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Potts model results dominated by lineage variants and non-SNP mutational processes in 
M. tuberculosis 
 While Potts models have proven utility for detecting epistatic pairs in Streptococcus 
pneumoniae, Streptococcus pyogenes, and Neisseria gonorrhoeae (1–3), we find that in the 
particular case of M. tuberculosis, the results are dominated by putative non-SNP mutational 
processes and lineage-specific variants. Here, we define a non-SNP mutational process as any 
mutational event that generates more than one single nucleotide polymorphism at a time, either 
by substituting multiple bases or through recombination, which can manifest as apparent multiple 
substitutions after read mapping.  

We initially ran a Potts model on all non-synonymous mutations with an allele frequency 
greater than 0.001, using the SuperDCA software package (4). To reduce the dataset size, we 
used only 11,015 isolates from our larger set of 31,435. We called variants relative to the 
reference genome of H37Rv, where any sites that show an alternative base in more than 40% of 
reads were called as polymorphisms. We translated the genome and selected only sites with non-
synonymous variants, for a total of 36,489 sites. SuperDCA, was run using a minor allele 
frequency threshold of 0.001 (for a total of 10,278 sites) and no-reweighting, with all other 
parameters set to default values. Following the SuperDCA workflow, we re-ranked the couplings 
based on phylogenetic weighting using HierBAPS(2, 5). Top-ranking couplings were chosen by 
fitting a linear model where the couplings were used to predict the log10 of coupling rank, and 
selecting points with a residual greater than 5 times the estimated standard deviation, for a total 
of 201,789 significant pairs out of 42,980,356 (1, 2) (Supplementary Figure 1). Despite following 
the literature standard procedure for phylogenetic weighting and determining significant hits, we 
found that the majority of the top-scoring hits were lineage-associated, and a substantial fraction 
were found in the same gene, potentially indicating evolution due to a single mutational event 
(Supplementary Figure 2, Supplementary Table 8).  
 To better control for population structure, we then ran a Potts model on just the 
homoplastic sites in our analysis. Potts models were run on our set of 4,776 homoplastic variants 
from 31,435 isolates using the plmc package (3, 6) with a maximum of 200 iterations. Alleles were 
encoded with three states: ancestral, derived, or gap (used for both deletions relative to the 
reference and uncertain allele calls). No sites in the alignment had more than 10% gaps. We 
scanned a range of theta values (0.01, 0.02, 0.05, 0.08, and 0.1) to determine a value which 
sufficiently corrects for oversampling of certain lineages without overcorrecting (Supplementary 
Table 9). We chose theta = 0.02, which produces a N_eff of 3623.7. As in Schubert and 
Maddamsetti et al, we used a two-component mixture model to select the strongly coupled pairs, 
finding 33,647 pairs (out of a total of 11,255,140) over the 99% probability threshold (3, 7). 
Couplings were processed using the EVCouplings Python package (8). To further control for 
population structure, we removed any pairs with a member in a lineage-associated position (9, 
10), leaving 28,374 sites. 

 We find that while this protocol did correct for lineage-associated mutations, the model 
still has results dominated by mutations due to a single mutational event (Supplementary Figure 
3). The top pairs tended to be in close genetic proximity – 90% of the top 500 hits are within 100 
base pairs on the genome. While this may be explained by true evolutionary dependencies due 
to shared function of proximal base pairs, it may also be explained by multi-base mutations, gene 
conversion, or recombination events. The ancestral sequence reconstruction analysis supported 
the latter possibilities:  54% of the top 500 pairs are predicted to arise on the same phylogenetic 
branch more than 80% of the time and were not sequential events, and a further 16% are found 
in positions with more than 5% gaps, indicating possible insertions and deletions (Supplementary 
Table 10). The enrichment for non-SNP evolutionary events is potentially due to the focus of Potts 
models on isolate genomes: mutations that affect multiple sites manifest as multiple SNPs that 
always co-occur and are never found independently, generating strong signal. 
  



Linear mixed models for detecting direct effects of dependent mutations on antibiotic 
minimum inhibitory concentrations  
 

We measure which dependent mutations have a direct effect on antibiotic resistance, by 
running a series of linear mixed models of antibiotic minimum inhibitory concentration (MIC), 
including linear (additive) and interaction (epistatic) terms of each pair of variants (2,371 sites and 
pairs tested on data from n=1,825 isolates).  

Association tests were run using GEMMA v0.98.1 using LMM mode and a missing allele 
threshold of 20% (57). Minimum inhibitory concentration (MIC) data was obtained by combining 
data from multiple studies spanning 2124 isolates (30, 45, 58–60). For antibiotics tested in media 
other than 7h10, MIC values were normalized by dividing by the ratio of the critical concentration 
in 7h10 to the critical concentration in the tested media. MIC values were converted from a range 
to a number by taking the midpoint of the range, or the endpoint if only one point was provided 
(eg, “>10” becomes “10”, “2-4” becomes “3”), and then were log-transformed. Alleles were 
encoded as 0 for ancestral state, 1 for non-ancestral, or missing for positions where the allele 
could not be confidently called. Each evolutionarily dependent pair of alleles was tested in a single 
multivariate linear mixed model, which included an interaction term to capture epistatic effects. 
We controlled for population structure using a GRM computed using all alleles (not just 
homoplastic variants) with a minor allele frequency greater than 0.1% across all 31,435 isolates 
in our dataset. 

The percent of dependent events with a detectable influence on MIC, either additively or 
epistatically, ranged from 3% for pyrazinamide to 40% for moxifloxacin, with a median of 12%. 
(Supplementary Table 1). Notable examples include a promoter variant in position 4243217 in 
the embCAB locus with a positive linear influence on ethambutol MIC, and a synonymous variant 
in position 332951 (VapC25 P62P) with a measure positive epistatic influence on rifampicin and 
isoniazid resistance (Supplementary Table 2, Supplementary Data 7). VapC25 is a toxin 
suggested to promote antibiotic tolerance by slowing growth rate in host (43). We observe that 
95% of the 20 potentiator mutations have a positive, epistatic influence on MIC for at least one 
drug. We expect that as more phenotypes become available, more variants will have detectable 
influences on MIC – currently only a median of 29% of known resistance-conferring mutations 
were determined to have a detectable statistical influence on resistance, indicating that greater 
power is needed to detect all effects.  
  
 
 
  



Supplementary Figure 1: Using a semi-log linear model to determine significant 
couplings from SuperDCA 
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Supplementary Figure 2: The top-scoring hits from SuperDCA are lineage-associated or 
single mutational event changes. The top 10,000 ranked hits from SuperDCA, colored by their 
category, are shown. Mutation pairs are defined as in_lineage if at least one mutation is lineage-
associated according to HierBAPS. Mutation pairs that are not in_lineage or found in the same 
gene are considered “standard”. Only the top 10,000 hits out of 201,789 are shown for 
visualization purposes.  

 
  



Supplementary Figure 3: Identity of top 500 Potts model hits among homoplastic sites. The 
identity of the top-ranking pairs of couplings output by the Potts model. Sites are labelled as 
“standard” if they are not inferred to be part of the same mutational event and neither of the sites 
have >5% gaps in the input sequence alignment. 

 
 
  



Supplementary Table 1: Percent of known and dependent mutations with significant 
effect on MIC 
 

 Known resistance variants Dependent mutations 

drug 
Number 
tested 

Number 
significant 

Percent 
significant 

Number 
tested 

Number 
significant 

Percent 
Significant 

AMIKACIN 10 1 10% 159 24 15% 
CAPREOMYCIN 7 3 43% 146 20 14% 
ETHAMBUTOL 11 4 36% 182 19 10% 
ETHIONAMIDE 20 3 15% 83 7 8% 

ISONIAZID 7 3 43% 178 7 4% 
KANAMYCIN 10 3 30% 152 25 16% 

MOXIFLOXACIN 9 6 67% 98 37 38% 
PYRAZINAMIDE 86 5 6% 174 6 3% 

RIFAMPICIN 21 6 29% 256 17 7% 
STREPTOMYCIN 27 4 15% 260 35 13% 

 
 
Supplementary Table 2: Consequential mutations with significant effect on MIC 
Mutations occurring after antibiotic resistance (consequential mutations) that have a significant 
influence on MIC, either linearly or epistatically. Variants and genomic positions indicated with a 
‘+’ are epistatic interactions between the two variants that are found to be significant. Genes 
indicated as X-Y are found in the intergenic region between genes X and Y.  

Gene(s) Genomic position(s) drug beta p_wald 
hadA 1473246 KANAMYCIN 1.161 0.008 

hadA + rrs 1473246 + 732110 KANAMYCIN 1.748 0.009 
inhA + PPE19 1674481 + 1532777 ETHIONAMIDE 0.987 0.002 

katG + vapC25 2155168 + 332951 ISONIAZID 1.421 0.001 
katG + 

PE_PGRS28–Rv1453 2155168 + 1638364 ISONIAZID 1.082 0 

katG + Rv1873 2155168 + 2123182 ISONIAZID 1.372 0 
rpoB + vapC25 761110 + 332951 RIFAMPICIN 1.577 0.001 

embB + 
PE_PGRS28–Rv1453 4247429 + 1638364 ETHAMBUTOL 0.297 0.002 

embC–embA 4243217 ETHAMBUTOL 0.391 0.005 
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