent infection, reflecting the differing 523 
epidemiology of infection in these settings. In the moderate exposure setting, the median number of days 524 
since last infection was 100, whereas over 65% of the samples from the high exposure setting were taken 525 
during periods of active infection. The difference in seroreactivity to repeat-containing peptides observed 526 
here between the settings could therefore emerge from two related mechanisms. In the first, the difference 527 
could be driven by a requirement for a minimum level of cumulative exposure to the target repeats to 528 
generate a robust response.  In the second, the antibody response to repeats may be inherently less durable, 529 
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leading to rapid waning in the absence of frequent exposure. Future longitudinal studies may be required 530 
to distinguish between these two possibilities. There were a few exceptions, including repeats from FIRA, 531 
PHISTc and LSA3, that did not show an exposure-setting dependent difference in seropositivity, suggesting 532 
that factors beyond the repeated nature of the epitope could influence the nature of the response. Whether 533 
either or both potential mechanisms contribute, the predominance of repeat containing peptides in antibody 534 
targets, along with the remarkable abundance of these peptides in the P. falciparum proteome, suggests a 535 
possible strategy evolved by the parasite for the purpose of diverting the humoral response towards short-536 
lived or exposure-dependent responses.  537 
 538 
The hypothesis of less durable antibody responses to repeat antigens in P. falciparum can be reconciled 539 
with a model in which repeating epitopes favor extrafollicular B cell responses, which are typically short-540 
lived (Cockburn & Seder, 2018; Schofield, 1991). This is based on the potential of repeat epitopes in an 541 
antigen to interact with multiple B-cell receptors (BCRs) on naïve B-cells, thereby conferring high binding 542 
strength and sufficient activation to direct these cells into an early extrafollicular response and production 543 
of short-lived plasmablasts. Several studies provide support to this model, where strong binding of BCR to 544 
the antigen, including through increased valency, increases the production of plasmablasts (Kato et al., 545 
2020; O’Connor et al., 2006; Ochiai et al., 2013; Paus et al., 2006; Schwickert et al., 2011). This could also 546 
happen via a T-cell independent response, as has been reported for some repeat antigenic structures 547 
(Schofield, 1991; Schofield & Uadia, 1990). On the other hand, the effect on germinal centers (GC), which 548 
result in long-lived plasma cells (LLPCs) and isotype-switched memory cells, is unclear. While some 549 
studies have reported no change or a decrease in the formation of GCs (O’Connor et al., 2006; Ochiai et 550 
al., 2013; Paus et al., 2006) with increased strength of interaction between antigen and B-cells, some have 551 
reported an increase (Kato et al., 2020; Schwickert et al., 2011), though it is unclear whether the latter were 552 
productive GCs. More insights come from a few studies that measured the outcome of GCs following 553 
increased strength of BCR-antigen interaction and these have reported a decrease in LLPCs(Fink et al., 554 
2007) and IgG-switched memory cells (Pape et al., 2018; Taylor et al., 2015). If repeat antigens in P. 555 
falciparum follow this pattern, an expected outcome would be defective formation of LLPCs and memory 556 
B cells. On the other hand, the finding that adults from both exposure settings ultimately developed a similar 557 
breadth of response to repeat regions could argue for the hypothesis that greater cumulative exposure is 558 
required to develop responses to these regions, but the difference between adults and children could also be 559 
driven by age-intrinsic factors (Baird et al., 1991, 1993).  560 
 561 
Another major finding of this study is the extensive presence of inter-protein motifs among seroreactive 562 
proteins. Since a strong association with seroreactivity was observed for these motifs, they may represent 563 
cross-reactive epitopes. Whether these inter-protein motifs are cross-reactive in vivo is unclear and may 564 
depend on expression timing and accessibility to the immune system, among other factors. Analogously, 565 
seroreactive repeat elements with non-identical repeating units could represent cross-reactive epitopes 566 
within proteins. Extensive presence of potential cross-reactive epitopes in P. falciparum antigens may play 567 
an important role in influencing the quality of the immune response to malaria. While it could be 568 
advantageous for the host if multiple parasite proteins could be targeted by antibodies through cross-569 
reactivity, simultaneous presence of cross-reactive epitopes could alternatively frustrate the affinity 570 
maturation process due to conflicting selection forces, as was observed for variant HIV antigens (Wang et 571 
al., 2015). Further, recurrent exposure may be necessary for the generation of strong cross-binding 572 
antibodies to cross-reactive epitopes (Murugan et al., 2020). Thus, the extensive presence of cross-reactive 573 
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epitopes, both within and between antigenic proteins in P. falciparum, could represent an evolutionary 574 
strategy aimed at limiting high-affinity antibodies in favor of lower affinity, cross reactive antibodies. In 575 
essence, the large number of shared seroreactive sequences in P. falciparum may represent a complex 576 
immune counter measure, resulting in inefficient immunity acquisition which requires extensive exposure.  577 
The atlas of seroreactive repeat elements and inter-protein motifs from this study will be useful for future 578 
investigations in understanding their impact on the quality of immune response to malaria.   579 
 580 
The PfEMP1 family shared inter-protein motifs with the greatest number of other antigens in this study. 581 
This was driven in part by the wide diversity of PfEMP1 variants, indicating that as one becomes naturally 582 
exposed to different PfEMP1 variants (Cham et al., 2009), there may be an increase in not only the sequence 583 
diversity, but the number of cross-reactive epitopes that the immune system encounters. Possessing cross-584 
reactive epitopes with other antigens could result in binding of pre-existing antibodies to the new variants, 585 
which could be disadvantageous to the host if binding strength is weak.  Further, cross-reactivity may inhibit 586 
generation of antibodies specific to the new variant due to original antigenic sin (Vatti et al., 2017). Thus, 587 
the mechanism of evolving PfEMP1 variants within a network of shared sequences with other antigens 588 
could be another strategy evolved by the parasite for immune evasion. On the other hand, binding of new 589 
variants to pre-existing antibodies may be advantageous to the host if those antibodies are effective against 590 
the new variants.  591 
 592 
While phage display of small peptides yields high resolution discrimination of linear epitopes, this approach 593 
may not capture antibodies binding to conformational epitopes. Therefore, such epitopes are likely to be 594 
missed by this assay, although polyclonal responses are frequently a mixture of linear, partially linear, and 595 
conformational epitopes. Reassuringly, we observed a large-scale enrichment of P. falciparum peptide 596 
sequences in exposed individuals when compared with control sera from the US.  This suggests that the 597 
humoral immune system of exposed individuals acquires an extensive and diverse set of P. falciparum 598 
targets, including thousands of linear sequences. The bias towards linear epitopes may have increased the 599 
relative detectability of repeat regions by this assay since they often form intrinsically disordered regions. 600 
However, that would not account for the observed differences between exposure settings for children and 601 
adults. Another limitation of our study is that it did not provide quantitative measures of absolute antibody 602 
reactivity to individual peptides per person. Therefore, enrichment counts for peptides were only used in a 603 
semi-quantitative way to determine seropositivity. Lastly, given the breadth and sensitivity of the PhIP-seq 604 
technique, 86 control sera were used to remove non-specific enrichments. We imposed a stringent filter to 605 
minimize false positives by requiring that each seroreactive peptide be enriched in at least five Ugandan 606 
samples over control sera. While this excluded possible seroreactive peptides unique to a single sample, the 607 
resulting sequences that passed were those that exhibited a minimum level of sharing among multiple 608 
individuals, thereby enriching for those seroreactive peptides that represent common serological responses 609 
to malaria.  610 
 611 
With the rapid success of mRNA vaccines for SARS-CoV-2(Chaudhary et al., 2021), an optimistic future 612 
for malaria vaccines is possible as well. Findings from this study could have important implications on 613 
malaria vaccine design. Results from our study suggest that that in natural infections in children, repeat 614 
regions in P. falciparum could lead to an exposure-dependent and/or short-lived antibody response to a 615 
higher degree than for non-repeat regions. While we recognize that vaccine induced immunity is distinct 616 
from naturally acquired immunity, this potential limitation should be considered when evaluating repeat-617 
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containing antigens as vaccine targets. Further, given that highly immunogenic regions in natural immunity 618 
to malaria are predominantly repeats and there is widespread presence of potential cross-reactive epitopes 619 
across many proteins, whole-parasite vaccines may also be susceptible to similar limitations. If the findings 620 
from this study translate to vaccine-induce immune responses, non-repetitive, unique antigenic regions may 621 
be more effective targets.  622 
 623 
MATERIALS AND METHODS 624 
 625 
Ethical Approval 626 
The study protocol was reviewed and approved by the Makerere University School of Medicine Research 627 
and Ethics Committee (Identification numbers 2011–149 and 2011–167), the London School of Hygiene 628 
and Tropical Medicine Ethics Committee (Identification numbers 5943 and 5944), the University of 629 
California, San Francisco, Committee on Human Research (Identification numbers 11–05539 and 11–630 
05995) and the Uganda National Council for Science and Technology (Identification numbers HS-978 and 631 
HS-1019). Written informed consent was obtained from all participants in the study. For children, this was 632 
obtained from the parents or guardians. 633 
 634 
Study Sites and Participants 635 
Plasma samples for the study were obtained from the Kanungu and Tororo sites of the Program for 636 
Resistance, Immunology, and Surveillance of Malaria (PRISM) cohort studies, part of the East African 637 
International Centers of Excellence in Malaria Research (Kamya et al., 2015).  Kihihi sub-county in 638 
Kanungu district is a rural highland area in southwestern Uganda characterized by moderate transmission; 639 
samples used from this region were collected between 2012-2016. Nagongera sub-county in Tororo district 640 
is a rural area in southeastern Uganda with high transmission and samples used from this region were 641 
collected between Aug-Sep 2012. Samples from Tororo were restricted to individuals with fewer than 6 642 
malaria cases per year to exclude individuals with very high incidence. Entomological inoculation rates 643 
(EIR) used in the study were calculated for each household based on entomological surveys involving 644 
collection of mosquitoes with CDC light traps and quantifying the number of P. falciparum-containing 645 
female anopheles mosquitoes along with sporozoite rates (Kilama et al., 2014). These cohorts and study 646 
sites have been described extensively in prior publications (Helb et al., 2015; Kamya et al., 2015; Rek et 647 
al., 2016; Yeka et al., 2015); briefly, follow up consisted of continuous passive surveillance for malaria at 648 
a study clinic open 7 days a week where all routine medical care was provided, routine active surveillance 649 
for parasitemia, and routine entomologic surveillance. One plasma sample was selected from each of 100 650 
participants, stratified by age, from each of the 2 cohorts. The 86 US controls were de-identified plasma 651 
obtained from adults who donated blood to the New York Blood Center.  652 
 653 
Bioinformatic Construction of Falciparome Phage Library  654 
The pipeline for library construction is shown in Fig S2a. To construct the library, raw protein sequence 655 
files were downloaded from their respective public databases. Coding sequences from 3D7 and IT strains 656 
were downloaded from PlasmoDB (Amos et al., 2022) and vaccine/viral sequences were downloaded from 657 
the RefSeq database (O’Leary et al., 2016). Antigenic variant sequences were curated from multiple 658 
sources. The entire collection of protein sequences used as input for designing the peptides in the study can 659 
be found in the Dryad dataset doi:10.7272/Q69S1P9G. Pseudogenes were removed and any remaining stop 660 
codons within coding sequences were replaced with Alanine residues. These sequences were combined and 661 
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filtered using CD-HIT(Fu et al., 2012; Li & Godzik, 2006) to remove sequences with > x% identity, where 662 
the threshold X used varied for different sets of sequences are in Table 2.  663 
 664 
The final set of protein sequences (n=8,980) was then merged and short sequences (<30 aa long) were 665 
removed prior to collapsing at 100% sequence identity (n = 8534). Next, all sequences were split into 62-666 
amino acid peptide fragments with 25-amino acid step size. Fragments with homopolymer runs of >= 8 667 
exact amino acid matches in a row were removed, X amino acids were substituted to Alanine and Z amino 668 
acids (Glutamic acid or Glutamine) to Q (Glutamine), and finally, lzw compression was used to identify 669 
and remove low-complexity sequences with a compression ratio less than 0.4. Lastly, sequence headers 670 
were renamed to remove spaces and the resulting peptide fragments were converted to nucleotide 671 
sequences. Adapter sequences were appended, with a library-specific linker on the 5’ end 672 
(GTGGTTGGTGCTGTAGGAGCA) and a 3’ linker sequence coding for two stop codons and a 17mer (-673 
TGATAA- GCATATGCCATGGCCTC). This file was then iteratively scanned for restriction enzyme sites 674 
(EcoRI, HindIII), which were eliminated by replacement with synonymous codons to facilitate cloning. 675 
The final set of nucleotide sequences was collapsed at 100% nucleotide sequence identity (n = 238,068) 676 
and then ordered from Agilent Technologies. 677 
 678 
Cloning and Packaging into T7 Phage  679 
A single vial of lyophilized DNA was received from Agilent. The lyophilized oligonucleotides were 680 
resuspended in 10 mM Tris–HCl-1 mM EDTA, pH 8.0 to a final concentration of 0.2nM and PCR amplified 681 
for cloning into T7 phage vector arms (Novagen/EMD Millipore Inc. T7 Select 10-3 Cloning kit). Detailed 682 
protocol can be found in dx.doi.org/10.17504/protocols.io.j8nlkkrr5l5r/v1. Four 30ul packaging reactions 683 
were performed and all were pooled in the end. Plaque assays were done with the packaging reaction to 684 
determine the titer of infectious phage in the packaging reaction and estimated to be 2 x 108 pfu/ml. Phage 685 
libraries were then prepared and amplified fresh from packaging reactions. Resulting phage libraries were 686 
tittered by plaque assay and adjusted to a working concentration of 1010 pfu/mL before incubation with 687 
patient plasma. 688 
Immunoprecipitation of antibody-bound phage  689 
Plasma samples were first diluted in 1:1 storage buffer (0.04% NaN3, 40% Glycerol, 40mM HEPES (pH 690 
7.3), 1x PBS ( -Ca and –Mg)) to preserve antibody integrity. Then, a 1:2.5x dilution of that stock was made 691 
in 1x PBS resulting in a final 1:5 dilution and 1 ul of this was used in PhIP-seq. The protocol was followed 692 
as in dx.doi.org/10.17504/protocols.io.j8nlkkrr5l5r/v1. 40 ul of Pierce Protein A/G Bead slurry 693 
(ThermoFisher Scientific) were used per sample. After round 1 of IP, the eluted phage were amplified in E. 694 
coli and enriched through a second round of IP. The final lysate was spun and stored at -20°C for NGS 695 
library prep. Immunoprecipitated phage lysate was heated to 70°C for 15 minutes to expose DNA. DNA 696 
was then amplified in two subsequent reactions. All samples had a minimum of two technical replicates. 697 
 698 
Bioinformatic Analysis of PhIP-Seq Data  699 
 700 
Identification of seroreactive peptides  701 
Sequencing reads were first trimmed to cut out adaptors with Cutadapt(Martin, 2011):  702 
call(['cutadapt', '-g', r1_linker_dict[index_library], '-o', read1_trimmed, read1_location])) 703 
Trimmed reads were then aligned to the full Falciparome peptide library using GSNAP(Wu & Nacu, 2010) 704 
paired end alignment, outputting a SAM file:   705 
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call(["/data/bin/bin/gsnap", "--gunzip", "-A", "sam", "--gmap-mode=none", "--batch=2", "--nofails", "--706 
npaths=1", "-t", "12", "--use-shared-memory=0", "-d", (gsnap_library), "-D", gsnap_libraries, 707 
read1_location, read2_location], stdout = f) 708 
For each aligned sequence, the CIGAR string was examined, and all alignments where the CIGAR string 709 
did not indicate a perfect match were removed. The final set of peptides was tabulated to generate counts 710 
for each peptide in each individual sample. Samples with less than 250,000 aligned reads were dropped 711 
from further analysis and any resulting samples with only one technical replicate were also dropped (2 of 712 
the 200 Ugandan samples were dropped). To keep the analysis restricted to P. falciparum peptides and limit 713 
the influence from non-P. falciparum peptides, reads mapping to all vaccine, viral and experimental control 714 
peptides were excluded from analysis. The remaining peptide counts were normalized for read depth and 715 
multiplied by 500,000, resulting in reads/500,000 total reads (RP5K) for each peptide. The null distribution 716 
for each peptide was modelled using read counts from a set of 86 plasma from the US (New York Blood 717 
Center) using a normal distribution, with the assumption that most of these individuals were likely 718 
unexposed to malaria. To avoid inflation by division, if the standard deviation of read counts of any peptide 719 
in the US samples was <1, then that was set as 1.  Z-score enrichments ((x-mean US)/std. dev US) were 720 
then calculated for each peptide in each sample using the US distribution and Z-score >= 3 in both technical 721 
replicates (or more than 75% of the replicates if there were more than 2 technical replicates) of a sample 722 
was used to identify enriched peptides within a given sample. To call malaria-specific peptide enrichments 723 
(‘seroreactive peptides’), enrichment was required in a minimum of 5 Ugandan samples. Seropositivity for 724 
a peptide was calculated by the percent of Ugandan samples enriching for that peptide. Seropositivity for a 725 
protein was calculated by the percent of Ugandan samples enriching for any peptide within that protein. 726 
 727 
Calculation of breadth of non-redundant peptide groups per person 728 
Seroreactive peptides in each person were collapsed based on shared sequences (7-mer identical motifs) 729 
using the network approach described in AVARDA (Monaco et al., 2021) to get a conservative estimate of 730 
the number of non-redundant peptide groups in each person.  731 
 732 
Calculation of VSA breadth per person 733 
VSA breadth was calculated as the number of variant proteins in each VSA family that were seroreactive 734 
in a given person and was calculated as follows. Since all these families possess conserved as well as 735 
variable regions, during library design, peptides across conserved regions from many variants that share 736 
identical sequences were filtered out to avoid redundant representation and only one representative peptide 737 
was retained in the final Falciparome library. Therefore, to accurately calculate the number of VSA proteins 738 
recognized in a person, all seroreactive VSA peptides were mapped back to the sequences from the full 739 
collection of VSA protein sequences to identify all the variant proteins each seroreactive peptide sequence 740 
mapped to. This information was then used to get the number of variant proteins reactive to a person’s 741 
plasma. Domain classification for PfEMP1s was done using the VarDom server (Rask et al., 2010). Domain 742 
classification for RIFINs was done based on (Joannin et al., 2008). 743 
 744 
Repeat analysis 745 
Only unique 3D7/IT proteins in the library (if both 3D7 and IT homologs were present in the library, only 746 
the 3D7 homolog was considered) that were not members of Variant Surface Antigens (PfEMP1, RIFIN, 747 
STEVOR, SURFIN, Pfmc-2TM) were considered for all repeat analysis to avoid redundancy of 748 
representation. 749 
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 750 
Cumulative repeat frequency in proteins -  For calculation of cumulative repeat frequency in proteins, 751 
amino acid sequences of proteins were input into the RADAR (Madeira et al., 2019) program for denovo 752 
identification of repeats using default settings. Cumulative frequency of repeats in a protein was then 753 
determined by adding the repeat counts of all reported repeats in the protein. To compare to the non-754 
seroreactive set, the same number of proteins as the seroreactive protein set was randomly sampled from 755 
the total non-seroreactive protein set 1000 times and the distribution of cumulative frequencies between the 756 
seroreactive and non-seroreactive sets were compared using a 2-sample KS-test in each iteration.  757 
 758 
Repeat index calculation - To systematically compare the distribution of repeats between seroreactive and 759 
non-seroreactive peptides within seroreactive proteins, the following approach was adopted. Firstly, for 760 
each protein, repeats and their frequency within that protein was calculated using a k-mer approach. K-mers 761 
were fixed length sequences (6/7/8/9-aa) with any number of conservative substitutions (AG, DE, RHK, 762 
ST, NQ, LVI, YFW) and did not include polymeric stretches of single amino acids from N/Q/D/E/R/H/K. 763 
For each protein sequence, all possible kmers in the protein and their frequency (number of non-overlapping 764 
occurrences) in the protein (intra-protein repeat frequency) was calculated. Then for each peptide in the 765 
protein, all k-mers in the peptide sequence were taken and the k-mer with the highest intra-protein repeat 766 
frequency was identified. This frequency was assigned as the repeat index for the peptide. Once all peptides 767 
across all seroreactive proteins were assigned a repeat index, they were subsequently classified according 768 
to seropositivity. In each seropositivity group, since peptides from the same protein could have the same 769 
highest intra-protein repeat k-mer, to avoid redundancy of representation, peptides sharing the same highest 770 
k-mer were collapsed and counted only once. For the non-seroreactive peptide set, random sampling of 771 
peptides from all non-seroreactive peptides was performed (1000 iterations). The 2-sample KS test was 772 
then used to compare distributions.  773 
 774 
Inter-protein motif analysis  775 
First, all motifs with wildcards (any amino acid allowed at that position) or conservative substitutions (AG, 776 
DE, RHK, ST, NQ, LVI, YFW), shared by at least two seroreactive peptides were identified using the 777 
SLiMFinder program (Edwards et al., 2007), a part of the SLiMSuite package. The following parameters 778 
were used for running the program with the seroreactive peptide sequences as input: 779 
teiresias=T efilter=F blastf=F masking=F ftmask=F imask=F compmask=F metmask=F slimlen=7 780 
absmin=2 absminamb=2  slimchance=F maxwild=1 maxseq=10000 walltime=240 minocc=0.0002 781 
ambocc=0.0003 wildvar=False equiv=<txt file that lists the allowed conservative substitutions - AG, DE, 782 
RHK, ST, NQ, LVI, YFW>  783 
 784 
Following this, a custom script was used to parse motifs with desired length and degeneracy threshold and 785 
identify those enriched over background. First, motifs of length K with at least N fixed positions and 786 
allowed number of conservative substitutions and wildcards were filtered depending on the degeneracy 787 
thresholds used. Motifs with homopolymeric stretches of KKKKK/ NNNNN/ EEEEE were not considered 788 
as this is a common feature in the proteome of plasmodium. Then, for each motif, the number of seroreactive 789 
peptides possessing that motif was determined (frequency in the seroreactive set). Next, enrichment in the 790 
seroreactive set over background was estimated with the following approach. Random sampling was 791 
performed on the whole library to get the same number of random peptides as seroreactive peptides 792 
(n=9927) and the occurrence frequency of each motif was calculated in the random set each time. This was 793 
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bootstrapped 1000 times and this represented the background frequency of the motifs in 1000 iterations. A 794 
p-value for enrichment in the seroreactive set was then calculated using a Poisson model for the background 795 
frequency distribution. Significantly enriched ones were then identified following multiple hypothesis 796 
correction (FDR of 0.1%). This set of motifs represented the final collection of significantly enriched 797 
motifs. From this set, those that were shared by at least two seroreactive proteins were identified as inter-798 
protein motifs. Network visualizations were performed with Cytoscape (Shannon et al., 2003). For the 799 
analysis on PfEMP1 with random set of peptides, all PfEMP1 peptides from the seroreactive set (n=3001) 800 
were combined with random peptides (n=6926) to a total of 9927 peptides. This was treated as the 801 
‘seroreactive’ set and a similar analysis was performed to identify significantly enriched motifs in this set.  802 
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Table 1 – Characteristics of the Ugandan Cohorts  
 

Region Age 
group 
(yrs) 

No. of 
people 

Proportion 
positive for 
infection 
at the time 
of sample 
collection  

Time since last 
infection 
(days) - 
median (IQR) 

Incidence of 
symptomatic 
malaria per 
year -   
median (IQR) 

Household 
annual EIR* 
(infective bites / 
person) -              
median (IQR) 

Tororo  2 to 3 10 0.5 18.5 (0,85) 5.8 (2.9,7.7) 56 (33,148) 
4 to 6 30 0.66 0 (0,45) 3.6 (2.6,4.8) 59 (38,84) 
7 to 11 30 0.63 0 (0,45) 2.3 (2,4.3) 46 (30,110) 
> 18 30 0.7 0 (0,45) 1.2 (0.9,1.6) 49 (35,94)        

Kanungu 2 to 3 10 0.1 155 (61,190) 1.7 (0.9,2) 4.3 (4, 14) 
4 to 6 30 0.2 114 (43,289) 1.5 (0.7, 2.3) 7.3 (4.5, 15) 
7 to 11 30 0.13 121 (41,263) 1.5 (0.6, 2) 5.2 (4, 7) 
> 18 30 0.2 109 (38, 223) 1.1 (0.8, 1.3) 6.8 (4.8, 15.4) 

 
*EIR – Entomological Inoculation Rate  
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Table 2 – Composition of Falciparome phage library  
 

 Input sequences before collapsing on similarity 

Identity 
threshold for 
collapsing by  

CD-HIT 

# Final 
collapsed 
Protein 

sequences 
P. falciparum reference 
proteome 3D7, IT (10,771 total) 99% 6372 

P. falciparum variant 
sequences 

• PfEMP1 (431 from 3D7, IT, IGH, RAJ116, 
PFCLIN, IT4, DD2 genomes) 

• RIFIN (all 3D7 + IT) 
• STEVOR (all 3D7 + IT) 
• SURFIN (all 3D7 + IT+15) 
• AMA1 (2) 
• CSP (6) 
• MSPDBL1 (6) 
• MSPDBL2 (5) 
• PfMC2TM (all 3D7 + IT) 

 

100%  
(90% for CSP) 1205 

Other variants  P. reichnowi PfEMP1 (PFREICH)  
Anopheles - CE5 (5), SG6 (5) 

Anopheles salivary proteins 53 proteins from 19 Anopheles species as 
described in Fig 1 of (Arcà et al. 2017) 98% 708 

Vaccine/Viral/Toxin  sequences 

• Tetanus 
• Diphtheria 
• Pertussis 
• EBV 
• Measles 
• Mumps 
• Rubella 
• Polio 
• RotoAB 

98% 
 (90% for 
RotoAB) 

684 

Laboratory positive controls 

• GFAP 
• GFP 
• Gephryn 
• MYC, NR1 
• Tubulin (alpha/beta) 

98% 11 

TOTAL PROTEINS   8,980 
TOTAL PEPTIDES    238,068 

 

References: 

Arcà, Bruno, Fabrizio Lombardo, Claudio J. Struchiner, and José M.C. Ribeiro. 2017. “Anopheline Salivary Protein Genes and Gene Families: An Evolutionary 

Overview after the Whole Genome Sequence of Sixteen Anopheles Species.” BMC Genomics 18 (1).  
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Malaria-specific
seroreactive peptides

Enriched in >=5 Ugandan samples

Enriched peptides
Z-score >=3 in both replicates

Enrichment over US controls
(Z-score)

Read counts per peptide

8980 total proteins

62aa

25aa

Falciparome library displayed
on capsid of T7 phage

Falciparome library Incubation with plasma sample
and IP of antibodies

Iterative enrichment

Sequencing of enriched phage
DNA for peptide identification

Pipeline to identify
malaria-specific

seroreactive peptidesP. falciparum proteome (3D7,IT)
Variant antigens

(PfEMP1s, STEVORs, RIFINs, etc.)

238,068 total peptides
62aa long with 25aa step size

2x

Fig 1 - PhIP-seq overview and analysis pipeline

Falciparome phage library displays the proteome of Plasmodium falciparum in 62-aa peptides with 25-aa step size on T7 phage
and also includes variant sequences of many antigens, including major Variant Surface Antigens (VSA). PhIP-seq was performed
with incubation of Falciparome library with human plasma, followed by IP of antibodies in the sample and enrichment of antibody
binding phage. Two rounds of enrichment were performed and enriched phage were sequenced to obtain the identity of the
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Fig2: PhIP-seq with Falciparome captures known, novel antigens and relationships between age, exposure and
breadth of seroreactive regions

(a) Heatmap of Z-score enrichment over US controls for seroreactive peptides (rows) with >10% seropositivity across
different age groups in the moderate and high exposure cohorts. Peptides are sorted by protein name and samples(columns)
are ordered by increasing age in each group. Well-characterized (black labels) as well as under-characterized/novel (blue
labels) antigens in Plasmodium falciparum were identified with this approach.
(b) Breadth of antibody reactivity, shown as number of seroreactive peptides in each person. Dotted red line and red text
indicate median breadth for each population group. Children from the moderate transmission setting had significantly lower
breadth than children from the high transmission setting as well as all adults (KS test p-value <0.05).
(c) Percentage of proteins across different stages identified as seroreactive in this study. Stage classification is based on
proteomic datasets in PlasmoDB (spectral count >= 2 for at least 1 peptide in a protein in a given stage is counted as
expression) and shows enrichment of proteins from all life stages of Plasmodium falciparum in the human host.
(d) Breadth of VSA reactivity, shown as number of variant proteins of RIFINs, STEVORs and PfEMP1s seroreactive per
person. In the moderate transmission setting, children had a significantly lower breadth than adults for PfEMP1 and both age
groups poorly recognized RIFINs and STEVORs. In contrast, in the high transmission setting, children had a significantly
(* KS test < 0.05) higher breadth than adults for all three families.
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Fig3: Tiled design of library facilitates high resolution characterization of seroreactive proteins

(a) Examples of previously well-characterized antigens and (b) novel/previously under-characterized antigens identified in this
dataset. Average percent of people seropositive at each residue (seropositivity) based on signal from peptides spanning it
are shown for each protein for different groups in the cohort. The magnitude of exposure- and age-related differences in
seropositivity varies by individual protein and even within different regions of specific proteins. Reddish bars underneath
each protein represent repeat elements and blue bars represent examples of regions encompassing targets of protective
antibodies described in previous studies. Snapshots of sequences of repeat elements present in a protein are represented
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(a) Distribution of cumulative frequency of repeat elements per protein is significantly higher (KS test p-value < 0.05) in the
seroreactive protein set than a randomly sampled subset of non-seroreactive proteins (1000 iterations).
(b) Pipeline to compute the representation of repeats in each peptide as repeat index.
(c) Distribution of repeat indices is significantly higher (KS test p-value < 0.05) in seroreactive peptides than a randomly
sampled subset of non-seroreactive peptides within seroreactive proteins (1000 iterations). Distribution of repeat indices
also significantly increases with increase in seropositivity (KS test p-value <0.05 between all successive distributions).
(d) Seropositivity of all peptides (dots) colored by their repeat indices in the top 9 most seropositive repeat-containing
proteins shows enrichment of repeat elements in peptides with high seropositivity.
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Fig 5: Exposure intensity is positively associated with breadth of seroreactive repeat-containing peptides,
but not non-repeat peptides in children
(a) Breadth of seroreactive non-repeat peptides per person is not significantly different between the two exposure settings
within each age group.
(b) Breadth of seroreactive repeat-containing peptides per person is significantly higher (KS-test p-value < 0.05) in the high
exposure setting than in the moderate exposure setting within the three groups in children, but not adults.
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(a) Pipeline to identify inter-protein motifs (6-9aa) significantly enriched (FDR < 0.001) in seroreactive peptides from different
seroreactive proteins (different colors) over background. Background for each motif was estimated based on the number of
random peptides possessing the motif in 1000 random samplings of 9927 peptides. Examples of inter-protein motifs and
seroreactive proteins sharing them are also shown.
(b) Network of PfEMP1 sharing inter-protein motifs with other seroreactive proteins based on 7-aa motifs with up to 2
conservative substitutions. PfEMP1 shared inter-protein motifs with the greatest number of other seroreactive proteins.
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Fig S1a - Pipeline for library construction: Input sequences of different groups were filtered with CD-HIT to remove similar
sequences with more than the indicated % identity in Table 2. The filtered sequences were then processed into peptides using
the peptide processing pipeline and quality checks were performed as described in NT sequence verification.
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Fig S2a – Histogram of read counts of input library.
Read counts corresponding to the 5th and 95th percentile in the distribution (indicated in blue) are within a 15-fold
difference. Cumulative density plot of the distribution is shown in red.
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Fig. S2b - Technical replicates are well correlated
Top - Pearson correlation matrix of depth-adjusted read counts across all samples. Technical replicates are placed
symmetrically on rows and columns.
Bottom three - Representative scatter plots of reads per 500,000 (RP5K) of technical replicates of samples from Tororo,
Kanungu and US.

CK
3-

4F
42

_-
CO

N
ST

AN
T_
Ro

un
d2

T2
_S
28

8_
R1

CK
3-

5E
D
D
_R
ou

nd
2T

2_
S2

81
_R
1

CK
3-

62
8P

_R
ou

nd
2T

2_
S3

41
_R
1

CK
3-

6Q
D
T_
Ro

un
d2

T2
_S
30

3_
R1

CK
3-

7S
SS
_R

ou
nd

2T
2_

S3
23

_R
1

CK
3-

9R
AG

_R
ou

nd
2T

2_
S3

17
_R
1

CK
3-

CM
S4

_R
ou

nd
2T

2_
S2

67
_R
1

CK
3-

FB
CD

_R
ou

nd
2T

2_
S3

15
_R

1
CT

3-
3N

H
R_
Ro

un
d2

T2
_S
75

_R
1

CT
3-

48
TS

_R
ou

nd
2T

2_
S7

7_
R1

CT
3-

4B
99

_R
ou

nd
2T

2_
S3

15
_R
1

CT
3-

4D
N
6_
Ro

un
d2

T2
_S
28

3_
R1

CT
3-

54
UH

_R
ou

nd
2T

2_
S8

8_
R1

CT
3-

56
VW

_R
ou

nd
2T

2_
S3

57
_R
1

CT
3-

5A
4A

_R
ou

nd
2T

2_
S3

15
_R
1

H
C0

08
_R

ou
nd

2T
2_

S2
44

_R
1

H
C0

16
_R

ou
nd

2T
2_

S3
08

_R
1

H
C0

23
_R

ou
nd

2T
2_

S2
78

_R
1

H
C0

33
_R

ou
nd

2T
2_

S2
86

_R
1

H
C0

44
_R

ou
nd

2T
2_

S2
96

_R
1

H
C0

53
_R

ou
nd

2T
2_

S3
46

_R
1

H
C0

59
_R

ou
nd

2T
2_

S2
98

_R
1

H
C0

68
_R

ou
nd

2T
2_

S3
20

_R
1

H
C0

77
_R

ou
nd

2T
2_

S3
70

_R
1

H
C0

83
_R

ou
nd

2T
2_

S3
38

_R
1

H
C0

93
_R

ou
nd

2T
2_

S3
30

_R
1

CK3-4F42_-CONSTANT_Round2T1_S192_R1
CK3-5FE7_Round2T1_S229_R1
CK3-68G2_Round2T1_S94_R1

CK3-7L9M_Round2T1_S189_R1
CK3-AWAK_Round2T1_S151_R1
CK3-DQ42_Round2T1_S191_R1
CT3-3MTY_Round2T1_S195_R1
CT3-48TS_Round2T1_S61_R1

CT3-4BXG_Round2T1_S227_R1
CT3-52RP_Round2T1_S217_R1
CT3-567B_Round2T1_S72_R1

CT3-5A6V_Round2T1_S229_R1
HC010_Round2T1_S152_R1
HC022_Round2T1_S164_R1
HC033_Round2T1_S190_R1
HC045_Round2T1_S218_R1
HC057_Round2T1_S198_R1
HC067_Round2T1_S238_R1
HC079_Round2T1_S218_R1
HC089_Round2T1_S286_R1
HC096_Round2T1_S256_R1

0.2

0.4

0.6

0.8

Ugandan Samples

Technical replicate 1

Te
ch
ni
ca
lr
ep
lic
at
e
2

U
ga
nd
an

S
am

pl
es

U
S
S
am

pl
es

US Samples Pearson r

100 101 102 103 104 105 106

CT3-4C5V -T1 (RP5K)

100

101

102

103

104

105

106

CT
3-

4C
5V

-T
2
(R
P5

K) pearson r = 0.97

100 101 102 103 104 105 106

CT3-56VW -T1 (RP5K)

100

101

102

103

104

105

106

CT
3-

56
VW

-T
2
(R
P5

K) pearson r = 0.93

100 101 102 103 104 105 106

CK3-B2VK -T1 (RP5K)

100

101

102

103

104

105

106
CK

3-
B2

VK
-T

2
(R
P5

K) pearson r = 0.98

100 101 102 103 104 105 106

CK3-6EZE -T1 (RP5K)

100

101

102

103

104

105

106

CK
3-

6E
ZE

-T
2
(R
P5

K) pearson r = 0.99

100 101 102 103 104 105 106

HC060 -T1 (RP5K)

100

101

102

103

104

105

106

H
C0

60
-T

2
(R
P5

K) pearson r = 0.92

100 101 102 103 104 105 106

HC079 -T1 (RP5K)

100

101

102

103

104

105

106

H
C0

79
-T

2
(R
P5

K) pearson r = 0.92

TORORO

KANUNGU

US
controls

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.24.497532doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497532


log10(RP5K)
0

4

2

Ugandancohort US
controls

G
FA
P
pe
pt
ide
s

Fig. S2c
Top panel - PhIP-seq with polyclonal anti-GFAP enriches for GFAP peptides and enrichment is specific to IP with anti-GFAP,
but is observed rarely in the Ugandan cohort and US controls.
Left - Scatter plot of Reads Per 500,000 (RP5K) of technical replicates of an IP with anti-GFAP. GFAP peptides are in red.
Right – Heat map of RP5K of GFAP peptides (rows) in different samples (columns).
Bottom panel - Heat map of RP5K of top 10 Epstein-Barr virus (EBV) peptides (rows) with highest read counts in human
samples. Enrichment is observed across Ugandan and US samples, but not in the IP with anti-GFAP.

UScontrols log10 (RP5K)
0

1

2

3

4

5

6

anti-GFAP

an
ti-

G
FA

P

Ugandan cohort

To
p
10

EB
V
pe
pt
id
es

w
ith

m
os
tr
ea
d
co
un
t

GFAP peptides

100 101 102 103 104 10 105 6

anti-GFAP IP -Tech1 (RP5K)
100

101

102

103

104

105

106
an
ti-
GF
AP

IP
-T
ec
h2

(R
P5
K)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.24.497532doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497532


FigS2d - Moving threshold analysis to determine optimal thresholds for calling peptides as seroreactive based on minimum Z-score
and enrichment in a minimum number of samples in a group. Box plots of resultant number of seroreactive peptides for corresponding
thresholds are shown for Ugandan samples and US controls. The final thresholds for calling seroreactivity were selected based on
minimizing the number of peptides identified as seroreactive in the US controls and is indicated by the red box.
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FigS2e - Results from GO enrichment analysis with the top 100 seroreactive proteins with the highest seroprevalence in the
dataset shows enrichment of proteins at the host-parasite interface.
Top - GO Cellular Component; Bottom - GO biological process.
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FigS2f: Box plots of non-redundant seroreactive peptide groups per person in each group

All seroreactive peptides in each person were collapsed based on sequence similarity (sharing of 7mer identical motifs).
The resulting number of non-redundant groups were used as a measure of conservative non-shared breadth. Children from
the moderate transmission setting had a significantly lower breadth than children from the high transmission setting and all
adults by both approaches.* indicates p-value < 0.05 by KS-test. Median for each group is labeled on the side of the box.
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FigS2g: Breadth of seroreactivity in the variable regions of RIFIN and PfEMP1
Top - Number of domain variants seroreactive in the variable region V2 of RIFINs. Significantly different groups
(KS test < 0.05) are marked with an *.
Bottom - Heatmap of proportion of variants from the library that are seroreactive in a given person for each PfEMP1
domain. Each column is a person. Schematic of domain structure of PfEMP1 is shown below the heatmap.
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FigS3a - Location of seroreactive peptides identified in this dataset (red bar) and seroreactive 15-mer peptides identified
using a high density peptide array (black bar) in Jaenisch et. al. (peptides with p-value <0.05 in (-) samples (malaria low
parasitemia samples from Burkina Faso) over C (control - European samples)) for 12 vaccine candidates in that study.
Average seropositivity per residue is plotted for moderate and high transmission samples in our study.
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FigS4a: Distribution of repeat indices of seroreactive and non-seroreactive peptides within hit proteins for different lengths and
degeneracy of repeating motif.
Left three: Conservative substitutions ( [GA],[ST],[DE],[NQ],[RHK],[LVI],[YFW] ) are allowed at all positions in the motif.
Right three: Identical residues at all positions in the motif.
For all 6 methods of defining repeats, all seroreactive regions were significantly different from the non-seroreactive set
(p = < 0.01 based on 1000 random samplings of non-seroreactive set).
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Fig S5a:
Breadth of repeat-containing peptides per person using different repeat index thresholds for categorizing repeat-containing
peptides. Age groups showing significant difference between the two transmission settings are marked by * based on a
KS-test p-value < 0.05.
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FigS5b: Seropositivity in all age and exposure groups for seroreactive repeat elements that are significantly different across
exposure groups in 7-11 year olds. Each dot represents a seroreactive repeat element and seropositivity for the repeat element
in a given group was calculated as the percent of people in that group enriching for any seroreactive peptide with that repeat
element.
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(b) Design of tiled peptide library and segments in overlapping peptides. Shown are overlapping segments shared with
Peptide 4. Start and end amino acid positions of each peptide are marked at either ends.
(c) Comparison of maximum seropositivity of overlapping peptides with and without inter-protein motifs. Each row in the heatmap
pertains to a collection of overlapping peptides surrounding a consecutive set of seroreactive peptides with an inter-protein motif.
(d) Same as in c, but for all 'enriched' motifs in seroreactive peptides.
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Fig S6e - Histogram of number of other seroreactive proteins with which a seroreactive protein shares inter-protein motifs.
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PF3D7_1018200.1-p1serine/threonine_protein_phosphatase_8__putative

PF3D7_1138400.1-p1guanylyl_cyclase

PF3D7_0424700.1-p1serine/threonine_protein_kinase__FIKK_family

PF3D7_1023900.1-p1chromodomain-helicase-DNA-binding_protein_1_homolog__putative

PF3D7_0717600.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_0404100.1-p1pre-mRNA-processing-splicing_factor_8__putative

PF3D7_0820000.1-p1Snf2-related_CBP_activator__putative

PF3D7_1410300.1-p1WD_repeat-containing_protein__putative

PF3D7_1343900.1-p1U4/U6_small_nuclear_ribonucleoprotein_PRP4__putative

PF3D7_0510000.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_0515500.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_0322800.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0201600.1-p1PHISTb_domain-containing_RESA-like_protein_1

PF3D7_0203000.1-p1repetitive_organellar_protein__putative

PF3D7_0301000.1-p1acyl-CoA_synthetase

PF3D7_0713500.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_0909100.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_0507200.1-p1subtilisin-like_protease_3

PF3D7_0202000.1-p1knob-associated_histidine-rich_protein

PF3D7_1409600.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_0418600.1-p1zinc_finger_protein__putative

PF3D7_1109100.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0722800.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0525200.1-p1structural_maintenance_of_chromosomes_protein_6__putative

PF3D7_1434500.1-p1dynein-related_AAA-type_ATPase__putative

PF3D7_0407800.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0322700.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1350500.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_0207700.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_1205400.1-p1high_mobility_group_protein_B3__putative

PF3D7_0628100.1-p1HECT-domain_(ubiquitin-transferase)__putative

PF3D7_0401900.1-p1acyl-CoA_synthetase

PFIT_1444100.1-p1protein_transport_protein_SEC7__putative

PFIT_0311300.1-p1protein_kinase__putative

PF3D7_0727800.1-p1cation_transporting_ATPase__putative

PF3D7_0504000.1-p1cation_transporting_P-ATP
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PF3D7_1107300.1-p1polyadenylate-binding_protein-interacting_protein_1__putative

PF3D7_1136200.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1245600.1-p1kinesin__putative

PFIT_0914100.1-p1pseudouridylate_synthase__putative

PF3D7_1106700.1-p1DNA_replication_ATP-dependent_helicase/nuclease_DNA2__putative

PF3D7_0803100.1-p1U3_small_nucleolar_RNA-associated_protein_14__putative

PF3D7_1039000.1-p1serine/threonine_protein_kinase__FIKK_family

PF3D7_1450400.1-p1zinc_finger_protein__putative

PFIT_0907600.1-p1ATP-dependent_heat_shock_protein__putative

PFIT_1354800.1-p1NLI_interacting_factor-like_phosphatase__putative
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PF3D7_0602000.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1248700.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1337400.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_1239500.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0214400.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1222400.1-p1AP2_domain_transcription_factor

PF3D7_0110100.1-p1selenocysteine-specific_elongation_factor_selB_homologue__putative

PFIT_0805900.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_1475300.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PF3D7_0422200.1-p1erythrocyte_membrane-associated_antigen
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PF3D7_1249800.1-p1THO_complex_subunit_2__putative
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PF3D7_1211600.1-p1lysine-specific_histone_demethylase_1__putative

PF3D7_1337500.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_1205900.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0505000.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PF3D7_0310200.1-p1phd_finger_protein__putative

Pfmc-2TM

PF3D7_0114000.1-p1exported_protein_family_1

PF3D7_1229600.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1321100.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1125700.1-p1kelch_domain-containing_protein__putative

PF3D7_0629500.1-p1amino_acid_transporter__putative
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PFIT_0626000.1-p1ankyrin-repeat_protein__putative

PF3D7_1209300.1-p1zinc_finger_transcription_factor__putative

PF3D7_0901700.1-p1Plasmodium_exported_protein_(hyp5)__unknown_function

PF3D7_1202300.1-p1dynein_heavy_chain__putative

PFIT_0601000.1-p1ATP-dependent_RNA_helicase__putative

PF3D7_1134200.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_1036200.1-p1DNA_polymerase_zeta_catalytic_subunit__putative

PFIT_0607800.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0510100.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1036300.1-p1duffy_binding-like_merozoite_surface_protein_2

PF3D7_0108300.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0801000.1-p1Plasmodium_exported_protein_(PHISTc)__unknown_function

PF3D7_0407300.1-p1transcription_factor__putative

PFIT_0521000.1-p1conserved_Plasmodium_protein__unknown_function
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PF3D7_0909900.1-p1helicase_SKI2W__putative

PF3D7_0221700.1-p1Plasmodium_exported_protein__unknown_function

PF3D7_0728200.1-p1actin-like_protein__putative

PF3D7_0806800.1-p1V-type_proton_ATPase_subunit_a__putative

PF3D7_0501400.1-p1interspersed_repeat_antigen

PF3D7_1312700.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0620400.1-p1merozoite_surface_protein_10

PF3D7_1224400.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1404900.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1456000.1-p1AP2_domain_transcription_factor__putative

PF3D7_0505700.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PF3D7_0724600.1-p1protein_kinase__putative

PF3D7_1124300.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1015100.1-p1CWC16_domain-containing_protein__putative

PF3D7_1141700.1-p1OTU_domain-containing_protein__putative

PF3D7_0220500.1-p1Plasmodium_exported_protein_(hyp2)__unknown_function

PF3D7_0213900.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0725100.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PFIT_1123900.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1317200.1-p1AP2_domain_transcription_factor__putative

PF3D7_1037000.1-p1DNA_polymerase_zeta_catalytic_subunit__putative

PFIT_1475500.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0518700.1-p1mRNA-binding_protein_PUF1

PF3D7_0611800.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1033000.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_0713300.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0811400.1-p1conserved_protein__unknown_function

PFIT_1363400.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0417600.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1409500.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0703500.1-p1erythrocyte_membrane-associated_antigen

PF3D7_0103300.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0719400.1-p1conserved_Plasmodium_protein__unknown_function
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PF3D7_1419400.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PF3D7_0925800.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1311100.1-p1meiosis-specific_nuclear_structural_protein_1__putative

PF3D7_0704000.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PF3D7_0102200.1-p1ring-infected_erythrocyte_surface_antigen

PF3D7_0513200.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0715200.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1348800.1-p1E1-E2_ATPase__putative

PF3D7_0113300.1-p1Plasmodium_exported_protein_(hyp1)__unknown_function

PF3D7_1429200.1-p1AP2_domain_transcription_factor_AP2-O3__putative
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PFIT_1456800.1-p1ferlin__putative

PF3D7_0935600.1-p1gametocytogenesis-implicated_protein

PF3D7_1415500.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PF3D7_0914000.1-p1pseudouridylate_synthase__putative

PF3D7_1123100.1-p1calcium-dependent_protein_kinase_7

PFIT_0702900.1-p1conserved_Plasmodium_membrane_protein__unknown_function
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PF3D7_1016300.1-p1glycophorin_binding_protein

PFIT_1342100.1-p1transcription_factor_with_AP2_domain(s)

PF3D7_1405300.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1415600.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1362700.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0317300.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0505400.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_1127700.1-p1RNA-binding_protein__putative

PF3D7_1350700.1-p1N6-adenine-specific_methylase__putative

PFIT_0614400.1-p1ribonuclease__putative

PF3D7_0903300.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PF3D7_1120600.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0405300.1-p1liver_specific_protein_2__putative

PF3D7_0918700.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0500800.1-p1mature_parasite-infected_erythrocyte_surface_antigen

PF3D7_1342900.1-p1AP2_domain_transcription_factor__putative

PF3D7_0804500.1-p1conserved_Plasmodium_membrane_protein__unknown_function

PF3D7_1014900.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1031500.1-p1DEAD/DEAH_box_helicase__putative

Surfin

PF3D7_1133800.1-p1RNA_(uracil-5-)methyltransferase__putative

PF3D7_1003700.1-p1MKT1_domain-containing_protein__putative

EBA-140

PF3D7_1137600.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1355600.1-p1conserved_Plasmodium_protein__unknown_function

PF3D

P

7

F

_

IT

0

_

4

0

0

7

2

2

1

3

0

1

0

0

.1

0

-

.

p

1

1

-

P

p1

la

k

s

in

m

e

o

s

d

in

iu

-

m

19

_

_

e

_

x

p

p

u

o

t

r

a

te

ti

d

v

_

e

protein_(PHISTb)__unknown_function

PFIT_1469000.1-p1rab_GTPase_activator__putative
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PF3D7_1235300.1-p1CCR4-NOT_transcription_complex_subunit_4__putative

PF3D7_0617200.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0604500.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1474000.1-p1probable_protein__unknown_function

PF3D7_1117900.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1324200.1-p1micro-fibrillar-associated_protein__putative

PF3D7_1403000.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1362900.1-p1conserved_Plasmodium_protein__unknown_function

PFIT_1125750.1-p1hypothetical_prot
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PF3D7_1348300.1-p1elongation_factor_Tu__putative

PFIT_1120200.1-p1ubiquitin-protein_ligase__putative

PF3D7_0220000.1-p1liver_stage_antigen_3
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PFIT_0830600.1-p1magnesium_transporter__putative

PF3D7_1444100.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1146300.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0202400.1-p1gamete_antigen_27/25__putative

PF3D7_1013500.1-p1phosphoinositide-specific_phospholipase_C

PFIT_1145100.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0103600.1-p1ATP-dependent_RNA_helicase__putative

PF3D7_1417200.1-p1NOT_family_protein__putative

PF3D7_0702300.1-p1sporozoite_threonine_and_asparagine-rich_protein

PFIT_1105400.1-p1radial_spoke_head_protein__putative

PFIT_0727500.1-p1zinc_finger__C3HC4_type__putative

PF3D7_1335400.1-p1reticulocyte_binding_protein_2_homologue_a

PFIT_0703500.1-p1E3_ubiquitin-protein_ligase

PF3D7_0628200.1-p1eukaryotic_translation_initiation_factor_2-alpha_kinase

PF3D7_0305200.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1033800.1-p1plasmepsin_VII

PF3D7_0811800.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1435600.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0214100.1-p1protein_transport_protein_SEC31

PF3D7_1252100.1-p1rhoptry_neck_protein_3

PF3D7_1144400.1-p1conserved_Plasmodium_protein__
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PF3D7_1452000.1-p1rhoptry_neck_protein_2

PFIT_0219500.1-p1DnaJ_protein__putative

PFIT_1478600.1-p1Plasmodium_exported_protein_(PHISTb)__unknown_function

anopheles protein

PF3D7_1149000.1-p1antigen_332__DBL-like_protein

PF3D7_1335300.1-p1reticulocyte_binding_protein_2_homologue_b

PF3D7_0305100.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_0619300.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1247500.1-p1serine/threonine_protein_kinase__putative

PF3D7_1349500.1-p1conserved_Plasmodium_protein__unknown_function

PF3D7_1141400.1-p1phosphatidylinositol_N-acetylglucosaminyltransferase_subunit_H__putative
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FigS6f-g:
(f) Network of proteins outside the PfEMP1 network.
(g) Network of proteins with >30% seropositivity outside of PfEMP1 network
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