
Supplementary Information 

Filament simulation 

The initial ground truth structures were simulated according to the model suggested by Shariff, et al1. 
Then, we applied affine temporally changing transformations to the original structure over 
predetermined video length (see Table S1). We applied on the initial ground truth structure two types 
of movements: global shift and global rotation. The shift velocities were chosen from a uniform 
distribution in the range of [-4, 4] nm per frame, and the rotation velocities were chosen from a 
uniform distribution in the range of [-3, 3] degrees per frame. Next, we randomly chose the number 
of blinking events per frame according to a blinking density parameter that states the percentage of 
the structure that would blink at each frame. We determined the position of each simulated blinking 
event according to the ground truth structure with additional localization noise randomly chosen from 
a uniform distribution in the range of [-20, 20] nm. Finally, we added additional localizations at random 
positions in the field of view (FOV) as noise. The result was pairs of simulated localization video and 
underlying dynamic structure video. 

Parameters Video length [frames] Pixel size [um] Field of view [um] Blink density [%] 

Values 1000 0.16 5.12 x 5.12 0.2 
 Table S1: Simulation parameters. 

Mitochondria simulation 

Here we followed a similar scheme of simulation, but we changed the ground truth and the simulation 
parameters. First, we chosen N random center-of-mass (CM) positions for N mitochondria in the 
simulated field of view (FOV). Then, around each position we have chosen a random number of edge 
points from a uniform distribution of [30, 50] points. Each point was assigned with an angle in the 
range of [0, 2𝜋] and a distance from the center of mass according to the known size of mitochondria 
(see Table S2). Finally, we acquired the ground truth structures of each mitochondrion by drawing a 
polygon based on the randomly chosen edge points. 

Parameters Video length 
[frames] 

Pixel size [um] Field of view 
[um] 

Distance from 
CM [um] 

Blink density 
[%] 

Values 1000 0.16 5.12 x 5.12 0.5 – 1.2 0.5 
 Table S2: Simulation parameters. 

We have simulated two types of dynamic movements for each mitochondrion: global shift, with 
velocities in the range of [-20, 20] nm per frame; and mitochondrion warping. The warping was done 
by choosing K edge points and move them periodically according to a sine function. 

The blinking videos were simulated in a similar fashion to the simulations of filaments, but some 
parameters have changed (see Table S2). 

Neural network architecture 

Super spatio-temporal resolution reconstruction falls within the domain of sequence-to-sequence 
(seq2seq) objectives. In our case, the input is a sequence of high-precision localization maps of single 
molecules in an SMLM experiment, and the output is a sequence of images containing high-resolution 
reconstruction of the imaged structure.  

Previous work has shown that combining information from multiple frames is beneficial in means of 
reconstruction accuracy and temporal resolution improvement2,3. However, the suggested algorithms 



are based on CNNs which are sub-optimal solution for seq2seq objectives. A more commonly used 
architecture for seq2seq tasks is Recurrent neural network (RNN). 

 

Figure S1: Neural network architecture. a We implemented bi-directional LSTM network with two layers. The 
first layer blocks get as input single low-resolution frames and the hidden states of the previous block. The 
second layer blocks output single super-resolved frames. In the forward pass (green arrows) the information 
propagates chronologically, while in the backward pass (red arrows) the images are inserted to the same 
network in reverse order. b The output frames of both the forward and the backward pass are inserted to a CNN 
as two input channels. The output of the CNN is the super-resolved reconstruction of the entire video.  

RNNs combine temporal information along the input sequence to provide better reconstructions in 
the output sequence. The weights in each RNN block are recycled during the inference process; 
therefore, RNNs are composed of less parameters than CNNs. Nevertheless, RNNs outperforms CNNs 
in many seq2seq objectives. In our work, we implement a variant of RNNs named bi-directional long 
short term memory (LSTM) network (Supplementary Figure S1). LSTMs are known for their ability to 
propagate important information throughout long input sequences. This advantage, along with the 
low memory demand, makes them perfect for the analysis of videos. 

In addition to the suggested architecture, we have added another post-processing step to our analysis. 
In this step, we transform the output image to binary mask by defining all the pixels with values greater 
than some threshold as ones and the rest as zeros. Since the output image of the neural network 
𝐼(𝑥, 𝑦) may be seen as a heatmap indicating the confidence of the network in the presence of a 
structure in each reconstructed pixel, we weighted each pixel in the binary map 𝐵(𝑥, 𝑦) according to 
the network confidence.  Therefore, we drew a patch around each pixel and multiplied this patch by 
a 2D gaussian with standard deviation that equals to one over the original pixel value: 

𝐵(𝑥 , 𝑦 ) =  
1 , 𝐼(𝑥 , 𝑦 ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

0 , 𝐼(𝑥 , 𝑦 ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

𝐹𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) = 𝐵(𝑥, 𝑦) ⋅
1

2𝜋 ⋅ 𝐼(𝑥 , 𝑦 )
⋅ 𝑒

( ) ( )
⋅ ( , )     , 𝑥, 𝑦 ∈ {𝑝𝑎𝑡𝑐ℎ 𝑎𝑟𝑜𝑢𝑛𝑑 𝑥 , 𝑦 } 



This function would decrease the pixel intensity where the network confidence is low and maintain 
high pixel intensity otherwise. The resulting frame of this analysis would keep the intensity of high 
confidence pixels and reduce the intensity of low confidence pixels. 

Reconstruction accuracy quantification 

The ground truth in our simulations were binary masks containing ones on the sample localization and 
zeros on the background. In the case of experimental data, we either did not possess any information 
regarding the ground truth structure (in the case of live cell imaging) or we possessed the 
reconstruction of the data based on Deep-STORM’s predictions. The outputs of our network were 
heatmaps containing different values in the range of [0, 1]. Higher pixel values meant that the network 
had higher confidence in estimating the structure at those pixels.  

Finding the optimal accuracy measure for comparison between the predictions and ground truth is 
not a trivial task. We have considered several accuracy measures for the quantification of our 
reconstruction performance. The pixel-wise mean squared error (MSE) is a widely used measure for   
this purpose; however, in some cases it poorly describes the quality as we would expect. For example, 
when the sample is small relative to the FOV, most of the pixels in the ground truth image would have 
zero intensity. Therefore, consistently predicting matrices full of zero values would yield a very low 
error using the MSE. Structure similarity (SSIM)4 will suffer from similar problems as MSE, due to the 
fact it relies on comparison between the mean intensity and standard deviation of the predicted image 
and the ground truth. Jaccard index5 might be used to describe the similarity between two groups: the 
group of predicted localizations and the group of ground truth localizations. But in our case, we 
compare matrices and not localization lists and it is hard to compare between the predicted heatmaps 
provided by our neural network and the ground truth binary maps representing the sample.  

Therefore, we have decided to quantify DBlink performance on simulated data according to two 
different quantities: the reconstruction fidelity to the ground truth structure; and the network 
hallucinations displayed in its reconstructions. The reconstruction fidelity term is measured by the 
following steps: binarizing the predicted image based a predefined threshold of half the maximal 
intensity; counting the number of pixels marked as ones in both the predicted image and the ground 
truth; dividing that number by the total number of pixels marked as ones in the ground truth image. 
The hallucination term was measured by the following steps: summing the number of pixels marked 
as ones in the predicted image and as zeros at the ground truth image; dividing this number by the 
number of pixels marked as zeros in the ground truth. 

In the experiment that contained unwanted stage drift, we quantified the accuracy as follows: First, 
we generated the ground truth image using ThunderSTORM reconstruction with drift correction and 
density filter tools. Next, we shifted back our reconstructed video frames according to the framewise 
drift prediction. Then, we binarized both our reconstructions and the ground truth reconstruction with 
thresholds that equal to the 75th percentile of each image intensity histogram (Supplementary Fig. S2). 
Finally, we quantified the reconstruction accuracy by measuring the cross-correlation between the re-
shifted reconstructions (𝑦 ) and the static ground truth image (𝑦). The final normalized term we used 
is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
max(𝑦 ⋆  𝑦)

(𝑦 ⋆  𝑦 ) ⋅ (𝑦 ⋆  𝑦)
 

Where ⋆ marks the cross-correlation operator. The mean accuracy we obtained was 0.89.  



 

Figure S2: Quantifying the reconstruction accuracy in drifting sample experiment. Left: The ground truth 
structure obtained by ThunderSTORM reconstruction in addition to application of drift correction and density 
filtration. Right: A single reconstructed frame of DBlink. Both images were binarized according to the 75th 
percentile of each image. Scale bar = 2 𝜇𝑚. 

In the experiment that contained camera rotation, due to the finite numerical limitation to exactly 
rotate and shift back each frame we quantified a different property of our reconstructions – the 
consistency. To do so, we have measured the cross-correlation between every two frames in the 
reconstructed video: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
max 𝑦 ⋆  𝑦

(𝑦 ⋆  𝑦 ) ⋅ 𝑦 ⋆  𝑦

 

 

Figure S3: Consistency quantification. We measured the normalized cross-correlation between every two frames 
in the reconstructed video. The diagonal values mark the autocorrelations of each frame with itself; hence, they 
contain ones.  



The result of this measurement is a matrix containing ones in the diagonal and normalized cross-
correlations elsewhere. We achieved a mean consistency term of 0.91, over 20 neighboring frames, 
indicating that our reconstructed structure does not change throughout the reconstructed video 
(Supplementary Fig. S3). 

Spatial resolution quantification 

We have quantified the spatial resolution according to Fourier ring correlation (FRC)6. In this method, 
we used DBlink reconstruction of static data along with super-resolution reconstruction of the same 
structure using ThunderSTORM. Then, we multiplied the Fourier transform of each subsample. Finally, 
we measure the mean value of the multiplication image over rings with an increasing size. When the 
mean pixel intensity of a ring drops below a certain threshold, we mark the radius of that ring as the 
maximal spatial frequency that occurs in our reconstruction (Supplementary Fig. S4). The resolution is 
estimated by the dividing one by the maximal spatial frequency we achieved. We used the previously 
suggested 2𝜎 threshold as our decision threshold. This threshold is computed by dividing 2 over the 
square root of half the number of pixels in each ring. 

Figure S4: Fourier ring correlation analysis for spatial resolution quantification. First, we take two random 
subsamples of the data; then, we multiply the Fourier transform of the subsamples. Finally, we calculate the FRC 
according to the mean intensity value of all the pixels in a ring increasing in size. The resolution is determined 
according one over the cut-off frequency we achieved in the meeting point between the FRC curve and the 
predetermined threshold. 

In addition to FRC, we have used another previously algorithm for resolution estimation, decorrelation 
analysis7. According to decorrelation analysis DBlink obtained spatial resolution of 37 nm 
(Supplementary Fig. S5). 



 

Figure S5: Decorrelation analysis. The output of decorrelation analysis algorithm published by A. Descloux et al7. 
The maximal spatial frequency in our reconstruction was the ~58th percentile of the maximal achievable 
frequency in our system. In our experiment this number matched spatial resolution of ~35 nm. 

 

Figure S6: Blind inpainting evaluation. Upper row: summation frame of localization maps over temporal windows 
with varying length. Bottom row: reconstruction of the summation frame by applying blind inpainting algorithm 
on it. All the reconstructions in the bottom row managed to filter noise and emphasize relevant features of the 
sample. However, summing 100 localization frames is not sufficient for the reconstruction of the entire sample; 
on the other hand, summing 500 frames generated motion blur that blind inpainting could not resolve (yellow 
and blue arrows). Empirically, the best compromise between motion blur and reconstruction accuracy was 
obtained when we summed 300 frames. Scale bar = 2.5 um. 
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