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Abstract 12 

Understanding the responses of plant populations dynamics to climatic variability is frustrated by 13 

the need for long-term datasets that capture demographic responses to a range of climates. Here, 14 

we advocate for new studies that prioritize spatial over temporal replication, but without inferring 15 

the effect of temporal climatic gradients from spatial climatic gradients – as usually done in the so 16 

called “space-for-time substitutions”. Rather, we advocate to estimate the effects of climate by 17 

sampling replicate populations in locations with similar climate. We first use data analysis on spatial 18 

locations in the conterminous USA to assess how far apart spatial replicates should be from each 19 

other to minimize temporal correlations in climate. We find that spatial locations separated by 250 20 

Km have moderate (0.5) correlations in annual precipitation. Second, we use simulations to 21 

demonstrate that spatial replication can lead to substantial gains in the range of climates sampled 22 

during a given set of years so long as the climate correlations between the populations are at low to 23 

moderate levels. Third, we use simulations to quantify how many spatial replicates would be 24 

necessary to achieve the same statistical power of a single-population, long-term data set under 25 

different strengths and directions of spatial correlations in climate between spatial replicates. Our 26 

results indicate that spatial replication is an untapped opportunity to study the effects of climate on 27 

demography and to rapidly fill important knowledge gaps in the field of population ecology. 28 

 29 

Keywords: climate vulnerability assessment, power analysis, sampling design, sample size, forecast, 30 

population growth rate, demography, Space-for-Time substitution.  31 
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INTRODUCTION 32 

Understanding the responses of biodiversity to climate drivers is necessary to mitigate and adapt to 33 

climate change (Urban et al., 2016). In recent years, there are several examples of successful and 34 

directly applicable forecasts that predict the effects of climatic drivers on ecological variables 35 

(Grevstad et al., 2022; Harris et al., 2018; Hartman et al., 2020). There has been slower progress in 36 

predicting the effects of climate on populations and their demography, which is necessary to assess 37 

species extinction risk (Mace et al., 2008) and predict range shifts (Schurr et al., 2012). Previous 38 

studies suggest that it takes 20-25 years of data to sufficiently describe the relationship between 39 

climate and demography (Teller et al., 2016; Tenhumberg et al., 2018). This large replication is 40 

necessary to sample a wider range of climatically extreme years (Tenhumberg et al. 2018) and to 41 

increase statistical power in the presence of noise caused by non-climate factors (e.g., variation in 42 

biotic and abiotic conditions). 43 

Beyond improving our forecasting skill, we have important knowledge gaps in population 44 

ecology that must be filled, and we cannot wait 20-25 years to acquire missing information about 45 

understudied species and regions. For example, our recent synthesis brought to our attention that 46 

knowledge on climate-demography relationships for plants is particularly poor for the species-rich 47 

tropics, and for species with extreme generation times (Compagnoni et al., 2021). We need 48 

immediate research targeting these locations and plant life histories. As the vast majority of plant 49 

ecologists are at young career stages, we need to engage Doctoral Researchers and Postdoctoral 50 

Associates in this field of research. However, this will not happen if we require projects to have a 51 

duration of two decades. 52 

It is our opinion that new studies should prioritize spatial over temporal replication to assess 53 

the demographic responses of a species to climate. Having both spatial and temporal data allows 54 

collecting a high sample size in a relatively short period of time. Spatial sampling increases our 55 

statistical power because it increases the range of climates that can be sampled across a short 56 
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period of time, allowing us to “see through the noise” caused by non-climatic factors. The range of 57 

climates sampled can be maximized by censusing populations far enough that the correlation of 58 

yearly climatic anomalies among them is low. 59 

Here, we are not advocating a “space-for-time substitution”, but simply to prioritize spatial 60 

versus temporal replication. Space-for-time substitution studies use spatial gradients that differ 61 

dramatically in climate to infer temporal links between climate and population dynamics (Blois et al., 62 

2013). Here, we are instead advocating to replicate sampling across populations that occur in similar 63 

climates, and to use this spatial data as a replicate of the same temporal process. This 64 

recommendation relies on the assumption that in similar environments, plant populations should 65 

respond similarly to climate anomalies. For example, the effect of hot or cold years on the growth 66 

rate of populations all located at the upper elevational limit of a species’ range should be similar in 67 

sign and magnitude (Kleinhesselink & Adler, 2018; Morley et al., 2017). There are already many 68 

studies that sample populations across species’ ranges in order to capture different climates (e.g. 69 

Doak & Morris, 2010; Kleinhesselink & Adler, 2018; Merow et al., 2014; Sheth & Angert, 2018). 70 

However, to our knowledge, no plant population study has yet prioritized spatial replication across 71 

sites with similar climatic conditions to study climate-demography relationships. 72 

In this manuscript, we examine in detail the opportunities provided by spatial replication 73 

when studying climate-demography relationship through data analysis and simulation. First, we 74 

assess how far apart populations must be from each other to attenuate temporal correlations in 75 

climate, by quantifying the relationship between the distance between spatial locations and their 76 

correlation in annual precipitation and temperature. We do this using gridded climatic data from the 77 

conterminous USA. Second, we consider how sampling design can maximize the range of climates 78 

captured during a study by estimating how the range of climates sampled changes depending on the 79 

climate correlations between the populations (i.e., which is based on the distance between 80 

populations) and the study duration (between five and 30 years). Third, we use simulation to 81 
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quantify the statistical power of a climate-demography relationship across sampling designs that 82 

vary in the number of spatial and temporal replicates, and the strength and direction of spatial 83 

correlations in climate between populations. In this simulation, we also address cases in which 84 

populations respond differently to climate, or have different degrees of temporal demographic 85 

variability. Based on these results, we make recommendations for new demographic research. 86 
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METHODS 87 

Spatial correlation in climate  88 

To understand how spatial correlation in climates depends on the distance between sites, we 89 

estimate the spatial correlation of annual climate in the conterminous USA, a large and climatically 90 

heterogeneous region of the world. We downloaded monthly temperature and precipitation data 91 

for the conterminous United States from the CHELSA database (Karger et al., 2017, 2018). We used 92 

CHELSA data, because it is accurate on varied topographic terrain. Such gridded data also provides 93 

systematic spatial coverage, and when used for annual means, it correlates strongly with weather 94 

station data (Behnke et al., 2016). We downloaded data following a regular grid of 0.5 degrees, for a 95 

total of 3253 locations, from 35 years, between 1979 and 2013. For each point along this grid, we 96 

calculated annual temperature means, annual precipitation sums, and computed their standardized 97 

yearly anomalies (z-scores, henceforth “anomalies”). We analyzed the decay of correlation between 98 

these temperature and precipitation anomalies using five reference locations. We picked these 99 

locations subjectively, attempting to choose the most distant points in the conterminous United 100 

States. These locations were in the Southwestern coast, Northwestern coast, Northeast Coast, 101 

Southeast coast, and in the center of the United States.  102 

For each of these five reference locations, we calculated the correlation between its 35 103 

annual temperature and precipitation anomalies, and the same anomalies observed at the other 104 

3252 locations. We plotted the correlation between climatic anomalies versus the distance from the 105 

reference location. We produced heatmaps showing the correlation of the climatic anomalies with 106 

the reference locations. 107 

 108 

Range of climates sampled with different sampling designs 109 
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We performed simulations to understand how the range of climate anomalies sampled changes as 110 

temporal replication increases when sampling one site, or multiple sites with different spatial 111 

correlation in climatic anomalies. We estimated the range of climatic anomalies sampled at a single 112 

site using a normal distribution: 113 

�~������	0,1,  (1a) 114 

�����
�
� ���������	���



,  (1b) 115 

where X is a vector of climate anomalies at the site. The length of X is n, which is the temporal 116 

replication of the study. The standard deviation in Eq. 1a is one, reflecting that we are simulating a 117 

series of anomalies. To obtain RangeX, the expected range of X values (Eq. 1b), we simulated Eq. 1a 118 

1000 times across n values ranging from two to 30 in increments of one. We calculated the mean of 119 

RangeX across these 1000 replicate simulations. 120 

We estimated the range of climatic anomalies sampled at two sites drawing values from a 121 

multivariate normal distribution, 122 

�~���	�, � 1 �
� 1�),  (2) 123 

where X is an n by 2 matrix, MVN indicates the values in X follow a multivariate normal distribution, 124 

and ρ is the correlation between the climatic anomalies of two sites. We simulated X 1000 times 125 

across a series of ρ values of 0, 0.5, 0.95, and one. We simulated n values that went from two to 30 126 

in increments of one. 127 

 128 

Statistical power for climate-demography relationship with different sampling designs 129 

We used simulations to quantify the statistical power of the relationship between climate and 130 

population growth rate for different spatio-temporal sampling designs and different spatial 131 
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correlations in climate. First, we simulated the linear relationship between log population growth 132 

rates and a normally distributed climatic anomaly at one site using: 133 

�~������	0,1,  (3a) 134 

��
�
� �

0
� �

1
�

�
,  (3b) 135 

�
�
~������	��

�
, �,  (3a) 136 

where X is a vector of size n of normally distributed climatic anomalies, ��
�
 is the average prediction of 137 

the model, �
0
 the intercept of the linear model, �

1
 is the slope, and Yi represents the natural 138 

logarithm of a population growth rate at year i. We used a log population growth rate because we 139 

have synthetic estimates of climatic effects on this variable (Compagnoni et al., 2021), because this 140 

variable is the central focus of demographic theory (Caswell, 2001; Lewontin & Cohen, 1969; Sibly & 141 

Hone, 2002), and because log population growth rate is normally distributed, facilitating simulations 142 

and their interpretation by the reader. We simulated the process in Eq. 3 1000 times, assuming 143 

study durations, n, of 20, and 30 years. For this and subsequent simulations we used a �
1
 value of 144 

0.05, and a � value of 0.15. Our choice of �
1
 reflects the effect size of precipitation anomalies on log 145 

population growth rate that we estimated across 162 plant populations (Compagnoni et al., 2021). 146 

The choice of our � reflects the median standard deviation of the log population growth rate 147 

estimated on the same 162 populations. 148 

Then, we expanded this model to accommodate spatial replicates whose climatic anomalies 149 

were correlated to different degrees. To do so, the simulated process was 150 

�~���	�, � 1 �
� 1�,  (4a) 151 

��
��
� �

0
� �

1
�

��
,  (4b) 152 

�
��
~������	��

��
, �,  (4c) 153 
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where � isthe correlation between the climatic anomalies of two sites, and subscript p refers to each 154 

site. We simulated the process described in Eq. 4 1000 times using study durations, n, of three and 155 

five years, correlations ρ of 0.95 and 0.5, 0, and -0.5 and a number of spatial replicates of two, 10, 156 

20, 30, 40, and 50. When the number of spatial replicates exceeded two, we divided the populations 157 

in two subsets, and assigned each subset to one of the two series of climatic anomalies simulated by 158 

Eq. 4a. For example, when spatial replicates were 50, we subdivided these replicates in two groups 159 

of 25 replicates. Note that replicates within each group experienced identical climate. We used low 160 

values for n to reflect that the median length of demographic studies of plants is four years 161 

(Salguero-Gómez et al., 2015). This sampling effort likely reflects the length of many PhD programs. 162 

We calculated power as the proportion of the 1000 simulations for which �
1
 had a p-value below 163 

0.05. We performed a power analysis not because we expect investigators to perform null 164 

hypothesis tests relying on p-values. Rather, our power analysis is a simple, intuitive way to quantify 165 

how the uncertainty of model estimates is influenced by the sampling design. 166 

The power estimate described above assumed that �
1
, in Eq. 3-4b, were the same for each 167 

population. We have limited information to evaluate whether there is variation across populations in 168 

�
1
. A few studies report changes in �

1
 values across populations, but many of these studies sampled 169 

populations with different average climates (Iler et al., 2019; Sletvold et al., 2013; Tye et al., 2018). 170 

Nevertheless, as it is possible for �
1
 to vary spatially, we address the sensitivity of our power 171 

estimates to spatial variation in �
1
. To do so, we modified the simulations presented in Eq. 4. We 172 

simulated a nested sampling design in which different populations are sampled in groups of three 173 

that experience identical �
1
 or ε values. In these simulations, equation 4a contains ρ values equal to 174 

one. In the first sensitivity analysis, each group of three populations has a different �
1
 value, so that 175 

�
1�
~������	 � 0.05,#,  (5) 176 

where �
1�

 are the effect sizes for group g of three populations, and the values suggest a mean �
1�

 177 

value of 0.05 with a standard deviation of #. We tested three values of #: 0.007, 0.0125, and 0.025. 178 
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Note that in the largest # value, over 5% of �
1�

 values are expected to be lower than zero. We 179 

explored the change in statistical power introduced by Eq. 5 simulating three years of data, and a 180 

number of populations going from a minimum of three to a maximum of 48, in increments of three. 181 
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RESULTS 182 

Spatial correlation in climate  183 

Annual temperature anomalies are strongly correlated even at relatively large (e.g. 500 Km) 184 

distances. The correlation between precipitation anomalies is less strong, and it decays more rapidly 185 

with distance (Fig. 1, Fig. S1-4). However, on average the correlation does not approach zero until 186 

the distance from the reference location is at least 750 Km for precipitation (Fig. S3) and 1000 Km for 187 

temperature (Fig. S2). The distance to reach a correlation of 0.5 is approximately at least 100 Km for 188 

both precipitation (Fig. S1) and temperature (Fig. S2). Interestingly, we find that the climate of the 189 

reference point on the Southwestern US coast tended to correlate less strongly with the rest of the 190 

locations in the US (Fig. S2). 191 

 192 

Range of climates sampled with different sampling designs 193 

Spatial replication can lead to substantial gains into the range of climates sampled during a given set 194 

of years so long as the climate correlations between populations are at low to intermediate levels. 195 

To reach a range of ±2 standard deviation at a single site, one would on average need 27 years of 196 

data. This number of years decreases to 20 when using two sites whose climate has correlation 0.9, 197 

and 15 when two sites have correlations 0.5 (Figure 2). 198 

 199 

Statistical power for climate-demography relationship with different sampling designs 200 

Our power analysis indicates that spatial replication greatly increases the power to detect a 201 

relationship between climate and population growth rate (Fig. 3). The statistical power of very long 202 

time series for a single site is comparable to that of datasets with high spatial replication. This holds 203 

even when the climate of the spatial replicates has a high correlation (e.g. correlation 0.95, Fig. 3). 204 

20 and 25 temporal replicates with one spatial replicate provides a statistical power of about 30 and 205 
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40%, respectively. These two statistical powers are reached by just three temporal replicates with, 206 

respectively, 10 and 20 spatial replicates experiencing highly correlated climate (0.5, 0.95). Still 207 

assuming high climatic correlations, statistical power exceeds 40% when the temporal replication 208 

increases to five years. Lower climatic correlation between populations slightly increases statistical 209 

power: going from a climatic correlation of 0.95 to zero can increase power by over 10% when 210 

temporal replicates are three (Fig. 3). 211 

Assuming variation in the effect of climate on demography (represented by �
1
 values) did 212 

not noticeably affect statistical power (Fig. S5). Statistical power remained unchanged presumably 213 

because the average �
1
 is still 0.05.  214 
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DISCUSSION 215 

Until recently, understanding the response of plant species to temporal climatic gradients has relied 216 

on either long-term monitoring efforts, which are extremely rare (Salguero-Gómez et al., 2015, 217 

2016), or on responses of plant populations to spatial climate gradients ("space-for-time 218 

substitutions", Blois et al., 2013), which are affected by several confounding factors (Damgaard, 219 

2019). Fortunately, our power analysis shows that we can propel our understanding of species 220 

responses to climate using spatial replicates that come from sites with similar climate (i.e., similar 221 

long-term average climates). Moreover, dividing spatial replicates by large distances (e.g. 100 Km) 222 

ensures climates are not perfectly correlated. Such imperfect correlation allows for sampling a larger 223 

range of climates sampled in a shorter timeframe, further compounding gains in statistical power. 224 

We believe this finding could foster progress in global climate change vulnerability assessments, 225 

near-term demographic forecasts, and ecological understanding in general. Based on our results, we 226 

provide suggestions on sampling designs leveraging spatial replication. 227 

The golden standard for vulnerability assessments relies on population dynamics and 228 

demography (Mace et al., 2008). In order to understand which life-histories and which geographic 229 

regions will be most affected by climate change, we need more demographic studies that quantify 230 

climate-demography relationships. Our power analysis shows that three years of data from ten 231 

spatial replicates have the same statistical power as 20 years of data at a single site. The ability to 232 

obtain estimates of climate effects in such a short time will likely enable covering the taxonomic, 233 

geographic, and life-history biases present in our current data (e.g. Compagnoni et al., 2021).  234 

A benefit of increased spatial replication is that it allows scientists to reach adequate 235 

inferences in as little as three years, which will facilitate ecological understanding via iterative 236 

(yearly) forecasts. Forecasts can promote ecological understanding when they are tested repeatedly 237 

across successive iterations (Dietze et al., 2018). For example, performing model selection on three 238 

years of data from 20 separate plant populations might suggest growing season precipitation is a 239 
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good predictor of demographic performance. A way to test this inference is to forecast the 240 

demography of these 20 populations after the third year of data collection. These forecasts provide 241 

each year with 20 out-of-sample data points to test whether growing season precipitation 242 

outperforms other predictors. Successive out-of-sample tests might end up changing initial 243 

inferences: for example, supporting predictors other than growing season precipitation (e.g. vapor 244 

pressure deficit), different model structures (e.g. including density dependence), or motivating 245 

changes in data collection efforts. 246 

Spatial replicates are particularly suited to address two mechanisms that could confound 247 

climate-demography relationship: species interactions, and microsite variation. First, species 248 

interactions mediated by conspecific and heterospecific densities are known to be a key component 249 

of population and community dynamics (Chesson, 2000). As a consequence, a growing body of 250 

research emphasizes the role of the indirect effects of climate mediated through heterospecific 251 

abundances (Adler et al., 2012; Gilman et al., 2010; Suttle et al., 2007). Understanding these effects 252 

relies on estimates of conspecific and heterospecific densities which, however, are hard to perform: 253 

conspecific effects are attenuated by observation error, which leads to “regression dilution” (Detto 254 

et al., 2019; Knape & de Valpine, 2011). However, regression dilution is weaker as the range of 255 

densities increases. In the short term, variation in conspecific densities is likely to be much greater 256 

across space than time. Spatial replicates are therefore ideal to capture a wide range of conspecific 257 

and heterospecific densities. The result is that spatial replication facilitates the estimation of 258 

conspecific and heterospecific effects which can be used to project the effect of indirect climatic 259 

effects. Second, climate effects on populations should be modulated by soil conditions (Lindell et al., 260 

2022; Nicolè et al., 2011). Reaching a general understanding on this subject could be achieved by 261 

stratifying spatial replicates by soil type, and fitting hierarchical models on the resulting data. 262 

To exploit the opportunities provided by spatial replication, investigators should sample sites 263 

that can be considered as independent samples (e.g., populations not connected by dispersal). 264 
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However, even when sites are separated by relatively large distances, factors other than climate 265 

(e.g. outbreaks of natural enemies) could result in spatially autocorrelated vital rates. Therefore, it is 266 

prudent for investigators to plan on estimating the spatial autocorrelation among spatial replicates. 267 

A previous study suggests that to estimate spatial autocorrelation, replicates should be disposed at 268 

random through the landscape, rather than according to regular sampling designs (Fortin et al., 269 

1989). If detected, explicit modeling of spatial autocorrelation within linear models can increase 270 

statistical power and decrease parameter uncertainty (Zuur et al., 2009). 271 

In our simulations, we have ignored the possibility for spatial replicates to have unequal 272 

residual variance. We did so because unequal residual variance is both unlikely to occur, and it will 273 

not affect the average estimates of climatic effects. Unequal variance is not likely because 274 

population growth rate increases in temporal variance only at range edges (Csergő et al., 2017; 275 

Sexton et al., 2009). Therefore, if spatial replicates come from similar environmental conditions, 276 

changes in variance among spatial replicates should be small. However, even in the case residual 277 

variance is variable among spatial replicates, this issue is only relevant for probabilistic predictions of 278 

single data points (Gelman et al. 2020). When such predictions are the objective, the issue of 279 

unequal variance can be ameliorated using weighted least squares regression (Gelman et al., 2020). 280 

Perhaps the most important limitation of spatial replication is for species with small ranges 281 

with few extant populations. There are many examples of species with extremely small ranges 282 

(Thorne et al., 2009), and with few (Colas et al., 2001) or just one (Jones et al., 1995)  extant 283 

populations. In these cases, climate vulnerability assessments will necessarily rely have to rely on 284 

other methods to quantify climate sensitivity. 285 

While our manuscript has focused on plants, the benefits of spatial replication extends also 286 

to animals with short dispersal distances. Just like in plants, the quantification of climate sensitivity 287 

in animals suffers from important geographic and taxonomic biases (Paniw et al., 2021). Moreover, 288 

while demographic research in animals tend to be more short term than for plants, spatial replicates 289 
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are typically one or few at most (Salguero-Gómez et al., 2016). These considerations suggest that the 290 

potential of spatial replication to aid the study of climate sensitivity in animals could be 291 

underexploited. However, spatial replication in animals would be practical only for species with 292 

relatively low dispersal ability. 293 

The spatially replicated sampling we propose here is a practical solution to estimate climate-294 

demography relationships and rapidly fill important knowledge gaps in the field of population 295 

ecology. The current dearth of long-term data almost certainly stems from the difficulty of 296 

maintaining data collection efforts under the most common funding schemes, which typically last 297 

three to seven years. In the time frame relevant to working on a PhD thesis, it might be possible to 298 

observe 20 populations across three years, and achieve the same power for estimating climate-299 

demography relationships that was thought to only be possible with decades-long sampling. 300 

Monitoring 20 or more populations simultaneously is a large task for a single researcher. However, 301 

such spatial replication might become more feasible with modern methods and through 302 

collaborative research networks. For example, the demography of some populations can be sampled 303 

effectively with small unmanned aerial vehicles (e.g. Bogdan et al., 2021). Moreover, observation 304 

networks for demographic data already exist: for example, PlantPopNet collects data from 46 305 

populations of Plantago lanceolota around the world (Villellas et al., 2021). We believe that the 306 

sampling choices we advocate in this article will contribute to the maturation of population ecology 307 

and its links to conservation science, functional ecology, and macro-ecology. 308 
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FIGURE LEGENDS 478 

 479 

Figure 1. The correlation between temperature and precipitation anomalies decays slowly with 480 

distance. The left column shows how temperature (A) and precipitation (C) anomalies change with 481 

distance from a reference location located in the middle of the great plains. The right column shows 482 

heatmaps of correlations in temperature (B) and precipitation (D) anomalies between the reference 483 

location (red point) and the remaining points for which we sampled climatic data. 484 

 485 

Figure 2. The lower temporal correlation between two climatic anomalies allows to sample a larger 486 

absolute range of anomalies. Bivariate plot representing the range of climate anomalies sampled (y-487 

axis) at two hypothetical sites, as a function of years sampled (x-axis). The color of dots shows the 488 

correlation of climate anomalies at these two hypothetical sites. A correlation of one implies that 489 

the two sites experience identical climatic anomalies each year. 490 

 491 

Figure 3. Spatial replication provides a statistical power similar, or higher, to temporal replication. 492 

Plot showing statistical power on the y-axis against spatial replication on the x-axis. Symbols show 493 

temporal replication which goes from three (triangles), five (circles), 20 (square), and 30 (cross). The 494 

color of symbols refers to the correlation among spatial replicates. This correlation is one for the 495 

simulations with a single spatial replicate. The dashes horizontal line highlights a statistical power of 496 

80%.  497 
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