
 Supplementary text

 LACSS model architecture

 LACSS model contains three sub-modules, all of which are based on fully-convolutional neural network

 (FCN) designs.

 Backbone. The model takes an image as input, represented by a tensor of (H✕W✕C), where H and W

 are the size of the image and C is the number of color channels. The backbone module of the model

 extracts feature representations of the image at multiple resolutions. In this study, we employed a

 ResNet50 based backbone. The encoder of the backbone is a modified ResNet50 with added channel

 attention mechanism. The original ResNet50 employs a stem component that performs a downsampling

 operation, which we eliminated in our model. Instead, our stem is simply two layers of convolution filters

 with ReLU activation, resulting in a tensor of (H✕W✕64). We do this because the ResNets were originally

 designed and optimized for the ImageNet dataset. The typical objects in ImageNet are larger than a

 typical cell in our microscopy images. Other researchers resolve the scale mismatch by pre-scaling the

 input image. Our solution is slightly more memory efficient. In addition, we modified the ResNet50 by

 adding channel attention operations at the end of each major processing block. Channel attention is a

 light-weight mechanism that has been shown to increase model expressibility with little added

 computation cost.

 Our decoder is a standard feature pyramid network 1 (FPN). For a fixed input size, the ResNet encoder

 outputs representations at 2x, 4x, 8x and 16x down-sized dimensions, corresponding to output level 1-4.

 The FPN integrates these features via convolution and addition to produce new integrated outputs at the

 same four levels. We used the same channel number (256) for outputs at all levels. We call the output

 with the largest dimension (level 1) high-resolution feature, which will serve as the input to the

 segmentation network. We call the rest low-resolution features, which feed into the location proposal

 network (LPN) (see Fig. 1).

 LPN. The LPN is analogous to the regional proposal network 2 (RPN) of the popular MaskRCNN model for

 instance segmentation. Its task is to predict a set of LOIs from the input image. It follows a simple design

https://www.zotero.org/google-docs/?ZljRBM
https://www.zotero.org/google-docs/?3O33ow

 of a multi-layer convolutional network. For a input feature tensor with the dimension H/s ✕ W/s, the LPN

 outputs a tensor (S) of dimension (H/s, W/s, 1), representing scores of H ✕ W / s 2 potential location

 proposals. Here s is the downscaling factor of the features, that is either 4, 8, or 16. The elements of the

 score tensor corresponding to a 2D grid of locations in the original image separated by s pixels. To

 determine the exact positions of the proposal LOIs, the LPN also outputs a regression tensor (R) of the

 shape (H/s, W/s, 2), representing the offset from the grid locations. We used the sigmoid activation for the

 score tensor and used no activation for the regression output.

 While the LPN is very similar to RPN, there are two important differences. Firstly, Unlike RPN, which

 computes regression for the object bounding-box (location and size), the LPN does not predict the object

 size, because the information is unavailable during weakly-supervised training. Secondly, RPN typically

 takes features at all scales as inputs. This allows RPN to separate larger object detection from small

 object detection. The larger objects were localized using features of small-dimensions and smaller objects

 were from features of large-dimensions. In our system, however, we do not have information regarding

 object size. Therefore, LPN computes on only one scale of features (i.e, level 2, 3 or 4), pre-selected as a

 hyperparameter of the model. This indeed limits the ability of LACSS to detect objects of different sizes.

 However, we believe the impact is relatively minor, because unlike generic object detection tasks where

 object sizes were influenced by factors such as camera perspective, most cell segmentation problems

 deal with a narrower size distribution.

 Combining the score and regression output, we can produce a ranked list of location proposals. We

 perform a simple clustering of the proposal locations based on the non-max-suppression algorithm to

 remove redundant proposals that are very close together. After that, for each proposed location we (𝑖𝑖 , 𝑗𝑗)

 generate a location tensor (L) based on a simple location encoding:

 We have also experimented with more sophisticated location encoding schemes, including using learned

 encodings, and found them to be not helpful with regard to the model performances.

 An extra step was taken during training (but not during inference) to mix the predicted locations with the

 ground truth locations. The mix operation starts with the list of ground truth locations, and replacing any

 ground truth location with a proposal location if the two are sufficiently close (i.e., below a preset threshold

 distance). The resulting mixture locations were used to generate the location tensors instead of the

 predicted LOIs.

 Segmentation FCN. The segmentations for individual cells were computed from the level-one features.

 The feature tensor was first concatenated with the location tensors produced by the LPN, resulting in

 multiple copies of hybrid tensors, each will result in one segmentation prediction. The segmentation

 network is a simple multi-layer fully-convolutional network (FCN). To increase the computational efficiency

 and reduce memory consumption, the first few convolution layers ignore the location tensor part of the

 data, therefore the computational results can be shared for all location inputs. The location tensor is only

 used in computation at the last two convolutional layers. In addition, before feeding the data to the last

 two layers, we crop the input tensor to a smaller patch surrounding the respective LOIs, and batch all data

 together to increase the parallelism of the computation. This is simply because in almost all cases, cells

 are of limited sizes and there is no need to compute for every pixel of the image. The size of the crop is a

 preconfigured hyperparameter of the model. Because the input feature for the segmentation network is

 down-scaled from microscopy image by 2x, the last layer of the segmentation network uses a transposed

 convolution operation, which rescales the segmentation results back to original resolution. We used ReLU

 activation for all layers, except the last one, which used the sigmoid activation.

 Auxnet. Auxnet is an additional component that is only utilized during semi-supervised training, and not in

 fully-supervised training or in inference. It takes the microscopy image as the input and attempts to predict

 all cell boundaries. It is designed simply as a four-layer convolutional network with no down-sampling or

 pooling operations, so that the overall field-of-view (FOV) of the network is kept low.

 Fully-supervised end-to-end learning

 LACSS is capable of fully-supervised end-to-end learning using the standard stochastic gradient descent

 (SGD) optimization. The model loss function in this configuration has two components: the LPN loss and

 the segmentation loss.

 LPN loss. As described earlier, the LPN outputs two tensors representing the scores (S) and offset

 regressions (R) with regard to a 2D grid of locations in the original image. To construct the LPN loss

 function, we first compute two additional tensors representing the ground truth scores (S T) and ground

 truth offsets (R T), using the provided ground truth annotations. The S T was set to be 1 if the corresponding

 grid location is within 1.5 s distance away from a ground truth LOI; otherwise the S T was set to be 0. To

 construct R T, we first find for each grid location the nearest LOI among all ground truth LOIs. We then

 compute the offsets of each grid location to its nearest LOI, which becomes the R T .

 We then used focal cross-entropy loss 3 to measure the difference between S and S T , and we used Huber

 loss to measure the difference between R and R T . The LPN loss is then the sum of the two. In addition, to

 avoid noisy offset predictions at grid locations far away from any LOIs, we masked off all elements where

 S T was 0 when computing the Huber loss . More formally,

 and

 The bracket denotes average over all positions. We used the fixed values of , and α = 0 . 25 γ = 2 . 0

 for all models in this study. δ = 1 . 0

 Segmentation loss. We use cross-entropy loss between the predicted segmentations (G) and ground truth

 segmentations (G T) to measure segmentation loss:

https://www.zotero.org/google-docs/?PaSMxP

 Weakly-supervised end-to-end learning

 Under the semi-supervised configuration, the LACSS model loss has three components: the LPN loss,

 the weakly-supervised segmentation loss and the cell boundary loss.

 LPN loss. The computation of the LPN loss is identical to that of the fully-supervised configuration,

 because the ground truth LOIs were provided as part of the annotations.

 Weakly-supervised segmentation loss. Since we no longer have the instance level ground truth

 segmentation (G T), we have to construct a differentiable loss function using the incomplete annotations:

 Here we use a superscript on G [i] to denote the i-th instance prediction from the model and the bracket

 average is over both the locations and the instances.

 The first half of the loss function checks for the consistency between the single-cell segmentations with

 the image-level segmentation (C). The formulation,

− 𝐶 · 𝐺 { 𝑖] − (1 − 𝐶)(1 − 𝐺 [𝑖])

 was somewhat parallel to the more commonly used cross-entropy loss function, which would have been

 of the form

 . − 𝐶 log 𝐺 [𝑖] − (1 − 𝐶) log(1 − 𝐺 [𝑖])

 Both formulations are minimized at the same point of G=C. Additionally, they have the same gradient at

 this minimal point. However, by replacing the log term with a linear term, our formulation has a much

 shallower gradient at locations where G≠C. The intention is to allow the segmentation output to be

 different from C , by not incurring exceedingly high losses.

 The second half of the loss function checks the consistency between individual segmentation instances.

 The term is minimized when either or . In other words, this part − 𝐺 [𝑖]

 𝑘 ≠ 𝑖
∑ log(1 − 𝐺 [𝑘]) 𝐺 [𝑖] = 0 𝐺 [𝑘] |

 𝑘 ≠ 𝑖
≡ 0

 of the loss function aims to minimize the overlaps between individual instances. We have previously

 shown that a loss function of this type shown can be used to separate a cluster of cells into individual

 instances in a self-supervised manner. Here we employ this technique again for the end-to-end training of

 the segmentation model.

 Cell boundary loss. The LACSS model performs significantly better when we train it with an additional

 loss term that specifically focuses on accurate cell boundary calculation. Since cell boundaries are not

 available from the annotation, we predict them using an auxiliary network (auxnet) directly from the input

 image, yielding a prediction B P . At the same time, we also computed the cell boundary locations from

 LACSS output using a bit of heuristics,

 ,

 where ɸ () is the sobel edge filter and the hyperbolic tangent function (tanh) is applied to ensure

 the final results were bound between (0, 1), similar to B P . The cell boundary loss is the Huber

 loss between B H and B P :

 We train the auxnet by minimizing the cell boundary loss L cb .

 We train LACSS model by minimizing the sum of all losses:

 where are loss weights. in this study we used only constant weights (for all models. 𝑤
 𝑖

 𝑤
 𝑖

≡ 1)

 LACSS Experiments

 Cell Image Library. All input images were normalized by scaling the gray values to the range of [0, 1].

 Total of 89 images were used for training and the rest for validation. We used level-3 features as inputs

 for LPN. The maximum crop size for segmentation is 128 pixels, corresponding to a 64x64 patch size for

 the level-1 feature inputs of the segmentation FCN. We augment the training dataset by random flipping

 (both horizontal and vertical) and random resizing (10% both up and down).

 To train the LACSS models with full supervision, we used the original manual segmentation label and

 trained the model continuously for 10,000 steps. The validation metrics are frequently monitored (every

 250 steps) to closely monitor the overfitting issues. The model weights were randomly initialized and

 training was repeated five times to pick the best model.

 To train the LACSS models with weak-supervision, we converted the original single-cell segmentation

 label to image-level segmentations and LOIs (center of mass). Model weights were randomly initialized

 and we ran the training for 20,000 steps, recording validation metrics every 1,000 steps. Training was

 repeated five times. We did not include auxnet during training for this dataset.

 LIVECell. Dataset was downloaded from the publisher’s website. All image data were normalized by

 scaling the gray values to the range of [0, 1]. This dataset was imaged with a slightly lower magnification,

 therefore we used a lower segmentation crop size of 96 pixels. We were also concerned that Resnet50

 may not be well-performing on detecting very small cells. Therefore we resized images of the two

 smallest cell lines, BV2 and MCF7, by 2 foldes. In addition, a subset of cells from the SKOV3 line are

 exceptionally large and exceed the 96p crop size. Therefore we scaled all images of SKOV3 down by

 30%. We employed the same data augmentation as in Cell Image Library, i.e, using random flipping and

 random resizing. All train images were then either cropped or zero-padded to a fixed size (544 x 704)

 before input to the model.

 We initialized model weights randomly in both the supervised and the semi-supervised configurations. We

 did some preliminary comparisons study by initializing the ResNet component of the model with weights

 pretrained on ImageNet and found the results to be not significantly different. Therefore, all results

 reported in this study were based on random weights.

 For both supervised and semi-supervised training, we trained the models for 105000 training steps,

 checking AP 50 of the validation set every 3500 steps and picked the model based on the best AP 50 . We

 then perform the full benchmarking on the testing set with the picked model. One hyperparameter of the

 model is the feature scale used for LPN. We trained models on all three choices (level 2, 3 and 4) and

 compared the results. For semi-supervised training, we found that the best model was cell-line

 dependent. For example, SHSY5Y cells achieved a much better benchmark when using level-2 features

 and MCF7 cells were much better with level-3. Therefore we chose different model hyperparameters for

 different cell lines. On the other hand, for fully-supervised training, we found no significant differences

 when altering this parameter. Therefore we only reported results from the model using level-3 features for

 LPN.

 Lab-generated immuno-fluoresence dataset. Only semi-supervised models were generated for the lab

 dataset, since we did not fully segment the training images. The models used level-3 features for LPN

 and a segmentation crop size of 128 pixels. Unlike the previous cases, the training images intensity were

 rescaled normally, with a mean of 0 and variance of 1.0, because the fluorescence images had a much

 heavier tail in the intensity distributions. We again employed random flipping and random resizing for data

 augmentation.

 We used the transfer learning strategy for this dataset. The model was pre-trained on the LIVECell

 dataset with full-supervision. We then train the model on the fluorescence dataset for additional 30,000

 steps with semi-supervision. The pretraining allows for much faster convergence, and therefore less

 training steps were needed on the fluorescence data.

 References

 1. Lin, T.-Y. et al. Feature Pyramid Networks for Object Detection. (2017)

https://www.zotero.org/google-docs/?jJ8aNJ

 doi:10.48550/arXiv.1612.03144.

 2. Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards Real-Time Object Detection

 with Region Proposal Networks. (2016) doi:https://doi.org/10.48550/arXiv.1506.01497.

 3. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection.

 (2018) doi:10.48550/arXiv.1708.02002.

https://www.zotero.org/google-docs/?jJ8aNJ
https://www.zotero.org/google-docs/?jJ8aNJ
https://www.zotero.org/google-docs/?jJ8aNJ
https://www.zotero.org/google-docs/?jJ8aNJ
https://www.zotero.org/google-docs/?jJ8aNJ

 Figure S1 . Comparison of segmentation results with and without auxnet. (a) Without auxnet
 (top), the LACSS model has defects in tracing the cell boundary in pixel-level accuracy. Adding
 auxnet (bottom) in the training pipeline (bottom) significantly improved the accuracy of cell
 boundaries. (b) Diagram outlining training algorithm with and without auxnet.

 Figure S2. Schematic showing the streamlined annotation procedure using experimental data.

