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Supplementary Figure 1: Calibration of low-dispersion sSMLM. a,b) Determination of distance between 

grating and camera chip via the use of a GATTA-PAINT 80RG DNA-PAINT nanoruler (Methods). The grating 

is incrementally distanced from the camera by a series of rotations (every rotation is 1/32th inch or ~0.8 mm 

as specified in the utilized c-mount thread). The histograms of the obtained distances between the 0th and 1st 

order are plotted in a, while the linear fit of the median distances is shown in shown in b. c,d) Determination 

of the spectral distance (SD). A DNA-PAINT sample with ATTO542 and ATTO655 fluorophores was imaged. 

The distances (c) show a clear difference between the two fluorophores, while the angle (d) is not influenced.  



 
Supplementary Figure 2: Technical showcase of triple-fluorophore multiplexing with single-wavelength 

excitation. Combination of the ATTO647N, CF660, CF680 0th-to-1st-order distance data shown in Figures 2 

and 3. Rescaled to provide equal probability, and recoloured for clarity.   



Supplementary Table 1: ssDNA sequences used for DNA-PAINT on nanoparticles 
Name Modification Sequence (5’ → 3’) 

Imager 1 ATTO655 (3’ side) CTA GAT GTA T 

Docking 1 Biotin (5’ side) TTA TAC ATC TA 

Imager 2 ATTO647N (3’ side) TAT GTA GAT C 

Docking 2 Biotin (5’ side) TTA TCT ACA TA 

  

Supplementary Note 1: Algorithmic determination of pairing distance and rotation  
The sSMLM pair finding (explained in more detail in the Methods section) requires user-defined limits for 

the rotation (orientation of the grading with respect to the camera) and for the expected distances 

between the PSFs. Here, we discuss a JAVA-based implementation to algorithmically determine the 

average rotation and distance, and determine boundaries required for the pair finding from there. We 

note that we cannot determine the distance between the grating and the sensor via this approach, and 

thus all values are effectively the distance between paired PSFs as measured on the sensor. 

Briefly, we run a first FFT (Fast Fourier Transformation) on the reconstructed sSMLM images after single 

molecule localisation (Supplementary Figure. 3a). The first FFT will produce an image as seen in 

Supplementary Figure 3b. Cropping the image around the center will lead to a figure that shows a near 

vertical, strip like pattern representing the periodicity of localisations due to the grating (Supplementary 

Figure 3c). Next, we apply the directionality functionality of ImageJ to obtain the dominant angle in the 

image representing the orientation of the grating with respect to the sensor. We then apply this angle 

inversely to rotate the original image, which leads to all pairs of localisations in the 0th and 1st order being 

horizontally aligned.  

Starting from the rotated original image, we perform two consecutive FFTs. The first one will return the 

stripe-like pattern, now oriented vertically (not shown). The second one will determine the major 

frequencies representing the two expected distanced for our case of having two different fluorophores in 

our sample (Supplementary Figure 3d). After cropping (Supplementary Figure 3e) and applying some 

thresholding (thereby keeping the most intense 0.14% of pixels), we can use ImageJ’s particle detection 

feature to determine the position of the peaks. In Supplementary Figure 3f and g, the main features (#5, 

#2) to the left of the centre peak (#1) represent the two expected distances between the PSFs of the 0th 

and the 1st order for the two spectrally distinct fluorophores. The obtained distances will provide the 

upper and lower estimates for the expected distances then used to run the pair-finding. Here, a secondary 

angle check is built in as, due to the rotation earlier, the angle of the features to the horizontal should be 0. 

If this is not the case, a manual check could be necessary. All values are reported to the end user which can 

then tweak them to process the data using wider or narrower angles/distances. 

  



  

Supplementary Figure 3: Determining the boundaries for rotation and distances between diffraction orders 

using Fast Fourier Transformation (FFT). a Super-resolved image of DNA nanorulers (Gattaquant, Germany) 

with two different fluorophores on the imager DNA strands after analyzing raw data featuring both 0th and 

1st order PSFs with ThunderSTORM-phasor. b 2D FFT of a indicates periodicity due to the pairing of single 

emitters in the 0th and +1st diffraction order. c Zoom-in of b. From this cropped image the angle is 

determined using the Directionality functionality in ImageJ. An insert shows the summed plot profile over the 

marked area, indicating periodicity. b 2D FFT of c. The outer edges of b are discarded as they provide no 

information in the higher frequency k-space and we want to increase the relative magnitude of the pattern. 

e Zoom-in of d, showing the only features of high intensity at the centre. The spots correspond to the 

wavelengths of the pattern shown in C.2 f The same data as in e after thresholding showing only sections of 

high intensity (top 0.14%). g Running the function ‘Analyze Particles’ in ImageJ/Fiji on F) determines the 

position of each particle. The distance from the centre peak (#1) to the features (#2 and# 5) determines the 

distance boundaries. This also allows for a calculation to check if the angle correction was done properly, 

since the angle from the features to the centre should be 0 compared to the horizontal. 

The algorithm is furthermore described in pseudocode below.  

1. Take the square image containing the sup-pixel localised data (e.g., provided as 2D 

histogram) and rescale to 1024 pixels by 1024 pixels. Normalise the intensities.  

2. A forward FFT is performed using ij.plugin.FFT (size of the resulting image is 1024x1024). 

After every forward FFT we use ImageJFunctions.wrapNumeric to obtain an image in 

Cartesian coordinates. 

3. Using fiji.analyze.directionality.Directionality_with a binrange of 0 to 180 we obtain the 

dominant angle, as well as the standard deviation.  

4. We rotate the FFT image obtained in 2) by the obtained angle. This is done on the 

ImageProcessor component. This causes some loss of data since we still maintain a square 

viewport, but these edges are cropped away later. 

5. If the standard deviation of the angle is high (>0.2 rad) we set it to 0.2 rad. Conversely, if it is 

very low (<0.04 rad) we set it to 0.04 rad. The standard deviation is used to find the angle 

boundaries (see step 6), so limiting their value ensures that we do not envelop too many 

points or too few points.  



6. We set the upper and lower boundaries for the angle: angle - 2.5 * std to angle + 2.5 * std, 

respectively. This 2.5 value is set empirically. 

7. We crop the rotated FFT image around the center from (256, 256) to (767, 767). 

8. On this cropped image another forward FFT is performed. The resolution of the resulting 

image is 512x512. This image is then cropped from (0, 232) to (256, 281). 

9. Using the ImageJ Histogram feature, we determine the value of the top 99.86% of pixels 

(value determined empirically) and set that as a threshold, In a FFT image, a large amount of 

pixels are usually of low value (due to low amplitude high frequency components, so this only 

keeps the few higher intensity features). These isolated features represent the 0th order as 

well as all 1st orders of emitters present. 

10. On this thresholded image the ImageJ ParticleAnalyser is run, calculating the centers of mass 

of all features present, as well as the size of the features. 

a. The values in the list are rescaled to the original dimensions 

b. The distance from the feature to the centre of the image, as well as the angle 

compared to the horizontal ‘0’ are calculated. 

c. Features that have a distance of less than 1% of the width of the image or over 40% 

of the width are discarded. This limit is set empirically to discard features stretching 

the whole image or artefacts very close to the centre of the image.  

d. If the angles calculated are over 0.1 rad the angle was not calculated before and is 

corrected by the angle detected here.  

11. If features are found the closest and furthest distances are selected.  

a. The low distance cut-off is the closest point’s distance * 0.9 + 0.375% of the width of 

the image 

b. The high distance cut-off is the furthest point’s distance * 1.1 + 0.375% of the width 

of the image. 

12. These values are then used to filter point combinations for each frame. 

Many of the values seen have been chosen empirically and have worked well for our applications. These 

values can be adjusted in the source-code or a custom version of this algorithm can be implemented to 

then be passed to the plugin in ImageJ’s macro feature.  

 

 


