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Abstract 

The cognitive stimulation induced by multilingualism may slow down age-related memory 

impairment. However, a suitable neuroscientific framework to assess the influence of 

multilingualism on age-related memory processes is missing. We propose an experimental 

paradigm that assesses the effects of semantic congruency on episodic memory using functional 

magnetic resonance imaging (fMRI). To this end, we modified the picture-word interference 

(PWI) task to be suitable for the assessment of older multilingual subjects undergoing functional 

magnetic resonance imaging (fMRI). In particular, stimulus materials were prepared in multiple 

languages (French, German, Luxembourgish, English) and closely matched in semantic 
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properties, thus enabling participants to perform the experiment in a language of their choice. 

This paradigm was validated in a group (n = 62) of healthy, older participants (over 64 years) 

who were multilingual, all practicing three or more languages. Consistent with the engagement 

of semantic congruency processes, we found that the encoding and recognition of semantically 

related vs. unrelated picture-word pairs evoked robust differences in behavior and the neural 

activity of parietal-temporal networks. These effects were negligibly modulated by the language 

used to perform the task. Based on this validation in a multilingual population, we conclude 

that the proposed paradigm will allow future studies to evaluate whether multilingualism 

aptitude engages neural systems in a manner that protects long-term memory from aging-related 

decline. 

1 Introduction 

In the aging population, neurodegenerative dementias are an increasing medical and 

socioeconomic problem. Since effective therapies are lacking, targeting the modifiable 

determinants of these dementias may be the key to future strategies to prevent cognitive decline. 

Stimulating cognitive activities are an essential part of this toolkit (Baldivia et al., 2008, 

Williams et al., 2020). The increased cognitive demands of practicing two or more languages 

(i.e., multilingualism) have been identified as a factor that could reduce the occurrence of 

memory impairment and dementia (Bialystok et al., 2007, Perquin et al., 2013). Current 

evidence for this protective role of multilingualism is based on neuropsychological assessments. 

However, the neural mechanisms by which multilingualism modulates age-related episodic 

memory processes remain poorly understood. This gap is also methodological since prior 

studies have focused on the demands that multilingualism places on executive control processes 

rather than memory (Abutalebi et al., 2012, Dash et al., 2019, Kousaie and Phillips, 2012, Lowe 

et al., 2021, Bialystok and Craik, 2022, Chung-Fat-Yim et al., 2019). We sought to address this 

methodological shortcoming in the current study. We present a task that was specifically 

developed to investigate neural processes related to episodic memory in an aging multilingual 

population using functional magnetic resonance imaging (fMRI). This task seeks to use 

language-specific stimuli (i.e., words) to trigger language-independent representations (i.e., 

semantics) in order to assess the effect of semantic context on episodic recognition memory. 

Semantic context can exert a powerful influence on how information is remembered. The 

congruency of scenes, objects or events can elicit an amplified neural response during encoding 

(Packard et al., 2017, Bar, 2004, Aminoff et al., 2013) and produce multiple behavioral effects 

such as an increase in the speed and accuracy of subsequent recognition while also increasing 

false recall (Packard et al., 2017, Crafa et al., 2017, Flegal et al., 2014). However, another 

critical perspective on semantic contextualization that specifically involves words is with 

“Stroop-like” interference effects (Starreveld and La Heij, 2017).  

In the original Stroop task (Stroop, 1935), the ink color of a displayed word (e.g., ROOM) has 

to be reported (e.g., blue) while ignoring the meaning of the word. Despite this instruction, there 

is a relative slowing of responses when the ink color and the meaning of a word are incongruent 

(e.g., RED). This delayed response suggests a conflict between the correct response (‘blue’) 

and the competing response (‘red’) triggered by the automatic processing of the word’s 

meaning. The picture-word interference (PWI) effect (Rosinski, 1977) is particularly relevant 

here. This phenomenon occurs in a Stroop-like task where the object displayed in a picture must 

be named while ignoring a simultaneously displayed distractor word. In this task, the time to 

name the visually depicted object (e.g., sofa) is increased by a distractor word describing a 

semantically related object (e.g., chair) (La Heij, 1988, Starreveld and La Heij, 2017). 

Furthermore, multilingualism has been shown to modulate the PWI effect because the task 
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involves word retrieval in one language but the simultaneous inhibition of competing words of 

the same meaning in other languages (Ehri and Ryan, 1980, Friesen et al., 2016). Thus, a key 

determinant of the PWI effect is the shared meaning (i.e., semantics) between non-language 

information (i.e., a picture) and language-specific information (i.e., distractor word), as well as 

between the meaning of words in different languages.  

In the current study, we developed a paradigm to leverage the semantic contextualization 

processes identified by the PWI phenomenon but with some crucial modifications to be suitable 

for an aging, multilingual population.  

In our paradigm, participants were first presented with picture-word pairs that they were 

required to remember (Figure 1A). The objects described by the picture and the word on each 

trial could either be semantically related or not. Unlike typical PWI paradigms, our paradigm 

did not require either picture naming or a selective ignoring of the displayed word. Instead, 

participants were instructed to explicitly judge whether there was a semantic relationship 

between the displayed picture and word. The effect of these semantic judgments on memory 

was then assessed after an extended delay (> 20 minutes) by comparing the recognition of the 

picture-word pairs that were judged to be related versus those that were judged to be unrelated 

(Figure 1B, 1C). We consider this adapted paradigm to be better suited for studying memory-

related processes in aging populations as compared to a paradigm that required stimulus 

information to be selectively ignored. Indeed, recent findings have shown that, relative to 

younger adults, older adults memorize more irrelevant distracting information irrespective of 

their semantic relevance (Amer et al., 2020). Furthermore, requiring participants to judge the 

relatedness of the picture and the displayed word retains their semantic relationship while 

eliminating the interference that this semantic relationship produces when the word has to be 

ignored. 

Finally, a key challenge is the use of language materials with multilingual participants. One 

strategy to deal with a high linguistic diversity has been to use non-language materials 

(Abutalebi et al., 2012, Dash et al., 2019, Kousaie and Phillips, 2012). However, we reasoned 

that language materials would be more valuable to trigger the effects of multilingualism on 

cognition (Canini et al., 2016) and semantic memory. Nevertheless, an experimental protocol 

that uses test materials in only one language for all participants might not be suitable for a 

multilingual population. For example, using a single language might impose the use of a 

practiced but non-proficient language for some participants and also exclude participants who 

do not practice the testing language. In order to address these biases, we developed a 

multilingual stimulus library that allowed the experimental paradigm to be individually 

customized. Specifically, each participant was free to choose the language of the word stimuli 

from the four languages for which stimuli were available. To limit the scope of language-

specific effects, our paradigm did not require a language-dependent response from the 

participant (for example, verbal picture naming). Instead, all the required responses involved 

choosing one of a small number of discrete alternatives with a button-press (Figure 1).  

The value of this individualized paradigm rests on the assumption that the differential effects 

of semantic context (i.e., related versus unrelated) on recognition memory do not depend on the 

choice of stimulus language. For example, the picture of a winter hat might be displayed with 

the word “wool” (in English) for some participants, or “laine” (in French) for other participants, 

or “Wolle” (in German) for others. Judging the semantic relatedness of this picture-word pair 

would depend on semantic knowledge about caps, wool and their relationship (e.g., winter caps 

are often made of wool), which is not specific to the stimulus language. Hence, the key issue 

requiring empirical validation was whether a picture-word pair that is categorized as being 

related would be encoded and recognized differently than a pair that was categorized as being 

unrelated, irrespective of the stimulus language. 
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With this individually customized paradigm (Figure 1), our validation focused on addressing 

two central questions about the paradigm: (1) Do judgments about the semantic congruency of 

the stimuli during encoding (i.e., related vs unrelated) affect subsequent recognition and its 

associated brain activity? (2) Do the semantic congruency effects on the associated networks 

differ depending on the chosen stimulus language?  

The current investigation was developed based on the findings of an epidemiological cohort 

study (Perquin et al., 2012, Perquin et al., 2013) which identified a significant association 

between the practice of several languages and the reduced prevalence of cognitive impairment 

in individuals aged 65 years and older. Therefore, our validation also focused on a similar study 

population of multilingual individuals who were aged 65 years and older.    

2 Materials and Methods 

2.1 Population selection 

Sixty-two participants (mean age 70 ± 5.7 years; 36 females) completed all stages of the study 

protocol as part of the MEMOLINGUA study (N°REC-CESP-20141124). They were recruited 

using a press release. There was no financial compensation for participation. To be included in 

the study, participants had to be older than 64y, right-handed (self-reported), have normal or 

corrected-to-normal vision, have no history of psychiatric and neurological disorders, and be 

free of contraindications for MRI scanning.  

All participants were multilingual (minimum number of practiced languages: 3). Multilingual 

ability was assessed with a version of the Language and Social Background Questionnaire 

(LSBQ) (Luk, 2008, Luk and Bialystok, 2013) that was adapted to assess multilingualism (see 

(Perquin et al., 2012)). This questionnaire (administered by a trained neuropsychologist) 

provides a detailed description of a person’s language background, self-reported proficiency in 

the practiced languages, and language usage patterns in different daily life contexts. 

Additionally, for inclusion in the main experiment, participants had to select one of the four 

languages for which stimuli were available as a preferred language for experimental testing 

(i.e., a language that they could read and respond to quickly). These four languages were 

French, German, Luxembourgish and English. Finally, to ensure that all participants were from 

a common socio-cultural context, only participants living in Luxembourg were included rather 

than a mixture of participants from neighboring countries such as Belgium, France, or Germany 

where the above languages are also practiced.  

The Mini-Mental-State-Examination (MMSE) scores (Folstein, 1983) of the study population 

were in the normal range (mean: 28.8, SD: 1.23; min: 25, max: 30). Note that the MMSE scores 

were not an inclusion criterion. 

The study was conducted at two locations: the Department of Population Health, Luxembourg 

Institute of Health (LIH), where participants were enrolled, and at the Institute of Neuroscience 

and Medicine (INM-3), Research Center Jülich (Germany). In one part, each participant was 

interviewed by a neuropsychologist at Luxembourg to obtain epidemiological information (e.g., 

demographics, neuropsychology, medical history, socio-cultural background, linguistic ability) 

following a procedure previously described in (Perquin et al., 2012). In the second part, 

participants were transported to (and from) the Institute for Neuroscience and Medicine, 

Research Centre Jülich for a single-day MRI session. 

The study protocol was approved by the National Ethics Committee for Research (CNER, 

N°201501/03). Participants provided their signed informed consent for the entire study at LIH 

and for the MRI session at the Research Center Jülich.  
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2.2 Stimulus materials 

Participants selected their preferred language for the stimuli to be presented during the 

experiment. The four available language options were Luxembourgish, French, German, and 

English. For each participant, the complete stimulus set across all experimental conditions 

consisted of 96 pictures and 256 visually depicted words in the selected language (see 

Supplementary Tables s1-s5). 

The picture stimuli were naturalistic color photographs depicting every-day, easily nameable 

objects that were either natural (e.g., fruits, animals) or synthetic/artificial (e.g., tools, clothes) 

(Supplementary Table s5). Pictures were selected from normed databases (Brady et al., 2008, 

Brady et al., 2013, Konkle et al., 2010, Rossion and Pourtois, 2004). 

Similar to the pictures, the words were nouns that described common natural and artificial 

objects. An object was not represented more than once either in the pictures or words. The word 

stimuli in all four languages described the same set of objects (see Supplementary Tables s1-

s4). 64 (of the 96) pictures and 64 (of the 256) words were organized into unique picture-word 

pairs from the complete set of stimuli. These 64 picture-word pairs were further divided into 

two equally sized categories based on the semantic relatedness of the objects depicted by each 

picture-word pair. In the Related category, the objects described by the picture and the word 

pair could be easily associated with each other in a specific context in daily life. For example, 

a picture of a lock paired with the word “key”. In the Unrelated category, the objects in each 

picture-word pair did not share a specific contextual relationship. For example, a picture of a 

wine-bottle opener paired with the word “lion”. The remaining 32 (of 96) pictures and 192 (of 

256) words were used as distractor stimuli in our task paradigm (see below). Specifically, each 

of the 64 picture-word pairs described above was associated with three distractor words. These 

pair-specific distractor words were always semantically related to the word of the pair and were 

additionally related to the picture for picture-word pairs in the Related (but not Unrelated) 

category. 

To minimize inter-language semantic differences, we avoided picture-word relationships that 

might have cultural connotations specific to one language (for example, proverbs specific to 

French without an equivalent in German/Luxembourgish/English). A native speaker of each 

language evaluated the corresponding stimulus set for ambiguities. 

2.3 Paradigm and instructions 

The paradigm consisted of four tasks: (1) Encoding of picture-word pairs, (2) distractor task, 

(3) Picture recognition, (4) Picture-Word recognition. For clarity, only the English version of 

the paradigm is described below. All stimuli were displayed using Presentation® Software 

(Neurobehavioral Systems, Inc) on an LCD screen (size: 68.6cm (diagonal), resolution: 1200 

pixels x 800 pixels, frame rate: 60 Hz). The screen was located behind the scanner and was 

viewed via a mirror installed on the head coil. The required responses across experimental 

conditions were button-presses with right hand fingers, which were recorded with an MRI-

compatible LUMItouch response pad (Photon Control Inc., Burnaby, BC, Canada). 

2.3.1 Encoding task 

On each trial of the encoding task, a visual stimulus consisting of a single picture (subtending 

3.5° visual angle (v.a.)) and a single word (0.6° v.a.) below it was centrally displayed on a white 

screen for 4s (see Figure 1A). Participants had to memorize this picture-word pair. 

Additionally, participants judged whether the objects described by the picture and the word 

were related (i.e., typically associated with each other in daily life) or unrelated. This judgment 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2021.09.07.459272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459272
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

was reported by pressing one of two pre-designated buttons with the right index or middle 

finger. Following the stimulus offset, the screen displayed a red cross during the inter-trial 

interval. 

To continuously remind participants of the task requirements and the response mapping, the 

question “Related?” was displayed at the bottom of the screen (see Figure 1A) along with the 

response options “Yes” and “No”, which were positioned spatially congruent with the response 

buttons. During the intertrial period, this reminder was also displayed to remind participants 

that a response could be made even after the stimulus offset. 

Special care was taken when instructing participants about the Related/Unrelated judgments 

required during the encoding task. We emphasized that the relatedness of the objects in the 

picture-word pair depended on whether this relationship was “typical” and not whether they 

could imagine a hypothetical relationship between the objects. To encourage rapid, intuitive 

responses, participants were told there was no correct answer for these judgments. 

 
 

Figure 1. Schematic of paradigm.  

Trial timing and stimulus layout (not to scale) for the three task stages, with English as stimulus 

language. (A) Encoding: A picture-word pair was presented on each trial. Participants categorized as 

the pair as being related or not. In the examples, the ski-boots and “rabbit” could be categorized as 

Unrelated (“No” response) while lighthouse and “sailor” might be Related (“Yes” response). These 

semantic categorizations are assumed to be similar irrespective of stimulus language (ENG = English, 

FR = French, GER = German, LUX = Luxembourgish). (B) Picture recognition: A picture was 

presented on each trial. Participants judged whether that picture had been already seen during the 

Encoding task (panel A). In the examples, the picture of the ski-boots was previously presented (“Yes” 

response) but that of the egg carton was not (“No” response). (C) Picture-word recognition: The 

stimulus on each trial was a picture and four words. Participants had to choose the word that had been 

paired with the picture during the Encoding task (panel A). The three other new words were always 

semantically related to the target word. All the presented words were matched across stimulus languages.  
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The stimuli for the encoding task were the 64 picture-word pairs (described above). A few 

additional features were incorporated to optimize the trial ordering for event-related fMRI 

analysis (Liu and Frank, 2004, Liu et al., 2001). Firstly, we included 32 null trials (4s duration) 

so that the overall task effectively had 96 trials belonging to three trial types (i.e., Related, 

Unrelated, null) with 32 trials each. The null trials were indistinguishable from the inter-trial 

period, and thus, for the participant, the inter-trial intervals varied over the range 3s-7.4s. Next, 

the 32 trials of each of the three trial types were presented in a pseudorandom order determined 

by a Maximum Length Sequence or m-sequence (Aguirre, 2007, Aguirre et al., 2011, Buracas 

and Boynton, 2002). The m-sequence ensured that all trial types were presented in a 

counterbalanced manner, i.e., trials of each trial type were equally likely to be preceded by trials 

of any trial type. The ordering of the stimuli within each trial type was randomized for each 

participant. 

2.3.2 Distractor task 

To ensure that we were testing episodic recognition memory for the stimuli presented during 

the encoding task, an extended delay of ~24 minutes followed the encoding task. In this period, 

structural scans were acquired (~11 min), followed by a distractor task (~6min) and a resting 

state scan (~7min, see Figure 2). The distractor task (adapted from (Kukolja et al., 2016)) was 

a rapid serial visual presentation task that placed a high demand on sustained attention. This 

task was used to disrupt working memory processes and explicit verbal rehearsal of the stimuli 

encountered in the encoding task. In the task, a series of single digits from 0 to 9 were centrally 

presented in rapid succession (every 600ms) on a black screen, and participants pressed a button 

with their right index finger whenever the digit “0” was displayed. Trials were organized into 

5 blocks of 48 stimuli, each separated by a 27s inter-block period. Each block contained 3 to 4 

zeros. 

 

Figure 2. Overall procedure.  

Description and durations of the different consecutive stages that participants had to follow while inside 

the MRI scanner. 

2.3.3 Picture recognition task 

On each trial of the picture-recognition task, a picture (3.5° v.a.) without any associated word 

was displayed for a 3s period (Figure 1B). Participants indicated whether or not they had 

previously seen the picture during the encoding task by pressing one of two pre-designated 

buttons with either the right index or middle finger. As with the encoding task, a task 

requirement reminder was continuously displayed at the screen’s bottom, i.e., the question 

“Already seen?” along with the response options “Yes” or “No”. 

The stimuli for the picture recognition task were the 64 previously seen (i.e., Old) pictures from 

the encoding task and 32 previously unseen (i.e., New) pictures. No additional null trials were 

included in this task. The inter-trial interval varied randomly over the range 3.5s-7.5s. The 
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presentation order of the 96 trials belong to the three trial-types (i.e., Related Old, Unrelated 

Old, New) was determined by an m-sequence, as described above for the encoding task. The 

ordering of the stimuli within each trial type was randomized for each participant. 

2.3.4 Picture-word recognition task 

On each trial of the picture-word recognition task, the stimulus was a picture (3.5° v.a.) along 

with a horizontally displayed list of four words (0.5° v.a.) (see Figure 1C). Participants had to 

identify the word that had been previously seen with the presented picture during encoding. The 

correct word was always present on each trial. The identified word was indicated by the press 

of one of four pre-designated buttons with the right index/middle/ring/little finger. Due to a 

large number of items per stimulus in this task, the trial duration was increased to 4.5s. As with 

the encoding and picture-recognition tasks, a task demand reminder (“Choose…”) was 

continuously displayed at the screen’s bottom. 

The stimuli for this task were the 64 picture-word pairs from the encoding task along with three 

semantically related distractor words (see Stimulus materials). The relative spatial position of 

the target word relative to the three distractors was pseudorandomized across trials, based on 

the Latin Square Design. As in the encoding task, we included 32 null trials (effective inter-trial 

interval: 3s-7.4s), and an m-sequence determined the trial ordering of the 

Related/Unrelated/null trial types. The ordering of the stimuli within each trial type was 

randomized for each participant. 

2.3.5 Procedure and Instructions 

Each participant’s visual acuity was confirmed using a Snellen chart before the fMRI session. 

Prior to scanning, participants were provided with detailed written and verbal instructions on 

how to perform each of the different tasks. The instructions emphasized that the overall 

objective was to test the participant’s memory of the picture-word pairs. Furthermore, the 

categorization judgments were described to participants as a means to help them remember the 

specific pairings of pictures and words since they would be tested on their memory for these 

pairings. All tasks were practiced at a computer using a different stimulus set from the one used 

in the actual experiment to familiarize participants with the response demands and the pacing 

of the stimuli. This practice session was repeated until participants could comfortably perform 

all tasks. Participants were instructed to respond as accurately and rapidly as possible. 

Furthermore, we emphasized that there was no response deadline, and a response could be made 

even after the stimulus disappeared from view. Throughout this instruction period, we 

emphasized the importance of avoiding unnecessary head and body movements in the scanner. 

Following the scanning, participants were debriefed to assess their compliance with task 

instructions and fatigue levels. 

2.4 Behavioral analysis 

2.4.1 Individualization of Related/Unrelated categories 

Even though the picture-word pairs were designed to belong to either of two semantic categories 

(i.e., Related or Unrelated), participants could differ in their semantic knowledge and 

experience with the objects described by the stimuli. Since there was no objective accuracy 

criterion for these categorizations, we sought to avoid an interpretation of these subjective 

judgments as being “correct” or “incorrect”. Instead, all the subjective categorizations provided 

by an individual were treated as being “correct” for that individual. With this rationale, the 

picture-word pairs in the encoding task were re-categorized based on each participant’s 
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subjective judgments about picture-word relatedness. Thus, all analyses assessing the behavior 

and brain activity evoked by the Related/Unrelated stimulus categories were based on each 

individual's unique definition of these categories.  

Since the pre-designed categories were used to optimize the trial ordering for fMRI analysis 

(see paradigm above), the degree of agreement between our pre-designed stimulus 

categorization and the individual-specific categorization was an important concern. Therefore, 

the degree of agreement was quantified as the proportion of trials where a participant’s 

judgment of picture-word relatedness (during encoding) corresponded to the pre-designed 

categorization of relatedness. 

2.4.2 Recognition accuracy and Response Times 

Due to the relatively low false alarm rates (i.e., incorrect New judgments) in the picture-

recognition task, we used the balanced accuracy (Brodersen, 2010) to measure overall 

performance rather than the classical d-prime measure. The balanced accuracy was equal to 

(H + CR)/2 where H is the hit rate (i.e., the proportion of correctly recognized Old pictures) and 

CR is the correct rejection rate (i.e., the proportion of new pictures that were correctly judged 

as being New). For all accuracy calculations, the failure to respond to a stimulus was treated as 

an error. 

The Response Time (RT, i.e., the elapsed time from stimulus onset to the response) was only 

estimated for correct responses in all experimental conditions. To obtain a robust estimate of 

the characteristic RT for each individual in each condition, we calculated the mean RT after 

trimming the highest and lowest RT values (10% at each end) (Zandt, 2002, Ratcliff, 1993, 

Wilcox and Keselman, 2003). For completeness, the untrimmed RTs are reported in 

Supplementary Table s7). 

2.4.3 Inter-language differences 

Participants were divided into separate groups depending on the language that they selected for 

the stimuli. To statistically assess inter-group differences in task performance, a mixed analysis 

of variance (ANOVA) was used to evaluate the extent to which the behavior (i.e., accuracy and 

RT) in each of the experimental conditions (encoding, picture-recognition, and picture-word 

recognition) could be independently explained by (within-subject) semantic relatedness 

(Related, Unrelated) and by the (between-subject) stimulus language. 

Other epidemiological factors could potentially drive inter-group differences (if present). 

Although a large amount of epidemiological data were collected per participant, we only 

considered parameters of immediate relevance to the experiment itself, namely, age, gender, 

number of years of education, MMSE score, and the number of practiced languages (self-

reported). In-depth analysis on the amount of practiced multilingualism in daily life is not part 

of the present study. 

2.4.4 Statistical analyses 

Means are reported with standard deviations. For all statistical tests, normality was evaluated 

using the Kolmogorov-Smirnow test (when n > 50) and the Shapiro Wilk test (when n < 50). 

For normal distributions, we used a t-test (paired or unpaired, t). For non-normal distribution, 

non-parametric tests were used: (a) The Wilcoxon signed-rank test (Z) for within-subject 

comparisons; (b) the Wilcoxon Mann Whitney test (U) for two-sample comparisons. Finally, a 

Chi-square test (X2) was used to compare gender between participants having chosen French 

and those having chosen German to measure the independence of both variables in a 2-by-2 
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table. Behavioral results were reported in the format: Test (degrees of freedom) = Statistic, p = 

value. All tests were two-tailed and a p-value < 0.05 was considered statistically significant. All 

statistical analyses on epidemiological and behavioral data were performed with SAS System 

V9.4 (SAS Institute, Cary, NC, US). 

2.5 fMRI Data 

2.5.1 Image acquisition and preprocessing 

Functional and structural MR images were acquired on a 3T MR scanner (Siemens Tim Trio, 

Erlangen, Germany) with a 12-channel phased-array head coil. Functional images were 

measured using a T2*-weighted gradient-echo planar imaging (EPI) sequence (repetition time 

(TR): 2200ms, echo time (TE): 30ms, flip angle (FA): 90°, field of view (FoV): 200mm x 

200mm). Each volume had 36 slices (interleaved series, thickness: 3.1mm, inter-slice gap: 

0.49mm) with an in-plane resolution of 3.1mm x 3.1mm (matrix size: 64 x 64). The structural 

scan used a T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) sequence 

(TR: 2250ms, TE: 3.03ms, FA: 9°, TI: 900ms, FOV: 256mm x 245mm) to obtain a high-

resolution image (176 slices, matrix size: 256 x 256, inter-slice gap: 0.5 mm, voxel size: 1.0mm 

x 1.0mm x 1.0mm). An additional structural image was acquired using a T2-weighted fluid-

attenuated inversion recovery (FLAIR) sequence, but this image was not used for 

preprocessing/analysis. Each task was performed on a separate scanning run. Each functional 

scan began with a 6TR task-free period to ensure that the MR signal reached a steady state. 

Since the BOLD signal evolves over multiple seconds, each functional run also ended with a 

6TR task-free period to measure brain activity evoked by the final stimuli.  

Image preprocessing and statistical analysis were performed with the SPM12 software 

(Wellcome Centre for Human Neuroimaging, London, UK) implemented for a MATLAB 

programming environment (MathWorks Inc., Natick, Massachusetts, USA). For preprocessing 

and statistical analyses, the acquired images were converted from the Siemens DICOM format 

to the NIFTI format using the dcm2nii utility (Li et al., 2016). Functional images (EPIs) were 

spatially realigned (to the first volume) and unwarped using the iterative realign/unwarp 

algorithm implemented in SPM12 to correct for head motion and associated magnetization 

artefacts (Andersson et al., 2001). The EPIs were then slice-time corrected (relative to the 

middle slice). The mean EPI was co-registered to the structural image. Using SPM12’s unified 

segmentation/normalization algorithm, the structural image was segmented to distinguish white 

and gray matter and then deformed to match a standard Montreal Neurological Institute (MNI) 

template brain image. The deformation fields estimated from this segmentation/normalization 

procedure were applied to all EPIs to transform them into standard MNI space (normalization) 

followed by resampling to a voxel size of 3mm x 3mm x 3mm (4th degree B-spline 

interpolation). The normalized EPIs were smoothed with an isotropic 8mm full-width-at-half-

maximum (FWHM) Gaussian kernel. 

Following preprocessing, the fMRI and behavioral datasets of 2 (out of 62) participants were 

incomplete due to technical scanning difficulties that primarily affected the final picture-

recognition task. Since the fMRI analysis involved inter-task comparisons, the datasets from 

these 2 participants were excluded from all fMRI analyses. However, the technical problems 

did not affect the behavioral data acquired from these 2 participants on the remaining tasks. 

Therefore, to maximize the use of available data, these 2 participants were included in all 

behavioral analyses except for the picture-word recognition task where a full set of correct trials 

was unavailable for response time calculations (see Supplementary Table s6 for full details of 

sample sizes). 
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2.5.2 Statistical analysis 

Statistical analyses were conducted within a conventional mass-univariate framework where 

the evoked hemodynamic response at each voxel was independently modeled using a general 

linear model (GLM). Each experimental condition (i.e., encoding, picture recognition, and 

picture-word recognition) was modeled as a separate session. Functional data from the 

distractor task were not analyzed as this task was included to disrupt working memory processes 

and explicit verbal rehearsal of the stimuli encountered in the encoding task (see above). For 

all conditions, the estimated first-level models shared the following properties. At every voxel, 

the neural response evoked by each trial was modeled as a boxcar with zero duration convolved 

with the canonical hemodynamic response function (HRF). The regressors of interest only 

modeled correct trials. Additional regressors of non-interest were included to account for 

incorrect trials. The 6 head-movement parameters estimated during spatial realignment (i.e., 

translation and rotation relative to the X, Y, Z axes) and the framewise displacement (i.e., the 

relative displacement of each volume relative to the previous volume) (Power et al., 2012) were 

included as covariates to account for head-movement effects. The BOLD time series at each 

voxel was high pass filtered (1/128 Hz) to remove slow trends. 

We defined regressors corresponding to the Related and Unrelated trials to assess semantic 

congruency effects in the different tasks. For the picture-recognition task, the GLM included an 

additional regressor for the New trials. Contrasts were performed at the individual level (i.e., 

first level), and these contrast images (without any additional smoothing) were used for group 

(i.e., second-level) statistics.  

All second-level statistics reported here were corrected for multiple comparisons at the 

threshold of p < 0.05 (cluster-level Family Wise Error (FWE)) with a cluster-forming threshold 

determined at p < 0.001 (uncorrected). We also report the minimum cluster size (in voxels) to 

meet this threshold for each of the contrasts as estimated in SPM12 (Nichols et al., 2016). When 

cluster-level correction produced overly large clusters, we use a stricter threshold of p < 0.05, 

voxel-wise Family Wise Error correction. For exploratory purposes, the conjunction between 

activity maps was assessed by the overlap in voxels that are part of statistically significant 

clusters in each map, i.e., the minimum-T criterion (Nichols et al., 2005). 

To perform region-of-interest (ROI) analyses, each ROI was defined as a voxel cluster. An 

individual’s condition-specific activity at a ROI was obtained by extracting the activity 

estimates for that condition (i.e., beta values from the first-level analysis) from the voxels of 

the ROI. These voxel-wise values were then averaged together to obtain a single value that was 

treated as the individual’s condition-specific activity at the ROI. 

Brain regions obtained from these analyses were identified using the SPM Anatomy Toolbox 

(Eickhoff et al., 2005), and surface visualization is shown using the Surf Ice software 

(https://www.nitrc.org/projects/surfice). 

3 Results 

3.1 Population profile and stimulus language 

Forty-two participants (67.7%) chose German as their preferred stimulus language (i.e., the 

most comfortable language to read and answer rapidly) while 18 (29.0%) chose French and 2 

(3.3%) participants chose English. None of the participants chose Luxembourgish as the 

stimulus language (see Supplementary s6 for summary of sample sizes).  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2021.09.07.459272doi: bioRxiv preprint 

https://www.nitrc.org/projects/surfice
https://doi.org/10.1101/2021.09.07.459272
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

The two largest subgroups (i.e., using German (GER) and French (FR) respectively) were 

similar in gender ratio, age, education, language ability, and cognitive status (MMSE scores). 

The mean values for these different factors are listed in Table 1. Importantly, there were no 

statistically significant differences in the population features of these two subgroups. Thus, any 

measured effects of stimulus language on task performance would not be attributable to the 

characteristics of the individuals that selected each language. 

Table 1. Population feature differences between subgroups defined by preferred stimulus 

language. Only differences between subgroups using German (GER) and French (FR) are shown. 

(subgroup size for English (ENG) = 2, Luxembourgish (LUX) = 0). Means and standard deviations are 

reported for continuous variables. MMSE: Mini-Mental State Examination 

 Subgroup 

using 

German 

(GER) 

Subgroup 

using French 

(FR) 

 

Statistical tests 

    

Subgroup size 
42 18 

 

Gender ratio (f/m) 1.47 1.25 X2(1) = 0.0816, p = 0.7751 

Age (y) 69 ± 5 71 ± 6 U(59) = 617.5, p = 0.2704 

Education (y) 14.7 ± 4.0 16.1 ± 5.0 U(59) = 590.5, p = 0.5064 

MMSE (score) 28.86 ± 1.26 28.83 ± 1.25 U(59) = 545.0, p = 0.9525 

Practiced 

languages: 

   

Lifelong (n) 5.3 ± 1.3 5.5 ± 1.4 U(59) = 527.5, p = 0.6539 

Current (n) 4.1 ± 1.1 4.5 ± 1.6 U(59) = 491.5, p = 0.4027 

 

3.2 Semantic congruency effects during picture-word encoding 

We used the data from all participants (irrespective of stimulus language) to evaluate the main 

effect of semantic relatedness judgments on memory performance.  

Participants’ subjective categorization of picture-word pairs as either Related or Unrelated 

showed a high degree of agreement to the pre-designed stimulus categories (94.5 ± 3.7%). This 

high degree of the agreement confirmed that participants had correctly interpreted our task 

instructions. Importantly, it also confirmed that the relatedness judgments, although subjective, 

were not arbitrary but highly consistent between participants and our pre-designed stimulus 

categories. 

The mean response time (RT) for Related judgments (1749 ± 452 ms) was shorter than for 

Unrelated judgments (1877 ± 431 ms, Z [61] = 657.5, p < 0.0001) (Figure 3A). The contrast 

Related > Unrelated revealed higher activation, especially over the left hemisphere (Figure 3B, 

Table 2), including the left middle temporal gyrus (MTG), left posterior cingulate cortex 

(PCC), left anterior cingulate cortex (ACC), left inferior frontal gyrus (IFG), and bilaterally 

over the angular gyrus. Inversely, the contrast Unrelated > Related did not reveal any 

statistically significant activity difference across the brain. 
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Table 2. Related vs. Unrelated during encoding: Peak coordinates of significant clusters 
Clusters identified at threshold of p < 0.05, FWE-cluster-corrected, cluster-forming threshold = 80 

voxels (p < 0.001, uncorr.). Peak locations are in MNI coordinates. Hemisphere (Hem.) reported as L/R 

(Left/Right). ACC: anterior cingulate cortex, PCC: posterior cingulate cortex, IFG: inferior frontal 

gyrus, MTG: Middle Temporal Gyrus 

 

 

Figure 3. Related vs. Unrelated during encoding  

A. Violin plots of RTs for Related and Unrelated judgments during encoding (***: p < 0.001), horizontal 

lines represent the mean, thick vertical black bars are a box plot, the center white circle represents the 

median.  B. Clusters with increased activity during Related versus Unrelated judgments (p < 0.05, FWE-

cluster corrected, cluster-forming threshold = 80 voxels (at p < 0.001 (uncorr.)). 

3.3 Semantic effects on picture-recognition 

Accuracy for differentiating Old and New pictures was high (89.8 ± 7.5%) and was 

significantly greater than random chance (50%, U [61] = 5797, p < 0.0001). Importantly, the 

mean accuracy in recognizing Old pictures that were part of Related picture-word pairs during 

encoding (92.5 ± 7.7%) was greater than for Old Unrelated pictures (82.9 ± 12.8%, t [61] = 

7.24, p < 0.0001, Figure 4A). Furthermore, the mean RT to recognize Old Related pictures 

Contrast 

 

Anatomical Region Hem. Coordinates t-

value 

p-

value 

Cluster 

size 

   x y z    

Rel > 

Unrel  

Angular Gyrus L -48 -67 35 8.60 0.000 516 

 MTG L -60 -46 -7 8.12 0.000 281 

 PCC L -3 -52 26 7.81 0.000 464 

 ACC L -6 47 17 6.56 0.000 1460 

 Angular Gyrus R 48 -64 41 6.00 0.000 241 

 IFG (p. Orbitalis) L -42 47 -10 5.35 0.031 80 

Unrel > 

Rel 

Nothing survived after correction 
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(1082 ± 158ms) was shorter than for Old Unrelated pictures (1247 ± 236ms, Z [61] = 905.5, 

p < 0.0001, Figure 4B).  

The accuracy in recognizing New pictures (92.7 ± 9.6%) was greater than for Old Unrelated 

pictures (t [61] = 4.72, p < 0.0001) but was not significantly different from the accuracy for Old 

Related pictures (Z [61] = -109.5, p ≥ 0.3505). However, the mean RT to recognize Old Related 

pictures was shorter than for New judgments (1253.5 ± 210.8 ms, t [61] = 6.17, p < 0.0001), 

while the RTs for New judgments and Old Unrelated pictures were not significantly different 

(t [61] = 0.20, p = 0.8450).  

 

 

Figure 4. Picture recognition based on relatedness during encoding  

A. Violin plots of recognition accuracy for New stimuli and Old stimuli, depending on their relatedness 

during encoding (i.e., Unrelated or Related).. [***: p < 0.001, horizontal black line indicates the mean, 

thick vertical black bars are a box plot, center white circles represent the median]. B.  Violin plots of 

Response Times for correct New and correct Old judgments depending on their relatedness during 

encoding [notations as in panel A]. C. Clusters with significant activity during recognition for Related 

> Unrelated (red scale) and for Unrelated > Related (blue scale), p < 0.05, FWE-cluster corrected, 

cluster-forming threshold = 84 voxels (at p < 0.001, uncorr). 

Brain activity elicited by recognizing Old Unrelated pictures was higher than for the Old 

Related pictures only in the left inferior occipital gyrus (Figure 4C, Table 3). However, 

consistent with the activity differences at encoding, the recognition of Old Related pictures 

evoked more significant activity than for Old Unrelated pictures over several regions, including 

the left MTG, the left PCC, the left ACC, the left middle occipital gyrus, and the right lingual 

gyrus (Figure 4C, Table 3). 
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Table 3. Picture recognition: Peak coordinates of significant clusters for all contrasts 
Clusters for Rel vs Unrel were identified at threshold of p < 0.05, FWE-cluster-corrected cluster-

forming threshold = 84 voxels (at p < 0.001, uncorr). For the Old vs New contrasts, contrasts are 

reported at a stricter threshold of p < 0.05, voxel-wise FWE due to the large clusters obtained at cluster-

corrected thresholds. Peak coordinates are reported in MNI coordinates. Hemisphere (H) reported as 

L/R (Left/Right). ACC: anterior cingulate cortex, MTG: Middle Temporal Gyrus, PCC: posterior 

cingulate cortex. 

Contrast 

 

Anatomical region H Coordinates t-

value 

p-

value 

Cluster 

size 

(voxels) 

   x y z    

Rel > Unrel ACC L -6 50 -1 5.32 0.000 343 

 Middle Occipital 

Gyrus 

L -15 -100 5 5.29 0.003 146 

 Middle Occipital 

Gyrus  

L -39 -70 35 4.96 0.000 244 

 MTG L -51 -43 -4 4.90 0.018 95 

 PCC L -3 -46 29 4.86 0.004 134 

 Lingual Gyrus R 18 -85 -10 4.79 0.002 157 

Unrel > Rel Inferior Occipital 

Gyrus 

L -45 -70 -4 5.78 0.028 84 

Old > New Inferior Parietal 

Lobule 

L -39 -55 44 12.59 0.000 1388 

 Middle Frontal Gyrus L -42 8 53 10.69 0.000 754 

 MTG L -60 -40 -4 7.90 0.000 41 

 MTG L -63 -25 -7 5.04 0.028 1 

 Angular Gyrus R 36 -64 41 6.76 0.000 141 

 Posterior-Medial 

Frontal 

L -6 20 50 6.17 0.000 41 

New > Old Postcentral Gyrus L -45 -25 62 6.22 0.005 148 

 Postcentral Gyrus L -63 -22 23 5.52 0.009 129 

 Inferior Temporal 

Gyrus 

R 51 -61 -4 4.62 0.029 96 

 

New judgments elicited more significant activity than Old judgments (irrespective of whether 

the pictures were Related or Unrelated at encoding) in two clusters in the left postcentral gyrus 

and the right inferior temporal gyrus (Figure 5A, Table 3). Old judgments elicited more 

significant activity than New judgments in the left inferior parietal lobule, the left posterior 

medial frontal cortex, the left middle frontal gyrus, the left MTG, and the right angular gyrus. 

A subset of clusters presenting a recognition effect (i.e., Old > New) showed an overlap with 

the relatedness effect (i.e., Old Related > Old Unrelated), namely, in the left angular gyrus and 

PCC (Figure 5B). Notably, activity differences in the ACC, which were found in the Old 

Related > Old Unrelated contrast due to relatedness, were not observed during recognition (i.e., 

in the Old > New contrast). 
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Figure 5. Activity differences during picture-recognition 

A. Clusters showing significant activity for Old > New (red scale) and for New > Old (blue scale). Due 

to the large cluster size obtained at cluster-corrected thresholds, contrasts are reported at a stricter 

threshold of p < 0.05, voxel-wise FWE. B. Overlap between Old > New (red) and Related > Unrelated 

(green) (from Figure 4C) with the shared area shown in yellow. 

3.4 Semantic effects on picture-word recognition 

Unlike picture-recognition, each trial of the picture-word recognition task involved the 

displayed picture along with four words that had to be visually scanned in order to identify the 

previously seen Old word. The mean accuracy in correctly identifying an Old word was 64.3 ± 

15.7%, which was significantly greater than random chance (25%, U [61] = 5673, p < 0.0001). 

The mean accuracy to identify words that were part of Related picture-word pairs (78.8 ± 

15.4%) was significantly higher than for Unrelated words (54.4 ± 15.7%, t [61] = -12.25, 

p < 0.0001, Figure 6A). This effect of relatedness during encoding was also evident in the 

considerably shorter RT to identify words that were part of Related picture-word pairs at 

encoding (2458 ± 562 ms), in comparison with words from Unrelated pairs (3323 ± 640 ms, 

t [60] = 17.85, p < 0.0001, Figure 6B). 
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Figure 6. Picture-word recognition according to the judgment about the relatedness of 

pairs at encoding 

A. Violin plots of recognition accuracy for picture-word pairs depending on their relatedness during 

encoding (i.e., Unrelated or Related) [***: p < 0.001, horizontal black line indicates the mean, thick 

vertical black bars are a box plot, center white circles represent the median] B. Violin plots of Response 

Times for picture-word pairs depending on their relatedness during encoding [notations as in panel A]. 

C. Clusters with significant activity during picture-word recognition for Related > Unrelated, p < 0.05 

FWE-cluster corrected, cluster-forming threshold = 84 voxels (at p < 0.001, uncorr.). 

Similar to the encoding and picture-recognition tasks, the neural activity of the last session of 

picture-word recognition for Related pairs was greater than for Unrelated pairs (Figure 6C, 

Table 4). Activity differences were present in the left inferior parietal lobule, the right 

supramarginal gyrus, the left middle cingulate cortex (MCC), the right putamen, and the right 

cerebellum. There was no significant activity difference for the contrast Old Unrelated > Old 

Related. 

Table 4. Picture-word recognition: Peak coordinates for Related vs. Unrelated  

Clusters identified at threshold of p < 0.05, FWE-cluster-corrected. Cluster-forming threshold = 94 

voxels (at p < 0.001 uncorr.) Peak coordinates are reported in MNI coordinates. Hemisphere (H) 

reported as L/R (Left/Right). MCC: middle cingulate cortex 

Contrast 

 

Anatomical region H Coordinates t-

value 

p-

value 

Cluster 

size 

   x y z    

Rel > Unrel Inferior Parietal 

Lobule 

L -57 -25 44 6.90 0.000 717 

 Supramarginal 

Gyrus 

R 60 -37 38 6.47 0.000 1065 

 MCC L -3 -22 41 5.58 0.000 584 

 Putamen R 33 2 8 4.70 0.004 158 

 Cerebellum 

(IV-V) 

R 21 -43 -19 4.17 0.033 94 

Unrel > Rel Nothing survived after correction 
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Figure 7. Related > Unrelated during encoding and recognition 

Regions with increased activity for Related > Unrelated at encoding are shown in red in the upper two 

rows. Recognition-related activity increases for (Old) Related > (Old) Unrelated are shown in green: (i) 

for picture recognition (PR) in the first row and (ii) for picture-word recognition (PWR) in the middle 

row. The overlap between encoding and recognition-related activity is indicated in yellow. Solid blue 

circles indicate regions of activity overlaps between encoding and all recognition (encoding ∩ PR ∩ 

PWR). The shared overlaps are shown in sectional views in the bottom row. Dotted blue circles indicate 

overlaps between encoding and either PR or PWR but not both. There was no overlap in the right 

hemisphere. The figure shows clusters whose peak survived a size-threshold for p < 0.05 FWE-corrected 

(cluster-forming threshold at p < 0.001 uncorr.). 

Figure 7 shows the overlap of regions exhibiting semantically modulated activity during 

encoding, picture recognition, and picture-word recognition. The semantic modulations during 

encoding and picture recognition showed an overlap at multiple regions including the left 

angular gyrus, PCC, and the ACC. However, both encoding and picture recognition showed a 

limited overlap with picture-word recognition in the anterior aspects of the angular gyrus and 

the PCC (encoding ∩ picture-recognition ∩ picture-word recognition). 

3.5 Stimulus language and semantic congruency effects 

Finally, we assessed whether the choice of stimulus language affects the judgments of semantic 

congruency during encoding (i.e., Related and Unrelated) and the associated behavioral and 

neural consequences for recognition. The findings described thus far were main effects obtained 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2021.09.07.459272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459272
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

by pooling together all participants despite differences in the chosen stimulus language. The 

key issue here was whether the subgroups of individuals who chose different languages made 

equivalent contributions to the shared main effects.  

To assess the influence of language choice, we focused on the two largest subgroups consisted 

of individuals who chose German (GER, n = 42) and who chose French (FR, n = 18) (see 

Supplementary Table s6 for full details of the sample sizes). As described in Table 1, the FR 

and GER subgroups were similar in gender ratio, age, education, language ability, and cognitive 

status (MMSE scores). Therefore, possible differences in encoding and recognition processes 

between these subgroups cannot be merely attributed to differences in the types of individuals 

that selected each language. For clarity, all analyses described below were limited to individuals 

with valid fMRI datasets, namely, 41 in the GER subgroup and 17 in the FR subgroup (see 

Supplementary Table s6). 

3.5.1. Limited influence of language on behavioral effects of semantic congruency 

During encoding, the picture-word pairs were categorized as being Related or Unrelated with 

high agreement to the pre-designed categories by both the FR subgroup (94.04 ± 3.6%) and the 

GER subgroup (94.51% ± 3.81%) (U [57] = 480.5, p = 0.72). These matched judgments were 

a validation that the stimulus sets prepared for the study (Supplementary Tables s1-s5) were 

semantically equivalent for the FR and GER subgroups. 

As described in prior sections, the judgments about the semantic relatedness of the picture-word 

pairs during encoding (i.e., Related or Unrelated) were a major determinant of recognition 

accuracy and RTs during encoding and recognition. As shown in Figure 8, the magnitude of 

these semantic congruency effects varied between tasks, where the effects on accuracy (Figure 

8A) and RTs (Figure 8B) in the picture-word recognition task were substantially larger and 

more variable than for the encoding and picture-recognition task. The influence of language on 

these effects of semantic congruency was evaluated with a mixed ANOVA with factors 

Relatedness [Related, Unrelated] x Language [FR, GER] as summarized in Table 5. Relative 

to the prominent effects of semantic relatedness (i.e., congruency) on behavior across tasks, 

language did not have any statistically detectable effects. Furthermore, the size of the semantic 

congruency effects was comparable between the FR and GER subgroups (Figure 8) as 

confirmed by the non-significant statistical interaction between Relatedness and Language for 

all the tasks. 
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Figure 8. Modulation of semantic congruency effects on behavior by language 

A. Boxplot of differences in recognition accuracy for Unrelated vs Related stimuli based on the choice 

of language (FR = French, GER= German) during picture-recognition (left) and picture-word 

recognition (right). B. Boxplot of differences in Response Times for Unrelated vs Related stimuli based 

on the choice of language (FR = French, GER= German) during encoding (left) picture-recognition 

(middle) and picture-word recognition (right). 
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Table 5. Modulation of semantic congruency effects on behavior by language 

Mean accuracy (%) and mean Response Times (ms) for Unrelated and Related stimuli in the different 

tasks (Encoding, Picture-recognition, Picture-word recognition) for the French (FR) and German (GER) 

subgroups (shown as mean ± standard deviation (SD)). For each task, the behavioral measures were 

assessed with a mixed ANOVA with factors Relatedness and Language (see text). The corresponding F 

values and p are reported on each row (df = degrees of freedom). Statistically significant effects are 

highlighted in yellow, and non-significant effects in orange.  

Measure FR 

(mean ± SD) 
GER 

(mean ± SD) 
Relatedness 

df: 1,56 

Language 

df: 1,56 

Rel.*Lang. 

df: 1,56 

Encoding 
     

Response  

time 
Unrel: 1983 ± 633 ms 

 

Rel: 1854 ± 726 ms 

Unrel: 1816 ± 267 ms 

 

Rel: 1690 ± 263 ms 

F = 16.21 

p = 0.002 

F = 1.92 

p = 0.17 

F = 0.002 

p = 0.9661 

Recognition: Picture     

Accuracy Unrel: 81.0 ± 16 % 

 

Rel: 91.2 ± 11 % 

Unrel: 83.1 ± 12 % 

 

Rel: 92.8 ± 6 % 

F = 39.81 

p < 0.0001  

F = 0.44 

p = 0.5095 

F = 0.03 

p = 0.8565 

Response  

time 

Unrel: 1300 ± 276 ms 

 

Rel: 1098 ± 206 ms 

Unrel: 1237 ± 224 ms 

 

Rel: 1079 ± 142 ms 

F = 64.41 

p < 0.0001 

F = 0.54 

p = 0.4649 

F = 0.97 

p = 0.3281 

Recognition: Picture-word 
    

Accuracy Unrel: 50.0 ± 14 % 

 

Rel: 76.1 ± 16 % 

Unrel: 55.7 ± 16 % 

 

Rel: 80.7 ± 14 % 

F = 141.39 

p < 0.0001  

F = 1.85 

p = 0.1788 

F = 0.08 

p = 0.7784 

Response  

time 

Unrel: 3589 ± 801 ms 

 

Rel: 2612 ± 671 ms 

Unrel: 3237± 549 ms 

 

Rel: 2388 ± 501 ms 

F = 263.88 

p < 0.0001 

F = 3.16 

p = 0.0809 

F = 1.28 

p = 0.2621 

 
The matched behavioral effects of semantic congruency on episodic recognition for the FR and 

GER subgroups support the key individualization assumption of our paradigm.  

3.5.2 Limited influence of language on neural effects of semantic congruency 

The group-level main effects in previous sections were described by whole-brain activity 

contrasts. However, a comparison of whole-brain activity of the Related > Unrelated contrast 

between the subgroups could be underpowered due to the difference in samples sizes between 

the FR (n=17) and GER (n=41) subgroups. Therefore, we used a region-of-interest (ROI) 

approach to evaluate the relative contributions of the FR and GER subgroups to the effects of 

semantic relatedness on neural activity at selected regions.  

The ROIs were selected based on the observation that regions in certain common anatomical 

zones exhibited elevated activity in the Related relative to the Unrelated condition both during 

encoding as well as during recognition (see Figure 7). As summarized in Figure 9, we selected 

clusters in the angular gyrus (AG), posterior cingular cortex (PCC), and middle temporal gyrus 

(MTG) based on the Related > Unrelated contrast during the encoding task (Figure 3B) and 

during the picture-recognition task (Figure 4C). For this contrast, the shared clusters between 

encoding and picture-word recognition were present only in the AG and PCC but not MTG 
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(Figure 7). The influence of language on the activity at these ROIs was assessed with a mixed 

ANOVA (Relatedness [Related, Unrelated] x Language [FR, GER]), as summarized in Table 

6 and Figure 9. 

Table 6. Modulation of semantic congruency effects on neural activity by language 

Statistical details of the assessment of regional activity in the different tasks (Encoding, Picture-

recognition, Picture-word recognition) with a mixed ANOVA with factors Relatedness and Language 

(see text). For each region of interest (AG = Angular Gyrus, PCC = Posterior Cingular Cortex, MTG = 

Middle Temporal Gyrus), the corresponding F values and p are reported on each row. Statistically 

significant effects are highlighted in yellow, and non-significant effects in orange. 

Region of 

Interest 

Relatedness Language Relatedness*Language 

F(1,56) p F(1,56) p F(1,56) p 

Encoding      

AG 40.2744 < 0.0001 0.0022 0.9626 1.5541 0.2177 

PCC 28.6915 < 0.0001 0.0758 0.7841 0.3687 0.5462 

MTG 40.4039 < 0.0001 0.2458 0.6220 0.7204 0.3996 

Recognition: Picture      

AG 19.9790 < 0.0001 0.0433 0.8359 0.0276 0.8685 

PCC 22.8433 < 0.0001 0.0519 0.8207 2.5713 0.1144 

MTG 22.2053 < 0.0001 0.7168 0.4008 1.1965 0.2787 

Recognition: Picture-word      

AG 9.8249 0.0027 0.8242 0.3678 5.2333 0.0260 

PCC 8.0394 0.0064 0.1682 0.6833 6.9221 0.0110 
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Figure 9. Modulation of semantic congruency effects on neural activity by language 

Barplots of mean regional activity during Encoding (left column), Picture-recognition (middle column) 

and Picture-word recognition (right column) based on Relatedness [Related, Unrelated] (abbreviated as 

Rel) and Language [FR, GER] (abbreviated as Lang). Regions of interest (ROIs) were selected from the 

group-level Related > Unrelated contrasts (encoding: Figure 3B; picture-recognition: Figure 4C; 

picture-word recognition: Figure 7, yellow areas indicating overlap). Error bars indicate the standard 

deviation. n.s. = not significant (p > 0.05, exact p-values are listed in Table 6). 

During encoding (Figure 9, first column), semantic congruency had a prominent influence on 

activity at the AG, PCC and MTG regions of interest but the effect of language was not 

statistically detectable. Furthermore, the effect of semantic congruency was not detectably 

modulated by language as confirmed by the non-significant statistical interaction between 

Relatedness and Language. 

In the picture-recognition task (Figure 9, second column), the activity differences due to 

semantic relatedness at the three ROIs were not detectably modulated by language. In the 

picture-word recognition task (Figure 9, third column), language did not have a detectable 

main effect on activity at the AG and PCC regions but it seemed to modulate the effect of 

semantic relatedness (indicated by a statistically significant interaction). Specifically, the 

semantically modulated effects were more prominent for the larger GER subgroup than for the 

smaller FR subgroup. 
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Taken together, the behavioral and fMRI findings (albeit with a loss in sensitivity for picture-

word recognition) validate the use of stimulus-sets in different languages that are semantically 

matched in order to elicit comparable semantic congruency effects on encoding and episodic 

recognition memory across languages. 

4 Discussion 

In the present proof-of-principle study, we sought to validate an individualized paradigm to test 

the effects of semantic context on episodic object memory where participants could perform 

the tasks in different participant-chosen languages. This individualization was based on the use 

of semantically matched stimulus-sets in different languages. With these stimulus-sets, the key 

assumption was that the effects of categorizing stimuli as being semantically Related vs 

Unrelated on encoding and on episodic memory would be effectively independent of the 

stimulus language. 

We here show that with the stimulus-sets used here the paradigm induced a robust effect of 

semantic context on encoding and recognition behavior. The paradigm also evoked activity in 

brain regions typically involved in semantic congruency judgments and episodic memory. The 

semantic congruency effects on behavior and on neural activity during encoding and picture-

recognition were comparably present in subpopulations using different task languages (French 

and German). The behavioral effects of semantic congruency effects were largest for picture-

word recognition and were comparably present across languages. However, the large individual 

variability of the behavioral effects in this latter task reduced the sensitivity in detecting 

associated neural activity effects at low sample sizes. 

Based on these findings, the paradigm suggests a suitability to investigate episodic memory in 

an inclusive manner in aging, multilingual populations. 

4.1 Effect of semantic processing on memory encoding 

Our paradigm is based on the PWI phenomenon, where the RTs to name a presented object are 

slower when the distractor word describes a related than an unrelated object (La Heij, 1988, 

Starreveld and La Heij, 2017). This RT increase is attributed to the increased difficulty in 

ignoring semantically related information. However, the RT effects in our study were not 

consistent with such a task difficulty related interpretation. 

In the encoding stage of our experiment, the word was not a distractor to be ignored, and 

participants were instructed to pay attention to the picture and the word. The RTs were shorter 

for Related than for Unrelated judgments with these instructions (Figure 3A), unlike the PWI 

effect. If the RT is assumed to be an index of cognitive difficulty (Botvinick et al., 1999, 

Botvinick et al., 2004), then Unrelated judgments should have evoked significantly more neural 

activity than the Related judgments. Specifically, increasing task difficulty has been shown to 

elicit more brain activity in the parietal, frontal, and cingulate cortices (including ACC, PFC) 

(Demb et al., 1995, Desai et al., 2006, Gould et al., 2003, Na et al., 2018). However, in our 

study, neural activity for Related items was more significant than for Unrelated items across a 

widespread network of brain areas, including the bilateral angular gyrus, MTG, PCC, ACC, and 

PFC, thus speaking against task difficulty as the cause for activity changes (Table 2, Figure 

3B).  

Two lines of evidence suggest that the activity differences were associated with the 

effectiveness of memory encoding. During picture-recognition and picture-word recognition, 

Related items were recognized more rapidly and with greater accuracy than items judged to be 
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Unrelated (Figure 4A, B & Figure 6A, B). Also, during picture-recognition and picture-word 

recognition, Related items were associated with relatively higher neural activity relative to the 

Unrelated items over an extended neural network (Figure 4C, Table 3 & Figure 6C, Table 4). 

Therefore, relatedness had a significant impact on memory encoding. This interpretation is in 

line with prior work demonstrating that increased activity during encoding and retrieval of 

associative memory is associated with better memory performance (Kukolja et al., 2009a, 

Kukolja et al., 2009b). 

4.2 Accounting for semantically-mediated recognition 

Our findings are consistent with prior studies that have consistently identified the ventral 

posterior parietal cortex (including the left angular gyrus and MCC/PCC) as having a role in 

memory processing, even though its functional role remains debated (Davey et al., 2016, 

Shimamura, 2011). 

In light of these prior studies, our findings suggest a straightforward account of how the 

Related/Unrelated judgments during encoding might influence memory judgments in our 

paradigm. When picture-word pairs were judged to be subjectively Related, we assume that the 

participants could successfully identify a binding context between a picture and a word. 

However, when a picture-word pair was judged to be Unrelated, we assume that the search for 

a binding context was unsuccessful. The binding context is internally-generated information 

that was not contained directly in the stimuli but already present in semantic memory. During 

picture/picture-word recognition, the binding context facilitates access to encoded item 

representations. This is akin to the “semantic mediator effectiveness hypothesis” (Carpenter, 

2009, Carpenter, 2011, Pyc and Rawson, 2010), where the authors propose facilitation of 

memory retention when information mediating the association of a cue with a target is present. 

In our task, this semantically-mediated access might be absent for the Unrelated items. Due to 

these binding-context differences, Related items would therefore have a more substantial 

representation in memory than the Unrelated items and should, in turn, lead to faster retrieval 

and elicit higher neural activity. 

Two lines of evidence support the above account. In the picture-word recognition task, the RTs 

for Related items were considerably shorter (~800ms) than for Unrelated items. The BC 

hypothesis suggests an explanation for this substantial behavioral difference. In our task design, 

picture-word recognition was preceded by the picture-only recognition task, where a picture 

was presented in isolation. Despite being seen in isolation, when an Old Related picture is 

successfully recognized, the associated binding context might lead to the automatic retrieval of 

the paired word even though the task does not require it (also see (Carpenter, 2011)). Due to 

this automatic retrieval, the neural representations of these Related words might be more 

activated than for the Unrelated words. This difference in pre-activation might, in turn, affect 

performance in the subsequent picture-word recognition task. Specifically, it might facilitate 

more rapid access and recognition of the correct Related word from the four presented options 

than for the Unrelated words. In qualitative support of this possibility, during debriefing, 79% 

of the participants reported that they often remembered the word paired with the picture 

displayed in the picture (only)-recognition task. This was notable since 69% of the participants 

also reported that they did not use the Related/Unrelated judgments during encoding as a 

conscious strategy to remember the seen picture-word items. This observation is in line with 

recent work (Amer et al., 2020), which showed that co-occurring congruent, as well as non-

congruent material (word and picture paired), are often bound together in memory in older 

adults. 
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Finally, the increased engagement of the left angular gyrus and the middle/posterior cingulate 

cortex (Figure 7) for Related > Unrelated items both during encoding and during recognition 

(i.e., picture-recognition and picture-word recognition) suggests that these regions might be 

involved in representing the binding context information (as also suggested by (Shimamura, 

2011)). 

4.3 Semantic processes and language choice 

The influence of the language of the word stimuli on semantic processing and memory was a 

critical consideration of interest in the current study. Although language differences could 

theoretically lead to systematic cognitive differences (e.g., as postulated by the Sapir-Whorf 

hypothesis (Koerner, 1992)), we found negligible evidence for this in the behavioral and fMRI 

data. These findings strongly support the conclusion that individualizing the language materials 

of the task enables the inclusion of participants with different native languages. This is a crucial 

strength from a public health viewpoint when studying a multilingual population.  

Language choice in the present study could theoretically be associated with education level. In 

Luxembourg, the language of instruction in primary school for all students is German and 

French. In secondary school, students chose either a technical path (instructed in German) or a 

general path (instructed in French). Since Luxembourg did not have a university until 2003 

(https://wwwen.uni.lu/universite/presentation), students typically attended universities in 

neighboring countries to obtain an advanced degree (Germany, France, or Belgium, instructed 

in French). Therefore, a participant’s preferred language might be an indirect proxy for 

socioeconomic and cultural factors as possible confounds. However, in the present study, 

neither the number of years of education nor neuropsychological test scores were significantly 

different between the two language sub-groups (Table 1).  

An important topic for future research is whether differences in the relative proficiency in the 

multiple languages spoken by the multilingual participants are a predictor of differences in 

memory performance in our task and cognitive reserve.  

4.4 Conclusion 

We present a task to study semantic context effects on episodic memory that elicits robust 

behavioral and neural effects and is largely independent of the language used. These findings 

support the practical applicability of our paradigm for studying semantic congruency effects on 

memory in multilingual populations. A central guiding theme for this paradigm was to increase 

individualization and inclusivity, which are of significant public health relevance in 

heterogeneous populations. Having adapted and unbiased tools is of high relevance. It is even 

the basis of the concept of precision public health, where groups of populations are studied as 

units. A key priority for future research is to assess whether and how the level of multilingual 

capability modulates age-related changes to the neural systems implementing long-term 

memory. 
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