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 LACSS model architecture 

 LACSS model contains three sub-modules, all of which are based on fully-convolutional neural network 

 (FCN) designs. 

 Backbone.  The model takes an image as input, represented  by a tensor of (H✕W✕C), where H and W 

 are the size of the image and C is the number of color channels. The backbone module of the model 

 extracts feature representations of the image at multiple resolutions. In this study, we employed a 

 ResNet50 based backbone. The encoder of the backbone is a modified ResNet50 with added channel 

 attention mechanism. The original ResNet50 employs a stem component that performs a downsampling 

 operation, which we eliminated in our model. Instead, our stem is simply two layers of convolution filters 

 with ReLU activation, resulting in a tensor of (H✕W✕64). We do this because the ResNets were originally 

 designed and optimized for the ImageNet dataset. The typical objects in ImageNet are larger than a 

 typical cell in our microscopy images. Other researchers resolve the scale mismatch by pre-scaling the 

 input image. Our solution is slightly more memory efficient. In addition, we modified the ResNet50 by 

 adding channel attention operations at the end of each major processing block. Channel attention is a 

 light-weight mechanism that has been shown to increase model expressibility with little added 

 computation cost. 

 Our decoder is a standard feature pyramid network  1  (FPN). For a fixed input size, the ResNet encoder 

 outputs representations at 2x, 4x, 8x and 16x down-sized dimensions, corresponding to output level 1-4. 

 The FPN integrates these features via convolution and addition to produce new integrated outputs at the 

 same four levels. We used the same channel number (256) for outputs at all levels. We call the output 

 with the largest dimension (level 1) high-resolution feature, which will serve as the input to the 

 segmentation network. We call the rest low-resolution features, which feed into the location proposal 

 network (LPN) (see Fig. 1). 

 LPN.  The LPN is analogous to the regional proposal  network  2  (RPN) of the popular MaskRCNN model for 

 instance segmentation. Its task is to predict a set of LOIs from the input image. It follows a simple design 
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 of a multi-layer convolutional network. For a input feature tensor with the dimension H/s ✕ W/s, the LPN 

 outputs a tensor (  S  ) of dimension (H/s, W/s, 1), representing  scores of H ✕ W / s  2  potential location 

 proposals. Here s is the downscaling factor of the features, that is either 4, 8, or 16. The elements of the 

 score tensor corresponding to a 2D grid of locations in the original image separated by s pixels. To 

 determine the exact positions of the proposal LOIs, the LPN also outputs a regression tensor (  R  ) of the 

 shape (H/s, W/s, 2), representing the offset from the grid locations. We used the sigmoid activation for the 

 score tensor and used no activation for the regression output. 

 While the LPN is very similar to RPN, there are two important differences. Firstly, Unlike RPN, which 

 computes regression for the object bounding-box (location and size), the LPN does not predict the object 

 size, because the information is unavailable during weakly-supervised training. Secondly, RPN typically 

 takes features at all scales as inputs. This allows RPN to separate larger object detection from small 

 object detection. The larger objects were localized using features of small-dimensions and smaller objects 

 were from features of large-dimensions. In our system, however, we do not have information regarding 

 object size. Therefore, LPN computes on only one scale of features (i.e, level 2, 3 or 4), pre-selected as a 

 hyperparameter of the model. This indeed limits the ability of LACSS to detect objects of different sizes. 

 However, we believe the impact is relatively minor, because unlike generic object detection tasks where 

 object sizes were influenced by factors such as camera perspective, most cell segmentation problems 

 deal with a narrower size distribution. 

 Combining the score and regression output, we can produce a ranked list of location proposals. We 

 perform a simple clustering of the proposal locations based on the non-max-suppression algorithm to 

 remove redundant proposals that are very close together. After that, for each proposed location  we ( 𝑖𝑖 ,     𝑗𝑗 )

 generate a location tensor (  L  ) based on a simple location  encoding: 

 We have also experimented with more sophisticated location encoding schemes, including using learned 

 encodings, and found them to be not helpful with regard to the model performances. 



 An extra step was taken during training (but not during inference) to mix the predicted locations with the 

 ground truth locations. The mix operation starts with the list of ground truth locations, and replacing any 

 ground truth location with a proposal location if the two are sufficiently close (i.e., below a preset threshold 

 distance). The resulting mixture locations were used to generate the location tensors instead of the 

 predicted LOIs. 

 Segmentation FCN.  The segmentations for individual  cells were computed from the level-one features. 

 The feature tensor was first concatenated with the location tensors produced by the LPN, resulting in 

 multiple copies of hybrid tensors, each will result in one segmentation prediction. The segmentation 

 network is a simple multi-layer fully-convolutional network (FCN). To increase the computational efficiency 

 and reduce memory consumption, the first few convolution layers ignore the location tensor part of the 

 data, therefore the computational results can be shared for all location inputs. The location tensor is only 

 used in computation at the last two convolutional layers. In addition, before feeding the data to the last 

 two layers, we crop the input tensor to a smaller patch surrounding the respective LOIs, and batch all data 

 together to increase the parallelism of the computation. This is simply because in almost all cases, cells 

 are of limited sizes and there is no need to compute for every pixel of the image. The size of the crop is a 

 preconfigured hyperparameter of the model. Because the input feature for the segmentation network is 

 down-scaled from microscopy image by 2x, the last layer of the segmentation network uses a transposed 

 convolution operation, which rescales the segmentation results back to original resolution. We used ReLU 

 activation for all layers, except the last one, which used the sigmoid activation. 

 Auxnet.  Auxnet is an additional component that is  only utilized during semi-supervised training, and not in 

 fully-supervised training or in inference. It takes the microscopy image as the input and attempts to predict 

 all cell boundaries. It is designed simply as a four-layer convolutional network with no down-sampling or 

 pooling operations, so that the overall field-of-view (FOV) of the network is kept low. 

 Fully-supervised end-to-end learning 



 LACSS is capable of fully-supervised end-to-end learning using the standard stochastic gradient descent 

 (SGD) optimization. The model loss function in this configuration has two components: the LPN loss and 

 the segmentation loss. 

 LPN loss.  As described earlier, the LPN outputs two  tensors representing the scores (  S  ) and offset 

 regressions (  R  ) with regard to a 2D grid of locations  in the original image. To construct the LPN loss 

 function, we first compute two additional tensors representing the ground truth scores (  S  T  ) and ground 

 truth offsets (  R  T  ), using the provided ground truth  annotations. The  S  T  was set to be 1 if the corresponding 

 grid location is within 1.5  s  distance away from a  ground truth LOI; otherwise the  S  T  was set to be 0.  To 

 construct  R  T,  we first find for each grid location  the nearest LOI among all ground truth LOIs. We then 

 compute the offsets of each grid location to its nearest LOI, which becomes the  R  T  . 

 We then used focal cross-entropy loss  3  to measure  the difference between  S  and  S  T  , and we used Huber 

 loss to measure the difference between  R  and  R  T  . The  LPN loss is then the sum of the two. In addition, to 

 avoid noisy offset predictions at grid locations far away from any LOIs, we masked off all elements where 

 S  T  was 0 when computing the Huber loss  .  More formally, 

 and 

 The bracket denotes average over all positions. We used the fixed values of  ,  and α =  0 .  25 γ =  2 .  0 

 for all models in this study. δ =  1 .  0 

 Segmentation loss.  We use cross-entropy loss between  the predicted segmentations (  G  ) and ground truth 

 segmentations (  G  T  ) to measure segmentation loss: 
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 Weakly-supervised end-to-end learning 

 Under the semi-supervised configuration, the LACSS model loss has three components: the LPN loss, 

 the weakly-supervised segmentation loss and the cell boundary loss. 

 LPN loss.  The computation of the LPN loss is identical  to that of the fully-supervised configuration, 

 because the ground truth LOIs were provided as part of the annotations. 

 Weakly-supervised segmentation loss.  Since we no longer  have the instance level ground truth 

 segmentation (  G  T  ), we have to construct a differentiable  loss function using the incomplete annotations: 

 Here we use a superscript on G  [i]  to denote the i-th  instance prediction from the model and the bracket 

 average is over both the locations and the instances. 

 The first half of the loss function checks for the consistency between the single-cell segmentations with 

 the image-level segmentation (  C  ). The formulation, 

−  𝐶 ·  𝐺 { 𝑖 ] − ( 1 −  𝐶 )( 1 −  𝐺 [ 𝑖 ])

 was somewhat parallel to the more commonly used cross-entropy loss function, which would have been 

 of the form 

 . −  𝐶 log  𝐺 [ 𝑖 ] − ( 1 −  𝐶 ) log( 1 −  𝐺 [ 𝑖 ])

 Both formulations are minimized at the same point of G=C. Additionally, they have the same gradient at 

 this minimal point. However, by replacing the log term with a linear term, our formulation has a much 



 shallower gradient at locations where G≠C. The intention is to allow the segmentation output to be 

 different from  C  , by not incurring exceedingly high  losses. 

 The second half of the loss function checks the consistency between individual segmentation instances. 

 The term  is minimized  when either  or  . In  other words, this part −  𝐺 [ 𝑖 ]

 𝑘 ≠ 𝑖 
∑ log( 1 −  𝐺 [ 𝑘 ])  𝐺 [ 𝑖 ] =  0  𝐺 [ 𝑘 ] | 

 𝑘 ≠ 𝑖 
≡  0 

 of the loss function aims to minimize the overlaps between individual instances. We have previously 

 shown that a loss function of this type shown can be used to separate a cluster of cells into individual 

 instances in a self-supervised manner. Here we employ this technique again for the end-to-end training of 

 the segmentation model. 

 Cell boundary loss.  The LACSS model performs significantly  better when we train it with an additional 

 loss term that specifically focuses on accurate cell boundary calculation. Since cell boundaries are not 

 available from the annotation, we predict them using an auxiliary network (auxnet) directly from the input 

 image, yielding a prediction  B  P  . At the same time,  we also computed the cell boundary locations from 

 LACSS output using a bit of heuristics, 

 , 

 where  ɸ  () is the sobel edge filter and the hyperbolic  tangent function (tanh) is applied to ensure 

 the final results were bound between (0, 1), similar to  B  P  . The cell boundary loss is the Huber 

 loss between  B  H  and  B  P  : 

 We train the auxnet by minimizing the cell boundary loss  L  cb  . 

 We train LACSS model by minimizing the sum of all losses: 



 where  are loss weights. in this study we used only constant weights (  for all models.  𝑤 
 𝑖 

 𝑤 
 𝑖 

≡  1 )

 LACSS Experiments 

 Cell Image Library.  All input images were normalized  by scaling the gray values to the range of [0, 1]. 

 Total of 89 images were used for training and the rest for validation. We used level-3 features as inputs 

 for LPN. The maximum crop size for segmentation is 128 pixels, corresponding to a 64x64 patch size for 

 the level-1 feature inputs of the segmentation FCN. We augment the training dataset by random flipping 

 (both horizontal and vertical) and random resizing (10% both up and down). 

 To train the LACSS models with full supervision, we used the original manual segmentation label and 

 trained the model continuously for 10,000 steps. The validation metrics are frequently monitored (every 

 250 steps) to closely monitor the overfitting issues. The model weights were randomly initialized and 

 training was repeated five times to pick the best model. 

 To train the LACSS models with weak-supervision, we converted the original single-cell segmentation 

 label to image-level segmentations and LOIs (center of mass). Model weights were randomly initialized 

 and we ran the training for 20,000 steps, recording validation metrics every 1,000 steps. Training was 

 repeated five times. We did not include auxnet during training for this dataset. 

 LIVECell.  Dataset was downloaded from the publisher’s  website. All image data were normalized by 

 scaling the gray values to the range of [0, 1]. This dataset was imaged with a slightly lower magnification, 

 therefore we used a lower segmentation crop size of 96 pixels. We were also concerned that Resnet50 

 may not be well-performing on detecting very small cells. Therefore we resized images of the two 

 smallest cell lines, BV2 and MCF7, by 2 foldes. In addition, a subset of cells from the SKOV3 line are 

 exceptionally large and exceed the 96p crop size. Therefore we scaled all images of SKOV3 down by 

 30%. We employed the same data augmentation as in Cell Image Library, i.e, using random flipping and 

 random resizing. All train images were then either cropped or zero-padded to a fixed size (544 x 704) 

 before input to the model. 



 We initialized model weights randomly in both the supervised and the semi-supervised configurations. We 

 did some preliminary comparisons study by initializing the ResNet component of the model with weights 

 pretrained on ImageNet and found the results to be not significantly different. Therefore, all results 

 reported in this study were based on random weights. 

 For both supervised and semi-supervised training, we trained the models for 105000 training steps, 

 checking AP  50  of the validation set every 3500 steps  and picked the model based on the best AP  50  . We 

 then perform the full benchmarking on the testing set with the picked model. One hyperparameter of the 

 model is the feature scale used for LPN. We trained models on all three choices (level 2, 3 and 4) and 

 compared the results. For semi-supervised training, we found that the best model was cell-line 

 dependent. For example, SHSY5Y cells achieved a much better benchmark when using level-2 features 

 and MCF7 cells were much better with level-3. Therefore we chose different model hyperparameters for 

 different cell lines. On the other hand, for fully-supervised training, we found no significant differences 

 when altering this parameter. Therefore we only reported results from the model using level-3 features for 

 LPN. 

 Lab-generated immuno-fluoresence dataset.  Only semi-supervised  models were generated for the lab 

 dataset, since we did not fully segment the training images. The models used level-3 features for LPN 

 and a segmentation crop size of 128 pixels. Unlike the previous cases, the training images intensity were 

 rescaled normally, with a mean of 0 and variance of 1.0, because the fluorescence images had a much 

 heavier tail in the intensity distributions. We again employed random flipping and random resizing for data 

 augmentation. 

 We used the transfer learning strategy for this dataset. The model was pre-trained on the LIVECell 

 dataset with full-supervision. We then train the model on the fluorescence dataset for additional 30,000 

 steps with semi-supervision. The pretraining allows for much faster convergence, and therefore less 

 training steps were needed on the fluorescence data. 
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 Figure S1  . Comparison of segmentation results with and without auxnet.  (a)  Without auxnet 
 (top), the LACSS model has defects in tracing the cell boundary in pixel-level accuracy. Adding 
 auxnet (bottom) in the training pipeline (bottom) significantly improved the accuracy of cell 
 boundaries.  (b)  Diagram outlining training algorithm with and without auxnet. 



 Figure S2.  Schematic showing the streamlined annotation procedure using experimental data. 


