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Abstract
In many real-world applications, such as those based on patient electronic health
records, prognostic prediction of patient survival is based on heterogeneous sets of
clinical laboratory measurements. To address the trade-off between the predictive
accuracy of a prognostic model and the costs related to its clinical implementation, we
propose an optimized L0-pseudonorm approach to learn sparse solutions in
multivariable regression. The model sparsity is maintained by restricting the number of
nonzero coefficients in the model with a cardinality constraint, which makes the
optimization problem NP-hard. In addition, we generalize the cardinality constraint for
grouped feature selection, hence making it possible to identify key sets of predictors
that may be measured together in a kit in clinical practice. We demonstrate the
operation of our cardinality constraint-based feature subset selection method, named
OSCAR, in the context of prognostic modelling of prostate cancer, where it enabled one
to determine the key explanatory predictors at different levels of model sparsity, and to
explore how the model sparsity affects the model accuracy and implementation cost.

Author summary
Feature selection has become a crucial part in building biomedical models, due to the
abundance of available predictors in many applications, yet there remains an
uncertainty of their importance and generalization ability. Regularized regression
methods have become popular approaches to tackle this challenge by balancing the
model goodness-of-fit against the increasing complexity of the model in terms of
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coefficients that deviate from zero. Regularization norms are pivotal in formulating the
model complexity, and currently L1 (LASSO), L2 (Ridge Regression) and their hybrid
(Elastic Net) norms dominate the field. In this paper, we present a novel methodology
using the L0-pseudonorm, also known as the best subset selection, which has largely
gone overlooked due to its challenging discrete nature. Our methodology makes use of a
continuous transformation of the discrete optimization problem, and provides effective
solvers implemented in a user friendly R software package. We exemplify the use of
oscar-package in the context of prostate cancer prognostic prediction using both
real-world hospital registry and clinical cohort data. By benchmarking the methodology
against related regularization methods, we illustrate the advantages of the
L0-pseudonorm for better clinical applicability and selection of grouped features.

Introduction 1

Current cancer incidence is more than 19 million new cases per year and rapidly rising 2

globally [1]. Despite the successful development of medical treatments that have 3

decreased the mortality of cancer patients, cancer remains one of the most common 4

causes of death, thus leading to dire need for more precise and prognostic insights into 5

patient care. Prognostic prediction is fundamental in patient management, since it 6

enables the assessment of prognosis in diagnostic phase and prediction of the course of 7

the disease for an individual patient after treatment or disease relapse. Predicting the 8

risk of cancer recurrence or death, based on the individual patient characteristics and 9

laboratory measurements, helps to understand, which patients would benefit from a 10

standard treatment and which are better assigned to palliative care or treated with 11

alternative therapy regimens. In clinical practice, survival prediction is typically done 12

based on laboratory tests, which are many times numerous and thus expensive. From 13

an economical point of view, prognostic modelling should be both accurate and 14

cost-effective, and the prognostic models should not become too complex to enable 15

clinical implementation. In this particular aspect, feature selection strategies, such as 16

regularization in regression modelling, play a key role. 17

Prostate cancer is one of the most common cancers diagnosed in men and among the 18

top causes of cancer mortality [1]. Although the prognosis of prostate cancer is generally 19

good, a considerable number of patients either have a metastasized disease at the time 20

of diagnosis or they develop a potentially lethal recurrent disease during follow-up after 21

the initial treatment. Prostate-specific antigen (PSA) is currently considered as the 22

default marker of disease progression during the follow-up. However, when prostate 23

cancer develops into a hormonal treatment independent state (i.e. castration resistant 24

prostate cancer), more rigorous testing including additional markers is needed for more 25

accurate patient stratification [2]. Given the high prevalence of prostate cancer globally, 26

it is not trivial to consider the costs of this testing during follow-up, further increasing 27

the need for cost-effective modelling strategies. 28

Risk classification models for prostate cancer are traditionally applied either in 29

diagnostic phase or primary treatment phase. Most current prognostic models contain 30

Gleason score, which is considered the most significant factor for early disease course 31

estimation [3]. In contrast, our objective here was to make prognostic prediction of 32

patients who have already developed metastatic castration-resistant prostate cancer, 33

and therefore seek to investigate prognostic features beyond Gleason score. Regularized 34

Cox regression models have been a popular choice for such prognostic modelling 35

purposes [4–8]. For example, in the DREAM 9.5 Prostate Cancer Prediction 36

Challenge [6], our top-performing model was based on an ensemble of regularized 37

models with Cox regression [9]. 38

In the present work, the prognostic modelling framework for prostate cancer is also 39
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based on the Cox’s proportional hazards model [5, 10]. The base Cox’s model is 40

extended by introducing a novel feature selection regularization strategy. To this end, 41

we use a cardinality constraint expressed with the L0-pseudonorm to restrict the 42

number of nonzero coefficients. Including the cardinality constraint complicates the 43

optimization, since this constraint is discontinuous and nonconvex, which makes the 44

problem NP-hard (nondeterministic polynomial hard) [11]. Due to the NP-hard 45

optimization problem, there has been a lack of implementations utilizing this modelling 46

strategy. Some modelling approaches with L0-implementations, such as [12,13], have 47

been developed for generalized linear models, such as linear and logistic regression, but 48

they do not offer solutions for the Cox model essential for prognostic predictions. To 49

the best of our knowledge, there is only one L0-implementing Cox’s proportional 50

hazards model, the augmented penalized minimization-L0 (APM-L0) [14], which 51

approximates the L0 approach, and iterates between a coordinate descent based convex 52

regularized regression and a simple hard-thresholding estimation. 53

Our implementation differs from the approach of APM-L0. First, we rewrite the 54

cardinality constraint with its exact DC (Difference of two Convex functions) 55

representation after which the constraint is added to the objective function utilizing a 56

penalty function approach [15]. This leads to a continuous nonsmooth objective 57

function. However, the nonconvexity remains even after the transformation. In our 58

method, the optimization is done with two sophisticated solvers: the double bundle 59

method (DBDC) [16,17] for DC optimization and the limited memory bundle method 60

(LMBM) [18,19] for nonsmooth large-scale optimization. Both solvers are capable of 61

handling the exact DC representation of the cardinality-constrained problem after it has 62

been transformed into a penalty function form. In addition to the advanced 63

optimization methods and inclusion of the cardinality constraint, we generalize the 64

cardinality constraint to also control the number of used kits linking predictors that 65

come with the same cost together. Instead of a single measurement, in practice, many 66

features are often measured together as kits (such as complete blood count). In our 67

method, such kit structure can be included, thus enabling the selection of relevant 68

predictor sets instead of just single predictors. 69

In this work, we present a new L0 regularization method OSCAR (Optimal Subset 70

CArdinality Regression) and exemplify it with Cox’s proportional hazards model in 71

prognostic prediction of prostate cancer. In addition to survival prediction, the OSCAR 72

method implements the binomial model for logistic regression problems and the linear 73

regression model with mean square error (see e.g. [20]). The OSCAR method is tested 74

in four separate training data cohorts: TYKS (real-world hospital registry data) [8], and 75

VENICE, MAINSAIL and ASCENT (randomized clinical trials) [6]. We use bootstrap 76

(BS) and cross-validation (CV) analyses to ensure generalization ability of the model. 77

The model performance accuracy is investigated alongside the corresponding predictor 78

costs; this helps to identify which models are cost-effective (i.e., max accuracy, min 79

cost). Combining these two objectives makes the underlying problem a multi-objective 80

optimization problem. We note that the process of fitting the Cox’s proportional 81

hazards model (i.e. accuracy) for all the required cardinalities is one way to obtain an 82

approximation of the Pareto-front [21] in this multi-objective problem. These 83

Pareto-fronts can then be provided for the end-users for domain-expert driven decision 84

making. Finally, the models selected based on the Pareto-fronts are also tested in the 85

validation cohorts independent from the training data sets separated before model 86

fitting. In OSCAR, we refer to cardinality as the number of predictors or groups of 87

predictors (i.e. kits) in the model. Schematic illustration of the OSCAR method is 88

presented in Fig 1. In addition to OSCAR analyses, we compare the results to 89

traditional LASSO [4] and L0-augmented APM-L0 [14]. 90
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Fig 1. Schematic illustration of the OSCAR method

Materials and methods 91

Model and algorithm 92

Cox’s proportional hazards model 93

Our modelling interest is mainly in the patient survival prediction, where we investigate 94

the relationship between features (see Data section) and survival time (overall survival 95

or progression free survival). In the general form, this type of data can be stated as a set 96

A = {(xi, yi, δi) ∈ Rp × R+ × {0, 1} | i = 1, . . . , n} , (1)

where n is the number of observations, xi ∈ Rp is the vector of p features, yi ∈ R+ is 97

the observed time and δi ∈ {0, 1} is the label (value 1 indicates an event and value 0 98

right-censoring). In addition, we let t1 < t2 < . . . < tm be increasing list of m unique 99

failure times, and Di be the set of indices of observations failing at time ti meaning that 100

ties are also allowed to happen. 101

Survival prediction is traditionally done using Cox’s proportional hazards model [10]. 102

The hazard for the patient i at time t is given with the formula 103

hi(t) = h0(t)ex
>
i β,

where h0(t) is a shared baseline hazard and β ∈ Rp is an unknown coefficient vector. 104

Our aim is to estimate this vector β by maximizing the Breslow approximation of the 105

partial likelihood (see [22]). In the following, we denote by β̄ the solution yielding the 106

maximum value for the likelihood. 107

Instead of maximizing the partial likelihood directly, it is also possible to maximize 108

the scaled log partial likelihood, since this leads to an equivalent solution [5]. This 109

modification gives the scaled log partial likelihood of the form 110

l(β) = 2
n

m∑
i=1

∑
j∈Di

x>j β − di ln

∑
j∈Ri

ex>
j β

 , (2)

where Ri = {j : yj ≥ ti} is the set of indices at risk at time ti and di = |Di| is the 111

number of failures at time ti. The function −l is convex, since it is a sum of linear and 112

log-sum-exp functions [23]. Therefore, instead of maximizing the concave function l, it 113

is equivalent to minimize the convex function −l. In the following, we concentrate on 114

solving the minimization problem 115

min
β∈Rp

−l(β), (3)

whose solution β̄ also maximizes (2). 116

Restricting the number of single features 117

In many real-world applications, the sparsity of the solution for the partial likelihood 118

function is a preferred feature. To favour sparse solutions, a regularization term is 119

typically added to the optimization problem. For example, the elastic net penalization 120

is used in [5], combining L1- and L2-norms. In particular, approaches relying on the 121

L1-norm ensure sparsity to a certain extent. 122

In our approach, the sparsity of the solution is obtained by using the cardinality 123

constraint to restrict the number of nonzero coefficients in the vector β. Thus, the 124
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strength of this approach is that it provides us an effective tool to seek solutions with 125

the predetermined model complexity. Instead of considering each feature separately, we 126

may also want to link some features together, if they are always measured together, 127

(i.e. they belong to the same measurement kit). Therefore, we also generalize the 128

cardinality constraint -based subset selection to a case where we restrict the number of 129

selected kits (see Supplementary file S1 File Section 1 for restricting the number of 130

selected kits, instead of single features). 131

For any vector β ∈ Rp, the L0-pseudonorm ‖β‖0 calculates the number of nonzero 132

components. However, it is worth noting that the L0-pseudonorm is not a proper norm 133

since it is not homogeneous [24], thus the name pseudonorm. In addition, this 134

pseudonorm is discontinuous and nonconvex, making the optimization problem more 135

challenging [15,25]. 136

In the problem (3), sparsity can be achieved by fixing the number of nonzero 137

coefficients K ∈ {1, . . . , p} and adding a cardinality constraint ‖β‖0 ≤ K. This results 138

in the following cardinality-constrained problem 139min
β∈Rp

−l(β)

s.t. ‖β‖0 ≤ K.
(4)

It is known that this problem is difficult to solve due to the combinatorial nature of the 140

constraint, which is also discontinuous. To overcome the discontinuity, we use the 141

approach presented in [15] utilizing the largest-k norm to obtain an exact continuous 142

representation of the constraint. 143

The largest-k norm of a vector β ∈ Rp is the sum of the k largest absolute value 144

elements: 145

|||β|||[k] := |β(1)|+ |β(2)|+ . . .+ |β(k)|,

where β(i) is the element whose absolute value is the i-th largest among the p elements 146

of β. The largest-k norm is a proper norm. In addition, it is convex and the constraint 147

‖β‖0 ≤ K is equivalent with the constraint ‖β‖1 − |||β|||[K] = 0 [15,25], where 148

‖β‖1 := |β1|+ |β2|+ . . .+ |βp| = |||β|||[p] Thus, the problem (4) can be rewritten as 149min
β∈Rp

−l(β)

s.t. ‖β‖1 − |||β|||[K] = 0
(5)

and we have a continuous constraint instead of a discontinuous one. Note that both 150

problems (4) and (5) have exactly the same feasible set. However, the combinatorial 151

structure of the cardinality constraint causes the continuous constraint to be nonconvex. 152

For this reason, the problem (5) may have multiple local solutions and identifying a 153

global or near global solution requires a sophisticated optimizer. 154

Another disadvantage of the problem (5) is that we still have a constraint. Similarly 155

to [15], we can utilize the penalty function approach [26,27] to rewrite the constrained 156

problem (5) as an unconstrained one 157

min
β∈Rp

f(β) = −l(β) + ρ
(
‖β‖1 − |||β|||[K]

)
, (6)

where ρ > 0 is a positive penalization parameter. In this reformulation, we are 158

balancing between feasibility and optimality. By selecting a too small value for the 159

parameter ρ we do not obtain a feasible solution for the original problem (5). However, 160

by selecting a suitably large value for ρ, we have a heavy cost for cardinality constraint 161

violation and end up with a feasible solution. Note that the parameter ρ should not be 162
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too large since otherwise the penalty term dominates the objective function and we do 163

not obtain an optimal solution for the objective of the constrained problem (5). For this 164

reason, as is typical for penalty function methods, we need to solve the problem (6) 165

sequentially for a series of increasing values of the parameter ρ until suitably large 166

parameter value is reached forcing the original constraint in (4) to hold. In practice, 167

this search is done by using a ρ value-grid. 168

One major benefit of the formulation in (6) is that, although its objective f is 169

nonconvex and nonsmooth (i.e. nondifferentiable), it is also a DC function (Difference of 170

two Convex functions). This means that f can be represented in the form f = f1 − f2
171

with convex functions f1 and f2. This way we can better control the nonconvexity than 172

in the general case. In addition, these convex functions can be selected, for example, as 173

f1(β) = −l(β) + ρ‖β‖1 and f2(β) = ρ|||β|||[K].

Another interesting aspect of the penalized reformulation (6) is that it can be seen as a 174

modification of the L1 norm based penalization since the only difference is the largest-k 175

norm term −ρ|||β|||[K]. Note that this is the term restricting and controlling the upper 176

bound for the number of nonzero features in the problem. 177

Method OSCAR 178

In this section, we introduce the new algorithm OSCAR (Optimal Subset CArdinality 179

Regression) to solve the cardinality-constrained problem formulated in (4). Since the 180

considered problem is nonconvex, it is well-known that the determination of a global 181

solution is a challenging task, since we may have many local optima and we lack easily 182

verified conditions guaranteeing the global optimality. Due to this, the goal of our new 183

local optimization framework is to find good enough solutions which are close to the 184

global optima. To achieve this goal, our method combines first time the penalty 185

function approach and the double bundle method (DBDC) [16,17] for DC optimization 186

together with an incremental type of an approach to solve the original problem. 187

OSCAR methodology is designed so, that it does not depend on the specific 188

optimization method, if they are capable of handling both nonsmoothness and 189

nonconvexity. Therefore, our method generalizes beyond DBDC, although it is offered 190

as the default choice. Due to this, we have also incorporated to the R-package of 191

OSCAR the possibility to use the limited memory bundle method (LMBM) [18,19]. 192

LMBM is designed for general nonconvex nonsmooth optimization problems, with the 193

drawback, that it does not benefit from the DC structure of the objective. The most 194

important feature of LMBM is that it scales towards large-scale problems. 195

As presented above, the first step in OSCAR is to use the penalty function approach 196

to change the rewritten constrained problem (5) to an unconstrained one. Since the 197

objective of the unconstrained problem (6) is DC, we can utilize the DBDC method for 198

the DC optimization to solve it. This enables us to take advantage of the DC structure, 199

since the selected bundle method constructs a nonconvex DC cutting plane model 200

(i.e. an approximation of the objective function, which incorporates both the convex and 201

the concave behaviour of the problem). Another option to solve the problem (6) is 202

LMBM described above. 203

However, since DBDC and LMBM are only local methods, the quality of solutions 204

for a nonconvex problem strongly depends on the choice of starting points. For this 205

reason, the algorithm OSCAR combines the DBDC and LMBM methods with an 206

incremental type of an approach to generate starting points with higher likelihood of 207

leading to promising parts of the search space. The idea in our incremental approach is 208

to start with solving the cardinality-constrained problem, where only a single predictor 209

(or kit) is allowed to be used initially, and then to increase the number of predictors (or 210
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kits) one at a time until the maximal number of predictors is achieved. In particular, we 211

utilize the solution of the cardinality-constrained problem with i− 1 predictors to derive 212

promising starting points to the next cardinality-constrained problem with i predictors. 213

Since this type of process may end up in a local optimum, we alleviate this challenge via 214

the use of multiple starting points to obtain solution candidates for the problem with i 215

predictors. 216

The OSCAR method is presented in Algorithm 1 for the case where each predictor is 217

considered separately. See Supplementary file S1 File Section 1 for modifications needed 218

with a kit structure. As an input, one needs to give the number of predictors K, 219

defining how many predictors maximally can be chosen in the densest 220

cardinality-constrained problem. As an output, the method provides incrementally a 221

solution to each cardinality-constrained problem with i predictors for i = 1, . . . ,K and, 222

thus, we obtain as a by-product a solution also for each cardinality-constrained problem 223

with a smaller number of used predictors (or kits). This means that one can control how 224

Input: The data set (1) and the number of predictors K ∈ {1, 2, . . . , p} until
which the cardinality-constrained problem is solved.

Output: For i = 1, . . . ,K, gives the solution β∗i for the cardinality-constrained
problem with i predictors.

Step 0: (Initialization) Solve the convex problem (3) with DBDC or LMBM
and denote the solution by β̄. Set β∗0 = 0 and i = 1.

Step 1: (Starting points) For the cardinality-constrained problem with i predic-
tors, initialize the set of starting points Si = ∅. For j = 1, . . . , p construct
the point βj

0 with the formula

βj
0,l =

{
β∗i−1,l for l = 1, . . . , p and l 6= j

β̄l for l = j

and if ‖βj
0‖0 > i− 1 then add the point to the set Si.

Step 2: (Penalty function problem) Do the following steps A–C for all βj
0 ∈ Si

to obtain solutions β∗i,j
Step A: Select a positive initial value for the penalization parameter ρ.
Step B: Solve the problem (6) with the DBDC or LMBM method starting

from βj
0 and denote the solution with β̂j .

Step C: If ‖β̂j‖0 = i, then set β∗i,j = β̂j . Otherwise increase the value of
the penalization parameter ρ and go to Step B.

Step 3: (Solution) Select the best solution β∗i for the cardinality-constrained
problem (5) with i predictors using the formula

β∗i = arg min
j
{−l(β∗i,j) }.

Update i = i+ 1. If i ≤ K, then go to Step 1. Otherwise go to Step 4.

Step 4: Return β∗i for all i = 1, . . . ,K.
Algorithm 1: OSCAR
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many different sparse solutions are generated. Naturally, it is also possible to select 225

K = p, in which case the problem (5) is solved for all possible numbers of predictors. 226

In Step 1 of Algorithm 1, starting points are generated by varying the previous 227

solution β∗i−1 with the best solution β̄ of the scaled log partial likelihood obtained 228

without any regularization. Specifically, in a starting point βj
0 the base is β∗i−1, and 229

then we simply substitute predictor j with the corresponding value in β̄. In this way we 230

can easily vary the previous solution but still maintain its main predictors. Note also 231

that each starting point having i− 1 predictors is omitted and we only keep the starting 232

points with i predictors. 233

In Step 2B of Algorithm 1, we always use the original starting point. The reason for 234

this is that if the parameter ρ is too small, then we may end up with a solution where 235

nearly all the coefficients are nonzero, and therefore, lose the information provided by 236

the original starting point. To avoid such solutions, we do not change the starting point, 237

but instead update the parameter ρ until we obtain a solution with the acceptable 238

number of predictors (or kits). This guarantees that the obtained solution does not 239

diverge too much from the previous solution and maintains its best predictors. In 240

addition, this way the method does not become too sensitive to the selection of ρ, since 241

too small values of ρ are basically omitted. 242

Data 243

For testing the new algorithm for survival prediction, we used one prostate cancer 244

cohort from real-world hospital registry data and three prostate cancer cohorts from 245

randomized clinical trials (see Supplementary Table S1 Table). The patient features 246

were also considered by the clinical examination groups (kits), in which they are 247

measured in clinical practice. Prices for the examinations were provided by the Helsinki 248

University Hospital. The real prices were converted to costs relative to PSA, which was 249

given a reference value of 100. One feature (blood urea nitrogen) without a known cost 250

was ignored. The features are shown in Table 1, along with abbreviations as well as the 251

kit structures and prices. 252

Real-world hospital registry data 253

The real-world hospital registry data were collected from the advanced prostate cancer 254

patients treated at the Turku University Hospital (TYKS). Patients with castration 255

resistance were selected and data processed as in [9]. Furthermore, only patients with 256

diagnosis of castration resistance dated in 2010 or later were selected, due to the higher 257

sparsity of data in the previous years. In addition, patients with zero or negative 258

survival time or no measurement data were discarded. 195 patients were set aside to be 259

used as an external validation data to evaluate the generalization capability of the 260

model, in order to avoid and assess the risk of over-fitting to the training data. We 261

further eliminated features with over 50% of missing values. All missing data were 262

imputed using median values calculated in the remaining training data (N=590). 263

Median imputation has been previously tested and found adequate [8, 9]. One outlier 264

measurement of systolic blood pressure (>12000 mmHg) was changed into missing 265

before imputation. Patient characteristics for the training data are presented in 266

Supplementary Table S1 Table and the survival curves in the TYKS cohort with respect 267

to the Gleason scores are shown in Fig 2a. The survival curves were as expected, with 268

lowest survival on the highest Gleason scores and highest survival on the lowest Gleason 269

scores. Since cross-variable correlations affect the feature selection process, we 270

investigated these across the available features and present them in Supplementary Fig 271

S1 Fig. 272
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Table 1. Data features
Abbreviation Meaning Unit Kit Price
AGEGRP Age group (three groups) -

Routine measurements 0

BMI Body mass index kg/m2

DIASTOLICBP Diastolic blood pressure mmHg
HEIGHTBL Height cm
PULSE Pulse bpm
SYSTOLICBP Systolic blood pressure mmHg
WEIGHTBL Weight kg
HB Hemoglobin g/dl

B-PVKT 40
HEMAT Hematocrit %
PLT Platelets E9/l
RBC Red blood cells E12/l
WBC White blood cells E9/l log
NEU Neutrophils E9/l log TKD 50POT Potassium mmol/l
ALP Alkaline phosphatase U/l log P-AFOS 20
ALT Alanine aminotransferase U/l log P-Alat 20
AST Aspartate aminotransferase U/l log P-AsaT 20
CA Calcium mmol/l P-Ca 20
CREAT Creatinine umol/l log P-Krea 20
LDH Lactate dehydrogenase U/l log P-LD 20
PSA Prostate-specific antigen ng/ml log P-PSA 100
TBILI Bilirubin umol/l log P-Bil 20
TESTO Testosterone nmol/l log S-Testo 330
NA Sodium mmol/l cB-Het-Ion 100
MG Magnesium mmol/l log P-Mg 20
PHOS Phosphorus mmol/l log P-Pi 20
ALB Albumin g/l P-ALB 20
TPRO Total protein g/l S-Prot 20
LYM Lymphocytes E9/l log B-Lymf 90
CCRC Calculated creatinine clearance ml/min log Pt-GFReEPI 20
GLU Glucose mmol/l log Gluk 20

Abbreviations, explanations and units for features used in the analyses, as well as kit structures and corresponding prices.
Prices were standardized so that PSA has a price of 100.

Fig 2. Survival curves a) Kaplan-Meier survival probability for TYKS patients based on the Gleason scores. b)
Kaplan-Meier survival probability for the three trial cohorts: VENICE, MAINSAIL and ASCENT.

Randomized clinical trial data 273

The randomized clinical trial data included in the analyses were previously constructed 274

in the DREAM 9.5 competition (the Prostate Cancer Challenge, PCC-DREAM), hosted 275

by Project Data Sphere (https://www.projectdatasphere.org/). Three prostate cancer 276

patient cohorts, MAINSAIL, VENICE and ASCENT, are included [28–30]. From each 277

cohort, a random set of patients was separated as a validation data (N=132, N=150 and 278

N=119 for MAINSAIL, VENICE and ASCENT, respectively). Features with over 50% 279

of missing values were eliminated. Missing values in each cohort were imputed 280

separately using median values calculated from the corresponding training data sets 281

(N=394, N=448 and N=357 for MAINSAIL, VENICE and ASCENT, respectively). 282

Patient characteristics are presented in Supplementary Table S1 Table and the survival 283

curves per cohort are shown in Fig 2b. The survival curves start similarly, however, the 284
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MAINSAIL and ASCENT cohort have a shorter follow-up time. The overall survival 285

trend was also similar to the TYKS cohort (Fig 2a). We also present the correlations 286

between features in the clinical cohorts in Supplementary Fig S1 Fig. 287

Results 288

We investigated the modelling performance of our OSCAR method in four prostate 289

cancer data sets, which portrait two very distinct archetypes of biomedical data. First, 290

we applied the method to advanced prostate cancer cohort obtained from Turku 291

university hospital (TYKS), representing a highly heterogeneous real-world hospital 292

registry cohort. Second, we applied the method to three prostate cancer cohorts 293

obtained from randomized clinical trials, which had been part of a DREAM modelling 294

challenge and had been homogenized previously by the challenge organizers. 295

The predictive performance was evaluated with concordance index (C-index) [31]. 296

C-index is commonly used in survival analysis as it compares the order of predicted 297

risks to the order of observed survival times [32–34]. To benchmark OSCAR 298

performance, we compared the results to a widely used method LASSO [4], which 299

utilizes L1-regularization. We also included another L0-pseudonorm based method 300

APM-L0 [14], which was chosen based on literature search for L0-related methods 301

capable of performing survival analysis. We performed CV to assess generalization 302

ability, supported by bootstrapping of the data and subsequent re-fitting of the models 303

to assess robustness of the selected features. 304

In addition to model accuracy, we evaluated cost-efficiency of the models proposed 305

by OSCAR as a function of feature measurement costs obtained from actual clinical 306

laboratory measurement kit reference costs. We evaluated the model performance of the 307

three methods OSCAR, LASSO and APM-L0 with respect to the costs calculated with 308

the corresponding number of predictors. This gave us an approximation of the 309

Pareto-front aiming at a good compromise between minimal real-life cost and maximal 310

accuracy, since the underlying problem can be seen as a multi-objective optimization 311

problem of these two objectives. 312

We also investigated which features were selected as robust predictors. More 313

specifically, we performed BS, in which the model was fitted 100 times to calculate how 314

often (%) each feature was selected as a predictor when a certain cardinality was set. 315

This enabled us to interpret which features are robust predictors that are not sensitive 316

to slight perturbations in the provided data. 317

Prognostic prediction for advanced prostate cancer in real-world 318

hospital registry data 319

Based on the BS evaluation of the OSCAR method in the TYKS cohort (Fig 3a), PSA 320

was the clearly the most robust predictor for overall survival in prostate cancer. 321

However, as can be seen from Fig 3b and c, the original model and CV C-index 322

improved substantially when at least four predictors were chosen. Based on the BS 323

results, the most promising predictors within the explored cardinality values were PSA, 324

hemoglobin (HB), alkaline phosphatase (ALP) and age group (AGEGRP). Notably, the 325

cost remained low when these four predictors were chosen (Fig 3b blue). Adding more 326

predictors did not dramatically improve the OSCAR method accuracy in the training 327

data. However, when more predictors were introduced, creatinine (CREAT) and pulse 328

(PULSE) were chosen for prognostic modelling by OSCAR. 329

In general, OSCAR resulted in improved performance in terms of C-index in CV, 330

when benchmarked against LASSO and APM-L0 methods (Fig 3c-e). All methods 331

exhibited roughly similar amount of variation over the folds in the CV. Of note, since 332
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Fig 3. TYKS data: a) OSCAR BS performance. +/- denotes the sign of the coefficient in the model. Positive coefficient:
higher predictor value leads towards high risk. Negative coefficient: higher predictor value leads towards low risk. ¤ denotes
features selected by LASSO with λ1se and * denotes features selected by LASSO with λmin. a denotes features selected by
APM-L0. Color denotes how often among 100 bootstrap runs a feature is selected when a certain cardinality is set (1 meaning
100%). b) OSCAR accuracy in the TYKS training data (C-index), and cost with respect to the allowed number of predictors.
Cost is calculated by kits and a kit price is added if any feature from a kit is used. c) CV performance of OSCAR. d) CV
performance of LASSO. The numbers at top indicate the number of predictors selected by a specific lambda. e) CV
performance of APM-L0. The red dots denote the mean values and error bars denote the standard errors of mean (SEM)
calculated over the CV folds.

OSCAR estimates do not shrink toward zero and are instead either included or 333

excluded, which may partly explain the saturation effect in the CV performance curves. 334

Alternatively, in our modelling task the number of predictors (p=22) was relatively low 335

in comparison to the number of patients (N=590). All the three methods selected 336

similar predictors (Fig 3a). For example, LASSO with conservative lambda (λ1se) 337

selected three predictors (PSA, HB and ALP), which are the same as the most 338

important predictors of OSCAR based on the BS. The choice of λ (penalization 339

coefficient) in LASSO and APM-L0 is typically chosen either based on a local optimum 340

for CV performance (λmin) or when a solution is within a standard error’s range of the 341

local optimum (λ1se). In OSCAR, to avoid arbitrary choices for the crucial model 342

penalization, we leverage the use of bootstrap-based inference to explore feature 343

robustness in addition to the CV generalization ability. 344

To compare the methods in terms of implementation costs, we investigated the mean 345

C-index in CV of the three methods OSCAR, LASSO and APM-L0 with respect to the 346

costs calculated with the corresponding number of predictors or lambdas (Fig 4). 347

Interestingly, the Pareto-front for OSCAR CV performance vs. cost suggested multiple 348

candidate models, which could be then refined using the domain-expert based guidance. 349

The models from these approximated Pareto-fronts were subsequently selected for 350

testing in the left-out validation data (Fig 5) to further assess model generalization 351

ability beyond the already observed training data. The observed C-index in the 352

validation data were similar to that in the training data. All three methods performed 353

well in the validation data, with OSCAR slightly better for most of the costs (or 354

number of predictors). 355

Fig 4. Model accuracy in CV with respect to the cost for a) OSCAR, b) LASSO
and c) APM-L0. The approximated Pareto-front is marked with black line. Number of
predictors in each Pareto-point is noted next to the point. The costs were calculated with the
corresponding number of predictors (OSCAR) or corresponding lambdas (LASSO and
APM-L0) using predictors chosen in the model fitted for the entire training data (e.g., Fig 3b).

Fig 5. Model accuracy in validation data cohort for OSCAR (red filled
circles), LASSO (yellow crosses) and APM-L0 (blue hollow circles) a) with
respect to the corresponding costs, b) with respect to the corresponding number of
predictors. Only the performance of the models in the corresponding approximated
Pareto-fronts are presented.

We further considered scenarios in which the Pareto-front is of no special interest 356

and only a single model prediction is required. For this purpose, the model CV 357

performance was inspected using a smoothing spline fitted on the performance as a 358

function of cardinality. The smoothing spline was investigated to find a shoulder-point 359

(i.e. a point where the model accuracy saturates and no longer improves when more 360
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predictors are allowed). In Supplementary Fig S2 Fig, the spline is fitted for the TYKS 361

data models (Fig 3b). The shoulder-point was selected among the points where the 362

second derivative indicated a steep saturation in the curve (i.e. crossing the x-axis). 363

Using this strategy, six predictors (PSA, HB, ALP, AGEGRP, CREAT and PULSE) 364

were selected, suggesting a similar model as previously identified with CV and BS. 365

These results demonstrate that even though the three methods had a trend toward the 366

same features, OSCAR’s generalization ability was similarly good or better than those 367

using shrinkage-based coefficient estimates. 368

Prediction with kit structure 369

While the most typical approach is to choose features one at a time, as presented above, 370

features may be available as groups. In clinical practice, features are often measured 371

together as kits (e.g., complete blood count), and therefore including a single feature 372

from a kit in the model leads to availability of measurements for the rest of the kit’s 373

features as well. As the extra features become available at the same cost, it is 374

economical to consider including all of the kit’s features in the model simultaneously. 375

Such a kit structure can be easily included in the OSCAR method (see 376

Supplementary file S1 File Section 1), and was investigated in the TYKS data set. Kit 377

structures used in the analysis are presented in Table 1. Consistent with the non-kit 378

version in the previous section, PSA was the most relevant predictor in the TYKS data 379

(Fig 6a). When two kits are allowed, the model suggests B-PVKT (complete blood 380

count), which includes HB, platelets (PLT), white blood cells (WBC), red blood cells 381

(RBC) and hematocrit (HEMAT). While the inclusion of B-PVKT was largely driven by 382

HB, which had been identified as an important predictor in the non-kit approach, four 383

other predictors were now available for model fitting as well. The model fit C-index 384

levels were slightly lower than those with the non-kit prediction. For example, with two 385

kits (total of six predictors), C-index was 0.708 (Fig 6b), whereas the non-kit model of 386

six predictors had C-index on 0.728 (Fig 3b). This is due to trend of including less 387

prognostic features when a kit includes also a highly prognostic feature. However, the 388

cost of six predictors in the non-kit model was 180, whereas the cost for six predictors 389

(two kits) in the kit structure model was 120. 390

Fig 6. Model performance of OSCAR when kit structure is used a)
Bootstrap performance. b) Goodness (C-index) and cost. c) CV performance. The red
dots denote the mean values and error bars denote the standard errors of mean (SEM)
calculated over the CV folds.

The overall levels of C-index in the CV were similar with or without the kit structure 391

(Fig 6c), when compared to the non-kit prediction (Fig 3c). With the kit structure, the 392

model included features that would not be likely picked by the non-kit model, such as 393

the above mentioned PLT, WBC and RBC. Furthermore, more parameters could be 394

included while keeping the cost low. For example, with two kits, the cost was 120, when 395

including six parameters, whereas without the kit structure, a higher cost was paid with 396

only two parameters. However, with more parameters, the risk of overfitting increases. 397

These results demonstrate how the OSCAR method enables the inclusion of clinically 398

relevant kit structures and addition of multiple model predictors at a given cardinality. 399

In the presented application, the models retained a similar level of generalization ability 400

regardless whether or not the kit structure was taken into account. 401
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Fig 7. Left panel: BS plots for three trial cohorts. Right panel: Model goodness (C-index) and costs with respect to allowed
number of predictors. Cost is calculated by kits and a kit price is added if any feature from a kit is used.

Fig 8. Left panel: CV performance of OSCAR in the three trial cohorts. Middle panel: CV performance of LASSO in the
three trial cohorts. Right panel: CV performance of APM-L0 in the three trial cohorts. The red dots denote the mean values
and error bars denote the standard errors of mean (SEM) calculated over the CV folds.

Prognostic prediction for prostate cancer patients in clinical 402

trial data 403

To investigate how the developed methodology would perform in a more systematically 404

collected and homogenized clinical cohort, we investigate the model performance in 405

three clinical trial data cohorts. One of the striking differences was, that in contrast to 406

the real world cohort TYKS, PSA was significantly less prognostic factor in the three 407

trial data cohorts. In the ASCENT cohort, PSA was distinguished as a prominent 408

predictor (Fig 7 bottom row); however, if only one predictor was allowed, ALP was 409

selected most often in the BS analysis. Furthermore, ALP was selected as the main 410

predictor in the VENICE cohort (Fig 7 top row). In the MAINSAIL cohort, ALP was 411

not detected as a prognostic feature (Fig 7 middle row), and instead, lactate 412

dehydrogenase (LDH) was the most prominent predictor. In the VENICE and 413

MAINSAIL cohorts, HB was selected most often as the second predictor. 414

ALP and HB were also highly prognostic in the real-world TYKS cohort. 415

Unfortunately, the otherwise highly interesting LDH was not available in the TYKS 416

cohort due to high percentage of missing values (>80%, Supplementary Table S1 Table). 417

Similarly, TYKS data was missing aspartate aminotransferase (AST), which had 418

notable prognostic power in the VENICE cohort. We note that AST was also, along 419

with LDH, ALP and HB, detected as one of the most important predictors in the 420

original DREAM 9.5 Prostate Cancer Prediction Challenge [6]. The lack of PSA as the 421

clear top-predictor is also in line with the DREAM 9.5 challenge results, rather multiple 422

predictors and their interactions need to be considered for maximal prognostic accuracy. 423

Furthermore, PSA’s elevated prominence as a prognostic predictor may be also biased 424

by data generation and reporting, as it is routine measured in prostate cancer follow-up, 425

while real-world clinical applications may be less prone to adapt novel markers into 426

routine use. 427

In the VENICE cohort, after selection of these main predictors that appeared over 428

all the trial cohorts, it became less clear which features had most prognostic power on 429

patient survival. However, based on the model accuracy and the CV results (Fig 7 and 430

Fig 8 top rows), a higher model accuracy was reached with additional predictors. 431

Potential candidate features that improved model performance were AST, CREAT, 432

sodium (NA), HB, and albumin (ALB). In the CV analysis, the OSCAR method 433

resulted in higher mean C-index than LASSO and APM-L0 (Fig 8 top row). However, 434

all the three methods suggested similar predictors, indicating their importance and 435

robustness. 436

In the MAINSAIL cohort, a relatively high C-index was reached by roughly five 437

predictors, and adding more predictors did not considerably increase the C-index. In 438

the CV, a local maximum was also reached with three predictors (Fig 8 middle row). 439

Thus, based on the BS analysis, in addition to LDH and HB, features like magnesium 440

(MG), body mass index (BMI), ALB, AST and weight (WEIGHT) were suggested as 441

potential candidates. When compared to LASSO and APM-L0, OSCAR again resulted 442

in higher mean C-index (Fig 8 middle row). 443

In the ASCENT cohort, PSA and ALP were the most important predictors (Fig 7 444
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bottom row). Allowing more predictors, such as neutrophils (NEU), calcium (CA), LDH 445

and HB, further increased the C-index. Similarly to the other clinical trial cohorts, 446

OSCAR resulted in the highest mean C-index in the CV analysis when compared to 447

LASSO and APM-L0 (Fig 8 bottom row). 448

To investigate the implementation costs, the mean CV accuracies were inspected 449

with respect to the cost in all three trial data cohorts and for all three methods 450

(OSCAR, LASSO and APM-L0) (Supplementary Fig S6 Fig). For each of the 451

cohort-method pairings, the approximated Pareto-fronts were analyzed. Similarly to 452

TYKS data, OSCAR method resulted in higher accuracies when compared to LASSO 453

and APM-L0 at the same cost levels. Next, the models corresponding to the 454

approximated Pareto-fronts were applied in the validation data set (Fig 9). In the 455

validation data, the models may have exhibited some overfitting as the highest 456

validation C-index was often reached already with a relatively low feature cost. In 457

general, OSCAR performed well in validation considering the objective of 458

simultaneously maintaining high validation C-index and low cost. Ultimately, a feasible 459

compromise between validation performance and clinical cost would then rely on the 460

domain expert’s decision making. 461

Fig 9. Model accuracy in validation data cohort for OSCAR (red filled circle),
LASSO (yellow diamond) and APM-L0 (blue hollow circle) in the three trial
data cohorts VENICE, MAINSAIL and ASCENT. Only the performance of the
models in the corresponding approximated Pareto-fronts are presented (see Supplementary
Fig S6 Fig).

Based on the spline fittings and its derivatives for VENICE (see Supplementary Fig 462

S3 Fig), OSCAR selected three predictors (ALP, HB and CREAT). For the MAINSAIL 463

cohort (see Supplementary Fig S4 Fig), OSCAR selected three predictors (LDH, BMI 464

and HB). For the ASCENT cohort (see Supplementary Fig S5 Fig), OSCAR selected 465

four predictors (PSA, NEU, ALP and CA). 466

These results demonstrate that the models based on the trial cohorts slightly differ 467

in terms of the selected model parameters from each other, and also from the real-life 468

cohort TYKS. However, some differences may be caused by the lack of data in some of 469

the cohorts (e.g., LDH lacking from TYKS). The three compared methods selected 470

similar predictors within a cohort. However, the OSCAR method improved the 471

prediction accuracy in training data without increasing the cost. 472

Discussion 473

In this work, we have introduced a new L0-regularized regression methodology OSCAR, 474

and demonstrated its use in the context of prostate cancer survival prediction both in 475

real-world hospital registry and clinical cohort data. The OSCAR method utilizes 476

L0-pseudonorm as a penalty term to restrict the number of predictors. Unlike typical 477

approaches trying to tackle L0 pseudonorm’s difficult formulation, OSCAR restructures 478

the problem so that no approximation is required and the original solution can be then 479

optimized in an exact manner. Since the pseudonorm is discontinuous and nonconvex, 480

the optimization problem becomes NP-hard and computationally heavy [11]. In the 481

OSCAR method, the L0-pseudonorm based penalty was rewritten for easier 482

management, and this leads to a regularization term in the form a DC (Difference of 483

two Convex functions) composition. The optimization was done using DBDC 484

algorithm [16,17]. This is more sophisticated and more suitable for nonconvex problems 485

than, for example, the classical coordinate descent. DBDC was supplemented by a more 486

computationally efficient optimizer LMBM. 487
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We compared OSCAR to LASSO, a widely used method in survival prediction, and 488

APM-L0, a L0-based survival prediction method [14]. All three methods selected similar 489

predictors. In general, OSCAR was the optimal choice based on the CV analyses. This 490

is partly because the L0-pseudonorm allows the model coefficients to vary freely from 491

zero, unlike in, for example, LASSO, which pushes the coefficients towards zero. LASSO 492

and APM-L0 utilize the coordinate descent in optimization, which are more prone to 493

local optima when compared to the DBDC algorithm. Despite the L0 approach, 494

APM-L0 performed similarly to LASSO, most likely because it incorporates L1 and L2. 495

We investigated the model performance in three data cohorts, one from hospital 496

registry data (TYKS) and three from clinical trials (VENICE, MAINSAIL, ASCENT). 497

In the TYKS cohort, the OSCAR method suggests PSA, HB, ALP and age group as the 498

main predictors. Similar trend is also observed if kit structure was included. PSA 499

reflects the disease severity, especially at disseminated state and in treatment-resistant 500

disease [35]. Thus, PSA has been numerously acknowledged as an important predictor 501

for prostate cancer, and it is used in practice to determine and monitor the state or 502

occurrence of prostate cancer. PSA’s elevated prominence as a prognostic predictor in 503

our hospital registry data may thus be biased by data generation and reporting. High 504

level of ALP is associated with metastases in advanced prostate cancer and it is also 505

measured in the clinical practice to monitor the spreading of cancer into the bones [36]. 506

Metastases typically lead to decreased survival time and, thus, an increased risk of 507

death, therefore predictors associated with metastases have an intuitive explanation as 508

to why they have prognostic power. HB is generally a good indicator of a person’s 509

health. Similarly to HB, age group is linked to the overall health of a person as overall 510

disease burden is typically higher and physical performance status is lower. Since we 511

predict overall survival, higher age leads to decreased survival time regardless of the 512

cancer related characteristics, which somewhat complicates its survival interpretation. 513

In the VENICE cohort, ALP prevailed as the most prominent predictor, and AST, 514

CREAT, NA, HB, and ALB followed as additional predictor candidates. As mentioned 515

above, ALP is associated with metastases and thus poor prognosis. AST tests for liver 516

damage, and it has been associated with multiple cancers including prostate, bladder, 517

testicular and small cell lung cancer [37–41]. CREAT is related to kidney malfunction, 518

and NA metabolism also mainly reflects kidney function. Taken together, these 519

prognostic factors therefore reflect potential organ failure or organ damage burden. As 520

such, their use in prognostic models are highly justified and intuitive. 521

Albumin is a protein that maintains fluid balance and osmolality in bloodstream and 522

it is associated with malnutrition and problems in intake of nutrients in the gut [42]. 523

Compromised intake of nutrients may be caused by cancer, cancer-related decrease in 524

daily performance or cancer treatments, suggesting a potential link between ALB and 525

cancer prognosis [43, 44]. In addition, ALB is considered to reflect liver function and in 526

metastasized, castration-resistant prostate cancer, and lowered levels of ALB is known 527

to associate with increased tumor burden [45,46]. 528

In the MAINSAIL cohort, HB and ALB were again identified as notable prognostic 529

features. In addition, LDH was selected systematically in the BS analysis as a key 530

predictor. LDH is an enzyme participating in energy production in nearly all tissues. 531

Damaged tissues release LDH, which has been linked to cancer burden [43]. 532

Similarly to the VENICE cohort, AST was among the top predictors in the 533

MAISAIL cohort. In addition, BMI, MG, and WEIGHT had considerable prognostic 534

power, of which MG is a pivotal part of metabolism. 535

In the ASCENT cohort, similar features were selected consistently in the BS analysis: 536

PSA and ALP, along with NEU, CA, LDH and HB. NEU are white blood cells that kill 537

bacteria and help in wound healing. They have also been associated with cancer, 538

despite the previous belief of neutrality against cancer [47,48]. Especially advanced 539
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cancer accumulates NEU, which therefore becomes a predictor of poor survival. Unlike 540

in other two trial cohorts, CA was selected among six top predictors in the ASCENT 541

cohort. CA is a mineral especially involved in bone metabolism. Since the prostate 542

cancer is prone to metastasize in bones, the CA balance may be affected by the cancer 543

development. However, another causation could also be considered since high calcium 544

intake has been associated with increased risk of advanced prostate cancer [49,50]. 545

Taken together, there are still some potential improvements to be considered, despite 546

the already promising validation results with comparable accuracy and reasonable 547

model parameters. Due to the inclusion of L0-pseudonorm, the optimization problem 548

becomes NP-hard and computationally heavy. Thus, further development of the 549

optimization process, such as using different optimization algorithms or refining the 550

selection of starting points, could potentially improve the running time and model 551

solution. For example, the coordinate descent is a naive but extremely computationally 552

lean optimizer, and it could be considered as a potential alternative in the future work 553

complemented by suitable heuristics. Another development possibility is to reformulate 554

the objective function to take into account also the user-provided costs of features and 555

kits. However, this will lead to a discrete optimization problem. 556

Conclusion 557

We have explored and made available a novel approach to the L0-regularized regression, 558

which has previously gone under-represented within the domain of regularized regression 559

partially due to challenges related to solving the discrete optimization task. Our 560

approach is exact to L0-penalty as it does not utilize any approximation of the 561

L0-pseudonorm, but instead uses its exact DC (Difference of two Convex functions) 562

reformulation, bringing the optimization task to the continuous domain. In addition, we 563

have incorporated the kit structure into the method, enabling the selection of features 564

as groups that they are measured in the practice. Since the measurements have a 565

potentially high costs, the model sparsity allows the selection of the most prognostic 566

features to avoid excessive costs by addition of redundant predictors. The costs were 567

investigated along with model accuracy. This gave us an approximation of the 568

Pareto-front based on the minimal cost and maximal accuracy, since the underlying 569

problem can be seen as a multi-objective optimization problem with two objectives: 570

accuracy and cost. The multi-objective optimization could be regarded as a new way of 571

providing models that are highly relevant to real-world applications, rather than merely 572

optimal according statistical metrics. This way the regularized methodology can also 573

leverage domain-expert knowledge in choosing the final suitable model. 574

The OSCAR method demonstrated efficient performance in the context of metastatic 575

castration resistant prostate cancer in real-world hospital registry data, as well as in the 576

three clinical trial data cohorts. Our results brought insights into best markers, which 577

to some extent differ between real-world registry data and clinical trial data, possibly 578

due to differences in cohort patient characteristics, missingness, or data reporting 579

practices. We benchmarked our methodology against highly popular regularization 580

methods, readily available for R users, such as LASSO, and demonstrated comparable 581

performance of our L0-approach. The methodology has been implemented and 582

distributed as a user-friendly R-package accompanied by a wide range of useful helper 583

functions and a set of efficient Fortran optimizers called from within the R-package. The 584

OSCAR method is easily accessible through the Central R Archive Network (CRAN). 585

June 28, 2022 16/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.29.498064doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498064
http://creativecommons.org/licenses/by/4.0/


Availability 586

The latest open source git version control consisting of R, Fortran, and C code for the 587

oscar package is available at: https://github.com/Syksy/oscar 588

oscar R-package is available at the Central R Archive Network (CRAN) at: 589

https://CRAN.R-project.org/package=oscar 590

Representative simulated real-world registry data are provided within the oscar 591

R-package. Access to the TYKS hospital registry data may be requested via the Auria 592

Clinical Informatics unit (atp@tyks.fi) at the Turku University Hospital. The DREAM 593

9.5 mCRPC processed clinical cohort data are available from: 594

https://www.synapse.org/#!Synapse:syn4756967 595
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