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Supporting Information – S1 

Table S1: description of sampling methods in each site 

Site 
Location 

Group Sampling 
method 

Number 
of plots 

Area per 
plot m2 

Soil core Sampling 
date 

Body mass estimation 

USA, 
Canada 

Macrofauna litter sieving, 
hand sorting 

80 
 

0.5 NA 2016 - 2017 length-mass regressions from 
Wardhaugh 2013, Sohlström et 
al. 2018   

USA, 
Canada 

Mesofauna 1 soil core, 
heat-extraction  

80 0.00196 5cm diameter, 
10 cm depth 

2016 - 2017 length–mass regressions for 
specific taxa from Mercer et al. 
2001 

Germany Macrofauna 2 soil cores, 
heat-extraction 

48  20cm diameter, 
two samples 
per plot 

2008 - 2011 measured or estimated with 
mass-length regressions from 
Ehnes et al. 2014 

Germany Macrofauna litter sieving, 
mustard 
extraction 

48 0.25 NA 2008 - 2011 measured or estimated with 
mass-length regressions from 
Ehnes et al. 2014 

Germany Mesofauna 2 soil cores, 
heat-extraction 

48  5cm diameter, 
two samples 
per plot 

2008 - 2011 measured or estimated with 
mass-length regressions from 
Ehnes et al. 2014 

Indonesia  Mesofauna 2 soil cores, 
heat-extraction 

32 0.0256 litter + 5cm 
depth 

2013 length-mass regressions were 
used for Collembola: dry weight 
(Peterson 1975)  

Indonesia  Macrofauna litter sieving, 
heat-extraction 

32 3 NA 2012 length-body mass regressions 
were used to estimate spp body 
mass (Sohlström et al. 2018) 

  



Supporting Information – S2 

Additional environmental variables descriptors 

In order to explore the effect of additional environmental and edaphic variables on our analysis, we extracted the human footprint 

index based on data on human pressures at 1 km² resolution (from 1993 and 2009) (Venter et al. 2016). Current global scale land-

change classifications were extracted from van Asselen and Verburg (2012) at a 5-arcminute resolution (Table S2). Original land-use 

maps were converted to numerical data, following Pouzols et al. (2014) and Eitelberg (2018), with values imputation for the missing 

categories (Table 1 - S2). Other environmental variables were available from the respective projects for each community: litter layer 

was measured (cm) and weighted (g/m2); carbon and nitrogen content were measured in the soil (dry weight), and used to calculate 

C: N ratio. We used the georeferences of the communities’ location and study years in a 0.05 degrees unit to extract NDVI (from 

2000 to 2018) (MOD13C2 Series – Didan, 2015). 

 

  



Table S2: Current global scale land-change classifications were extracted from Van Asselen & Verburg (2012) and Eitelberg (2018) 

Land System Pouzols et al. (2014)  Eitelberg (2018) Imputation Final intensity value 

Cropland; extensive, few livestock 0.4 0.4  0.4 

Cropland; extensive, bovines, goats & sheep  0.4  0.4 

Cropland; extensive, pigs & poultry   0.45 0.45 

Cropland; medium intensive, few livestock 0.3 0.3  0.3 

Cropland; medium intensive, bovines, goats & sheep  0.3  0.3 

Cropland; medium intensive, pigs & poultry   0.35 0.35 

Cropland; intensive, few livestock 0.2 0.2  0.2 

Cropland; intensive, bovines, goats & sheep  0.2  0.2 

Cropland; intensive, pigs & poultry   0.25 0.25 

Mosaic cropland and grassland; bovines, goats & sheep  0.8  0.8 

Mosaic cropland and grassland; pigs & poultry   0.85 0.85 

Mosaic cropland (ext.) and grassland; few livestock 0.7 0.7  0.7 

Mosaic cropland (med. int.) and grassland; few livestock 0.6 0.6  0.6 

Mosaic cropland (int.) and grassland; few livestock 0.5 0.5  0.5 

Mosaic cropland and forest; pigs & poultry   0.55 0.55 

Mosaic cropland (ext.) and forest; few livestock 0.7 0.7  0.7 

Mosaic cropland (med. int.) and forest; few livestock 0.6 0.6  0.6 

Mosaic cropland (int.) and forest; few livestock 0.5 0.5  0.5 

Dense forest 1 1  1 

Open forest, few livestock 0.9 0.9  0.9 

Open forest, pigs & poultry   0.95 0.95 

Mosaic grassland and forest 1 1  1 

Mosaic grassland and bare 1 1  1 

Grassland, natural 1 1  1 

Grassland, few livestock 0.9 0.9  0.9 

Grassland, bovines, goats & sheep  0.9  0.9 



 

  

Bare 0.1 1  1 

Bare, few livestock 0.9 0.9  0.9 

Peri-urban & villages 0.1 0.1  0.1 

Urban 0.1 0  0 



Supporting Information – S3 

To evaluate if additional environmental variables affect body mass-abundance relationships across local communities, we used 

Linear Mixed Effects Models that relate the previously evaluated slopes of the body mass-abundance relationship for each soil 

animal community to the local community’s body mass range and environmental variables (soil temperature, precipitation, land-use 

intensity, soil pH, human footprint index, the carbon content in the soil, litter layer mass and depth, C: N rate in the soil, water content 

in the soil). Based on a correlation analysis of all environmental variables, we removed NDVI from the model due to its high 

correlation with soil temperature. The mixed-modeling approach was used to account for potential spatial autocorrelation by using the 

corGaus function from nlme package (Pinheiro et al. 2020), which required the use of a randomly parameterized dummy variable 

as a random effect (note that the corGaus function is only available for mixed-effects models that require a random effect variable). 

Each of the independent variables was added as a linear term, without interactions. We started with the full model comprising all 

independent variables and selected the best-fitting model by the ‘dredge’ function of the MuMIn package (Barton 2022), using the 

Bayesian information criterion (BIC) for model comparison (ΔBIC <2).  

The two most supported models (ΔBIC <2) were used to generate model-averaged estimates of the parameters using the 

‘model.avg’ function from the MuMIn package. Model-averaged estimates from the top models (ΔBIC <2) included the body-mass 

range, water content in the soil, soil carbon content and temperature. This final model reveals linear increases in the slope with 

increasing body-mass range, soil temperature and water content and decreases with increasing soil carbon content (Table 1 - S3). 

The general relationships between the slopes and the variables selected in the final model were illustrated in Figure 1 (S3).  

 



Table S3: Summary of the parameter estimates of the final Mixed-Effect Model (conditional average) for slope prediction. Estimates, standard 

errors and p-value for the Z-statistic are indicated.  

 

Predictors Estimates Std. Error Pr(>|z|) 

(Intercept) -0.63931 0.15688 4.72 x 10-5 

log body mass range 0.10926 0.01452 < 2 x 10-16 

log carbon content -0.16443 0.03951 3.61 x 10-5 

log soil temperature 0.13989 0.05617 0.0135 

soil pH 0.03220 0.01321 0.0156 

  



Figure S3: Relationships between the slopes of the body mass-abundance relationship in the communities in each location (colored symbols) with 

A. mean soil temperature (log10),(y = -0.81 + 0.051x, R² = 0.0063), B. soil pH, (y = -0.79 + 0.0066x, R² = 0.0015), C. body mass range of the 

communities (log10), (y = -0.68 + 0.13x, R² = 0.35), D. soil carbon content (log10), (y = -0.56 - 0.24x, R² = 0.18) and E. water content in the soil (% 

fresh weight), (y = -0.71 – 0.0017x, R² = 0.0014).  

 

 

  



Supporting Information – S4 

To describe general body mass-abundance relationships across communities, we fitted a linear model pooling the abundance and 

mass data of the species for all sites. We ran a linear regression of the dependence of each species log10 abundance on the log10 

body mass and edaphic variables (soil temperature, precipitation, land-use intensity, soil pH, human footprint index, the carbon 

content in the soil, litter layer mass and depth, C: N rate in the soil, water content in the soil). Based on a correlation analysis of all 

environmental variables, we removed NDVI from the model due to its high correlation with soil temperature. Each of the independent 

variables was added as a linear term, without interactions. We started with the full model comprising all independent variables and 

selected the best-fitting model by the ‘dredge’ function of the MuMIn package (Barton 2022), using the Bayesian information criterion 

(BIC) for model comparison (ΔBIC <2).  

The two most supported models (ΔBIC <2) were used to generate model-averaged estimates of the parameters using the 

‘model.avg’ function from the MuMIn package. Model-averaged estimates from the top models (ΔBIC <2) included body mass, 

human footprint index, land-use intensity, litter layer depth, soil temperature, soil pH and water content in the soil). This final model 

reveals linear increases in the species abundance with increasing human footprint index and land-use intensity and decreases with 

increasing species body mass, litter layer depth, soil temperature, soil pH and water content in the soil (Table 2 - S2). Our model can 

be used in future predictions to assess the abundance of soil species for large-scale projections. 

  



Table S4: Summary of the parameter estimates of the final Mixed-Effect Model for species abundances prediction. Estimates, standard errors and 
p-value for the Z-statistic are indicated.  

 

Predictors Estimates Std Error Pr(>|z|) 

(Intercept) 1.882579 0.124495 < 2 x 10-16  

human footprint index 0.006876 0.001473 3.07 x 10-6 

land-use intensity 0.246828 0.038845 < 2 x 10-16 

litter layer depth -0.020904 0.006052 0.000553 

log soil temperature -2.818322 0.050278 < 2 x 10-16 

log body mass -0.743859 0.006296 < 2 x 10-16 

soil pH -0.090023 0.011250 < 2 x 10-16 

log water content   -0.162260 0.058978 0.005945 
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To evaluate how the body-mass range of the communities varies along the gradient of temperature, we ran linear regressions of the 

dependence of A. log10 minimum body mass (g), B. log10 maximum body mass (g) and C. log10 body-mass range (g) (difference 

between maximum and minimum body masses) on soil temperature (°C) for each of the 155 communities using the lm function in R 

(R Core Team, 2020).  

  



Figure S5: Relationships between the soil temperature (log10) in each location (colored symbols) with A. minimum body mass (log10) (y = -4.4 – 

1.3x, R² = 0.63) B. maximum body mass (log10) (y = 0.12 – 0.83x, R² = 0.078) and C. body mass range (log10) (y = 0.12 – 0.83x, R² = 0.078) in 

each community. 
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