Control of neuronal terminal differentiation through cell context-dependent CFI-1/ARID3 functions

Yinan Li¹,², Jayson J. Smith¹,⁴, Filipe Marques¹,⁴, Anthony Osuma¹,², Hsin-Chiao Huang³, Paschalis Kratsios¹,²,³,⁴

¹ Department of Neurobiology, University of Chicago, Chicago, IL, USA
² Committee on Neurobiology, University of Chicago, Chicago, IL, USA
³ Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL, USA
⁴ University of Chicago Neuroscience Institute, Chicago, IL, USA

Correspondence: pkratsios@uchicago.edu
SUMMARY

ARID3 transcription factors are expressed in the nervous system, but their functions and mechanisms of action are largely unknown. Here, we generated in vivo a genome-wide binding map for CFI-1, the sole C. elegans ARID3 ortholog. We identified 6,396 protein-coding genes as putative direct targets of CFI-1, most of which (77%) are expressed in post-mitotic neurons and encode terminal differentiation markers (e.g., neurotransmitter receptors, ion channels, neuropeptides). To gain mechanistic insights, we focused on two neuron types. In sensory neurons (IL2 class), CFI-1 exerts a dual role: it acts directly to activate, and indirectly to repress, distinct terminal differentiation genes. In motor neurons, however, CFI-1 acts directly as a repressor, continuously antagonizing three transcriptional activators (UNC-3/Ebf, LIN-39/Hox4-5, MAB-5/Hox6-8). By focusing on a glutamate receptor gene (glr-4/GRIK1), we found CFI-1 exerts its repressive activity through proximal binding to the glr-4 locus. Further, the core DNA binding domain of CFI-1 is partially required for glr-4 repression in motor neurons. Altogether, this study uncovers cell context-dependent mechanisms through which a single ARID3 protein controls the terminal differentiation of distinct neuron types.
INTRODUCTION

Members of the ARID family of proteins are found in plants, yeast, fungi, and invertebrate and vertebrate animals (Kortschak et al., 2000, Patsialou et al., 2005, Wilsker et al., 2002, Wilsker et al., 2005). ARID family proteins are expressed either ubiquitously or in a tissue-specific fashion and control various biological processes, such as cell proliferation, differentiation, and embryonic patterning (Wilsker et al., 2002, Wilsker et al., 2005). Additionally, mutations in ARID family proteins are associated with cancer and several neurodevelopmental disorders (Shang et al., 2015, Bramswig et al., 2017, Kosho et al., 2014, Miyake et al., 2014, Smith et al., 2016, Lin et al., 2014).

Humans possess fifteen ARID family proteins, divided into seven subfamilies (ARID1-5, JARID1-2) based on the degree of sequence similarity (Wilsker et al., 2005). The AT-Rich Interaction Domain (ARID), after which the family is named, was first identified in ARID3 proteins. These bind DNA in a sequence-specific manner, prefer AT-rich sequences, and are known to function as transcription factors (Wilsker et al., 2005). The ARID5 subfamily also encodes transcription factors (Patsialou et al., 2005, Wilsker et al., 2002), but the remaining five subfamilies (ARID1-2, ARID4, JARID1-2) encode proteins that bind DNA in a non-sequence-specific manner (Patsialou et al., 2005). For example, ARID1A, ARID1B, and ARID2 constitute subunits of the SWI/SNF (BAF/PBAF) chromatin-remodeling complex that can move and/or eject nucleosomes. Although the precise functions of all ARID proteins are not known, accumulating evidence suggests they can act either as positive or negative regulators of gene transcription, or as components of chromatin-remodeling complexes (Kortschak et al., 2000, Patsialou et al., 2005, Wilsker et al., 2002, Wilsker et al., 2005).

Mouse Bright (Arid3a) and Drosophila dead ringer (retained) are the founding members of the ARID family, and belong to the ARID3 subfamily, which is specific to metazoans. Single orthologs exist in C. elegans (CFI-1) and Drosophila (dead ringer), whereas mammals contain three orthologs (ARID3A-C) (Fig. 1A) (Kortschak et al., 2000, Wilsker et al., 2005, Gregory et al., 1996, Shaham and Bargmann, 2002). A defining feature of ARID3 proteins is the extended ARID (eARID) domain, a ~40 residue-long region next to the core ARID domain (Wilsker et al., 2002, Wilsker et al., 2005) (Kortschak et al., 2000). Structural studies showed both ARID and eARID domains contact DNA (Iwahara and Clubb, 1999, Iwahara et al., 2002).

ARID3 proteins have several early developmental roles, as identified by genetic studies. Mice lacking Bright/Arid3a display early embryonic lethality due to defects in hematopoiesis (Webb et al., 2011). Bright/Arid3a is best studied in B cell lineages, where it acts as an activator
and increases immunoglobulin transcription (Herrscher et al., 1995, Ratliff et al., 2014, Webb et al., 2011, Webb et al., 1998). However, Bright/Arid3a is also critical for embryonic stem cell differentiation (An et al., 2010, Popowski et al., 2014, Rhee et al., 2014). In this context, it can act either as an activator or repressor of gene expression (Rhee et al., 2014). Similar to mice lacking Bright/Arid3a, null mutants for dead ringer in Drosophila display early lethality (Shandala et al., 1999, Shandala et al., 2002). Dead ringer is essential for anterior-posterior patterning and muscle development in the fly embryo, and can act either as an activator or repressor of gene transcription (Hader et al., 2000, Shandala et al., 1999, Valentine et al., 1998). Lastly, Arid3a and Arid3b have been associated with tumorigenesis by acting as direct inducers of cell cycle regulators (Lestari et al., 2012, Saadat et al., 2021).

Genetic studies in Drosophila and C. elegans have also identified late developmental roles of ARID3 proteins in the nervous system. In Drosophila larvae, dead ringer is expressed in distinct neuron types and controls axonal pathfinding (Ditch et al., 2005, Shandala et al., 2003, Sibbons, 2004), though its downstream targets in neurons - and thus, whether dead ringer behaves as an activator or repressor – remain unknown. In C. elegans, cfi-1 is selectively expressed in head muscle and several neuron types: the IL2 sensory neurons, the AVD, PVC, and LUA interneurons, and various classes of motor neurons (Shaham and Bargmann, 2002, Li et al., 2020). Because C. elegans animals lacking cfi-1 are viable (Shaham and Bargmann, 2002), these mutant strains provided a glance into the potential functions of ARID3 proteins during post-embryonic life. Candidate approaches that examined a handful of effector genes encoding neurotransmitter (NT) biosynthesis proteins and receptors suggested that CFI-1 acts as an activator of gene expression both in sensory neurons (IL2) and interneurons (AVD, PVC) (Shaham and Bargmann, 2002, Zhang et al., 2014, Ahn et al., 2022). However, in ventral nerve cord motor neurons, CFI-1 is thought to act as a repressor of the glutamate receptor gene glr-4/GRIK1 (Kerk et al., 2017). The molecular mechanisms underlying the differential activities of CFI-1 (activator versus repressor) in these distinct neuron types remain unknown. Elucidating such mechanisms in C. elegans may provide clues as to how CFI-1 orthologs in other species control cell differentiation. Lastly, unbiased approaches to identify the in vivo targets of CFI-1 (and any other ARID3 protein) in the nervous system are currently lacking, preventing a comprehensive understanding of the neuronal functions controlled by ARID3 transcription factors.

Here, we performed chromatin immunoprecipitation for CFI-1 followed by sequencing (ChIP-Seq). By generating an in vivo binding map on the C. elegans genome, we identified
6,396 protein-coding genes as putative direct targets of CFI-1, the majority of which (77%) are expressed in post-mitotic neurons. Gene ontology analysis suggests CFI-1 is primarily involved in the process of neuronal terminal differentiation. To gain mechanistic insight into how CFI-1 controls the terminal differentiation of different neuron types, we focused on head sensory neurons (IL2 class) and nerve cord motor neurons (DA, DB, VA, and VB classes). In sensory IL2 neurons, CFI-1 exerts a dual role: it acts directly to activate and indirectly to repress distinct terminal differentiation genes (e.g., NT receptors, ion channels). In nerve cord motor neurons, however, CFI-1 acts directly to repress expression of the glutamate receptor gene glr-4/GRIK1. CRISPR/Cas9-mediated mutagenesis of endogenous CFI-1 binding sites suggests proximal binding to the glr-4 locus is necessary for repression, advancing our understanding of ARID3-mediated gene repression. Importantly, the core DNA binding domain of CFI-1 is partially required for glr-4 repression in motor neurons. Altogether, this study offers mechanistic insights into cell context-dependent functions of CFI-1 (ARID3), a critical regulator of the terminal differentiation program of distinct neuron types.
RESULTS

A map of CFI-1/ARID3 binding on the C. elegans genome

To identify CFI-1 binding events, we first generated an endogenous reporter strain through in-frame insertion of the flag epitope sequence (3xflag) immediately after the cfi-1 start codon (Fig. 1B). Immunostaining against FLAG on adult 3xflag::cfi-1 animals showed nuclear expression in head muscle cells, as well as in neurons of the head, ventral nerve cord, and tail regions (Fig. 1C-E), indicating this reporter allele faithfully recapitulates the known expression pattern of cfi-1 (Kerk et al., 2017, Shaham and Bargmann, 2002). Unlike cfi-1 null animals (Shaham and Bargmann, 2002), homozygous 3xflag::cfi-1 animals do not display any defects in posterior touch response (Supplementary Fig. 1). This suggests that insertion of the 3xflag sequence does not alter cfi-1 gene function. We therefore conducted ChIP-Seq using a FLAG antibody on homozygous 3xflag::cfi-1 animals at the third larval stage (L3), as all cfi-1-expressing cells are generated by this stage.

Our ChIP-Seq experiment revealed strong enrichment of CFI-1 binding in the C. elegans genome, identifying 14,806 unique binding peaks (q-value cutoff: 0.05) (Fig. 1F-G). The CFI-1 peaks are predominantly located between 0 and 3kb upstream of transcription start sites (Fig. 1H), suggesting CFI-1 acts at promoter and enhancer regions to regulate gene expression. Altogether, ChIP-Seq for CFI-1 generated the first in vivo binding map of an endogenously tagged ARID3 protein, offering an opportunity to comprehensively identify the biological processes controlled by CFI-1.

The majority of CFI-1/ARID3 target genes encode neuronal terminal differentiation markers

Subsequent bioinformatic analysis of the 14,806 CFI-1 binding peaks revealed 6,396 protein-coding genes as putative CFI-1 targets (see Materials and Methods). Because the majority of cfi-1-expressing cells are neurons (Fig. 1C-E) (Kerk et al., 2017, Shaham and Bargmann, 2002), we reasoned that a significant portion of the 6,396 protein-coding genes may be expressed in the nervous system. To test this, we used available single-cell expression profiles (CeNGEN project: www.cengen.org) for all known cfi-1-expressing neurons (IL2, URA, AVD, PVC, LUA, DA, DB, VA, VB, DD, VD), and indeed found that 77.1% of the global CFI-1 targets (4,931 out of 6,396) are expressed in these neurons (Fig. 1J, Supplementary file 1). To gain insights into the biological functions of CFI-1, we conducted gene ontology (GO) analysis with PANTHER (Mi et al., 2013). Strikingly, the majority of CFI-1 target genes (~70%) encodes
proteins essential for neuronal terminal differentiation (e.g., NT receptors, transporters, ion channels, transmembrane receptors, cell adhesion molecules) (Fig. 1I-K, Supplementary file 2). The second largest category (23% of CFI-1 targets) contains transcription factors, chromatin factors, as well as proteins involved in DNA/RNA metabolism (Fig. 1I-K), suggesting CFI-1 can affect gene expression indirectly through these factors. Altogether, the downstream targets identified via our unbiased approach suggest that CFI-1 plays a prominent role in neuronal terminal differentiation.

CFI-1/ARID3 acts directly to activate terminal differentiation genes in IL2 sensory neurons

Although cfi-1 is expressed in several neuron types, a handful of CFI-1 target genes have only been identified in head sensory neurons of the IL2 class (Fig. 2A-B) (Shaham and Bargmann, 2002, Zhang et al., 2014). In these neurons, genetic experiments suggested CFI-1 influences gene expression both positively and negatively (Shaham and Bargmann, 2002, Zhang et al., 2014). CFI-1 activates various terminal differentiation genes (e.g., cho-1/ChT, unc-17/VACHT, gcy-19 [receptor-type guanylate cyclase], klp-6 [kinesin-like protein], unc-5 [netrin receptor]), and represses expression of two ion channel-encoding genes (pkd-2/Polycystin-2 like 1 [PKD2L1] and lov-1/Polycystin-1 like 3 [PKD1L3]) associated with polycystic kidney disease (Zheng et al., 2018b). It remained unknown, however, whether CFI-1 acts directly or indirectly to control these genes. Leveraging our ChIP-Seq dataset, we found that CFI-1 binds directly to all known terminal differentiation genes (e.g., cho-1/ChT, unc-17/VACHT) that require cfi-1 gene activity for their activation in IL2 neurons (Fig. 2C). However, we did not detect any binding in the cis-regulatory regions of genes repressed by cfi-1 (pkd-2, lov-1) (Fig. 2D). Altogether, biochemical evidence (ChIP-Seq) combined with genetic studies (Shaham and Bargmann, 2002, Zhang et al., 2014) strongly suggest that in IL2 sensory neurons, CFI-1 exerts a dual role: it directly activates a set of terminal differentiation genes, but indirectly (via intermediary factors) represses the expression of ion channel-encoding genes (pkd-2/Polycystin-2 and lov-1/Polycystin-1 like) (Fig. 2B).

We next undertook an unbiased approach to investigate whether genes expressed in mature IL2 neurons are also bound by CFI-1. To this end, we used available single-cell expression profiles (CeNGEN project: www.cengen.org) and selected the most highly expressed genes (top 1,000) in IL2 neurons. Strikingly, most of these genes (~70%) are bound by CFI-1 (Fig. 2E). Among them, GO analysis revealed an overrepresentation of terminal differentiation...
genes (Fig. 2E, Supplementary file 3). This analysis provides biochemical evidence to support the idea that CFI-1 directly activates scores of terminal differentiation genes in IL2 neurons.

CFI-1/ARID3 acts directly to repress endogenous glr-4/GRIK1 expression in cholinergic motor neurons

Our findings in IL2 sensory neurons suggest CFI-1 is a direct activator and indirect repressor of gene expression (Fig. 2B-D). Next, we interrogated the function of CFI-1 in cholinergic nerve cord motor neurons that control locomotion (Fig. 3A). Using an endogenous reporter allele (Li et al., 2020), we found that cfi-1 is selectively expressed in 29 cholinergic motor neurons (of the DA, DB, VA, VB classes) located in the mid-body region (Fig. 3A, Supplementary Fig. 2). Next, we asked whether in these neurons CFI-1 functions as an activator of gene expression. To this end, we examined for cfi-1 dependency five available motor neuron-specific terminal differentiation markers (twk-40, twk-43 [TWiK potassium channels]; ncs-2 [neuronal calcium sensor]; npr-29 [neuropeptide]; dbl-1 [Bmp-like]) (Li and Kratsios, 2021). These showed no difference in expression in motor neurons of cfi-1(-) mutants (Supplementary Fig. 3).

Consistently, a previous study also found that three other terminal differentiation markers (acr-5 [acetylcholine receptor], del-1 [SCNN1 sodium channel], inx-12 [gap junction protein]) are not affected in motor neurons of cfi-1(-) mutants (Kerk et al., 2017). Interestingly, our ChIP-seq data indicate that these eight genes are all bound by CFI-1 (Supplementary Fig. 3), raising the possibility of CFI-1 operating redundantly with other transcription factors to activate expression of terminal differentiation genes in motor neurons.

The terminal differentiation gene glr-4 (ortholog of human GRIK1 [glutamate ionotropic receptor kainite type subunit 1]) is the only known CFI-1 target in motor neurons, where it is negatively regulated by CFI-1 (Kerk et al., 2017), providing an opportunity to obtain mechanistic insights into how ARID3 proteins mediate gene repression in the nervous system. We therefore carried out an in-depth investigation focused on glr-4, as detailed below.

Because previous studies employed transgenic reporters (Brockie et al., 2001, Kerk et al., 2017), the endogenous expression pattern of glr-4 in C. elegans neurons remained unclear. We therefore generated an endogenous glr-4 reporter allele by inserting the 2xNLS::mScarlet::SL2 cassette immediately after the start codon (see Materials and Methods) and established the glr-4 expression pattern in motor neurons with single-cell resolution (Fig. 3B). Consistent with previous studies (Brockie et al., 2001, Kerk et al., 2017), we observed high levels of glr-4 (mScarlet) expression in head neurons, as well as in SAB motor neurons that
innervate head muscle (Fig. 3A, C). This endogenous reporter also revealed new sites of expression. In the nerve cord of WT animals, we detected low levels of glr-4 (mScarlet) expression in 14 of the 29 cfi-1-expressing motor neurons, as well as in AS motor neurons, which do not express cfi-1 (Fig. 3A-B,D, Supplementary Fig. 2). Further, the observed levels of glr-4 expression in head (SAB) and ventral cord motor neurons were independently confirmed by available scRNA-Seq data (CeNGEN project: www.cengen.org) (Fig. 3E).

Next, we tested whether endogenous glr-4 expression in motor neurons depends on cfi-1 gene activity. Indeed, expression of the glr-4 (mScarlet) reporter allele is increased in motor neurons of cfi-1 loss-of-function mutants, as we observed a higher number of cells expressing glr-4, and at higher levels, compared to WT motor neurons (Fig. 3D). No effects on glr-4 were observed in SAB neurons, as they do not express cfi-1 (arrowheads in Fig. 3C). Moreover, we performed single-molecule mRNA fluorescent in situ hybridization (sm mRNA FISH) in WT and cfi-1 mutant animals. Loss of cfi-1 led to increased levels of glr-4 mRNA in nerve cord motor neurons (Fig. 3F). Lastly, these results were corroborated by RT-PCR in WT and cfi-1 mutant animals (Fig. 3G). Altogether, we conclude CFI-1 limits the endogenous expression of glr-4/GRIK1 in nerve cord motor neurons. In WT animals, we can either detect low or no glr-4 expression in motor neurons, whereas loss of cfi-1 results in robust glr-4 expression in these cells (Fig. 3H). Because ChIP-Seq revealed extensive CFI-1 binding immediately upstream of the glr-4 locus (Fig. 3B), we propose CFI-1 acts as a direct repressor of glr-4/GRIK1.

cfi-1/ARID3 is required to maintain glr-4 repression in nerve cord motor neurons

The cfi-1-expressing motor neurons (DA, DB, VA, VB) are generated in two waves (DA/DB are born during embryogenesis; VA and VB at larval stage 1 [L1]) (Fig. 4A-B). Although all cfi-1-expressing motor neurons have been generated by L2, we found no glr-4 (mScarlet) expression in WT animals at this stage. However, we observed a progressive increase in the number of WT motor neurons expressing low levels of glr-4 (mScarlet) at subsequent stages (L3, L4, Day 2 [D2] adult), indicating a correlation between glr-4 expression and motor neuron maturation (Fig. 4A).

To test when cfi-1 gene activity is required for repression, we monitored endogenous glr-4 (mScarlet) expression in motor neurons of WT and cfi-1 mutant animals at larval (L2, L3, L4) and adult (day 2) stages. Compared to controls, we identified a statistically significant increase in the number of glr-4 (mScarlet)-expressing motor neurons at L3, L4 and adult (day 2) stages (Fig. 4A). Next, we used a conditional cfi-1 allele (mNG::3xFLAG::AID::cfi-1) that enables
temporally controlled CFI-1 protein depletion upon administration of the plant hormone auxin (Li et al., 2020, Zhang et al., 2015). Depletion of CFI-1 during the first 2 days of adulthood led to a significant increase in the number of motor neurons expressing glr-4 (mScarlet) (Fig. 4B-C), suggesting cfi-1 is continuously required to maintain glr-4/GRIK1 repression in the adult (see Discussion).

cfi-1/ARID3 is sufficient to repress glr-4 expression

To test whether cfi-1 is sufficient to repress glr-4, we ectopically expressed cfi-1 in the SAB neurons. Using an SAB-specific-promoter (unc-4) to drive cfi-1, we observed a significant decrease in the number of SAB neurons expressing a glr-4 reporter gene (Fig. 4D-E), indicating cfi-1 is not only necessary (Fig. 3), but also sufficient to repress glr-4 expression.

CFI-1 binding sites proximal to glr-4 are necessary for repression in motor neurons

CFI-1 binds to both proximal and distal cis-regulatory elements upstream of glr-4 (Fig. 5A). To precisely identify the elements through which CFI-1 mediates repression, we conducted cis-regulatory analysis in the context of transgenic reporter animals. When tagRFP was driven by distal regulatory elements (2.23kb or 938bp), we did not observe differences in the number of tagRFP expressing motor neurons between WT and cfi-1 mutants (Fig. 5B). However, we found an increase in the number of tagRFP-expressing motor neurons in cfi-1 mutants when tagRFP was driven by a 3.7kb element (Fig. 5B), suggesting this element contains sequences necessary for CFI-1 repression. A translational reporter (GLR-4::GFP) driven by a 4.9kb element yielded similar results (Fig. 5B). Interestingly, a shorter tagRFP reporter (3.14kb) that specifically lacks the most proximal CFI-1 binding peak did not show an increase in the number of tagRFP expressing motor neurons in cfi-1 mutants (Fig. 5B), suggesting proximal CFI-1 binding to the glr-4 locus is needed for repression.

We next sought to determine whether proximal CFI-1 binding sites are required for glr-4 repression. The CFI-1 site (NNATHDNN) has been previously determined in vitro through protein binding microarrays (Fig. 5A) (Weirauch et al., 2014). Within the most proximal region of glr-4, we identified eleven predicted CFI-1 binding sites (Fig. 5A). To test their functionality, we introduced nucleotide substitutions to all eleven sites in the context of the endogenous glr-4 (mScarlet) reporter through CRISPR/Cas9 genome editing (Fig. 5C). This manipulation nearly phenocopied the cfi-1 null mutant phenotype, as it led to a dramatic increase in the number of
animals, the most proximal COE motif is necessary for basal remodeling of the effect seen in studies of COE binding sites. We showed that nucleotide substitutions at distal COE binding sites can significantly reduce their function. To functionally test this notion, we focused on UNC-3 (Collier/Ebf) and two Hox proteins (LIN-39, MAB-5) binding sites located upstream of glr-4 (mScarlet) expression in motor neurons. Indeed, we found that expression of the endogenous glr-4 (mScarlet) reporter is reduced in unc-3 loss-of-function mutant animals (Fig. 6B). Importantly, the decrease of glr-4 expression was significantly exacerbated in unc-3; lin-39; mab-5 triple mutants compared to unc-3 single mutants, indicating that these three factors cooperate to activate glr-4 in cholinergic motor neurons (Fig. 6B). Interestingly, the Hox requirement is only revealed in the absence of unc-3 gene activity, as glr-4 expression appears normal in lin-39; mab-5 double mutants.

The most proximal UNC-3 binding site is necessary for glr-4 expression in motor neurons

Interrogation of available ChIP-Seq data for UNC-3, LIN-39 and MAB-5 showed overlapping binding upstream of glr-4 (Fig. 6C), suggesting a direct mode of activation by these factors. To functionally test this notion, we focused on UNC-3 because its binding site (termed COE motif) is well-defined in the C. elegans genome (Kratsios et al., 2012, Li et al., 2020). Through a bioinformatic search (Materials and Methods), we found two COE motifs, one proximal and one distal to the glr-4 locus (Fig. 6C). Using CRISPR/Cas9 genome editing, we introduced nucleotide substitutions to the proximal COE motif (COE1) in the context of the endogenous glr-4 (mScarlet) reporter (Fig. 6C). Animals carrying this glr-4 (mScarlet) COE1 MUT reporter allele showed a significant reduction in the number of mScarlet-expressing motor neurons, reminiscent of the effect seen in unc-3 (-) null mutants (Fig. 6D). These data indicate that, in WT animals, the most proximal COE motif is necessary for basal glr-4 expression in motor neurons.
CFI-1 antagonizes the ability of UNC-3 to activate glr-4 expression in motor neurons

Because UNC-3 activates basal glr-4 expression in motor neurons of WT animals, we wondered whether it also controls the increased levels of glr-4 expression observed in cfi-1 mutants. We found this to be the case through double mutant analysis. The number of mScarlet-expressing cells in cfi-1; unc-3 mutants is dramatically decreased compared to cfi-1 single mutants (Fig. 6E). These data indicate that CFI-1 antagonizes the ability of UNC-3 to activate glr-4 (mScarlet) expression in motor neurons.

Because the proximal UNC-3 binding site (COE motif) is required to activate glr-4 expression in WT motor neurons (Fig. 6D), this site may also be necessary for the increased expression of glr-4 in motor neurons of cfi-1 mutants. Indeed, we observed a significant reduction in the number of mScarlet-expressing cells in cfi-1 mutants carrying the glr-4 (mScarlet) COE1 MUT reporters compared to the intact version of the glr-4 (mScarlet) reporter (Fig. 6E). Lastly, we hypothesized that the extensive binding of CFI-1 (four binding peaks identified by ChIP-seq) immediately upstream of the glr-4 locus may limit the ability of UNC-3 to access the locus, resulting in basal levels of glr-4 expression in WT motor neurons. To test this, we performed ChIP-Seq for UNC-3 in WT and cfi-1 null mutant animals (at the L3 stage). We found that UNC-3 binding on the glr-4 locus remains largely unaltered upon cfi-1 loss (Fig. 6C), suggesting UNC-3 can access the locus independently of the presence of CFI-1.

The core ARID domain of CFI-1 is partially required for glr-4 repression

To gain molecular insights into ARID3-mediated gene repression, we deleted portions of the CFI-1 DNA-binding domain and then conducted rescue assays to assess glr-4 expression. ARID3 proteins are defined by the eARID domain, a ~40 residue-long highly conserved domain immediately following the core ARID domain (Fig. 7A). Because structural studies on Dead ringer showed that eARID contacts DNA (Iwahara and Clubb, 1999, Iwahara et al., 2002, Patsialou et al., 2005), we tested whether the CFI-1 eARID domain is required for glr-4 repression. Transgenic expression of either WT CFI-1 or CFI-1 lacking the eARID domain (ΔeARID) in motor neurons of cfi-1 null mutant animals led to complete rescue. That is, glr-4 expression was no longer observed in motor neurons when either WT or ΔeARID CFI-1 were provided (p = 0.37) (Fig. 7B), indicating eARID is dispensable for CFI-1-mediated gene repression. Next, we mutated the helix-turn-helix (HTH) domain within the core ARID region, as the HTH domain of Dead ringer contacts the major groove of DNA (Iwahara and Clubb, 1999, Iwahara et al., 2002, Patsialou et al., 2005). Again, transgenic expression of CFI-1 lacking the
HTH domain (ΔHTH) in motor neurons of cfi-1 mutants led to significant repression of glr-4 expression - the effect is comparable to WT CFI-1 (p = 0.05) (Fig. 7B). However, transgenic expression of CFI-1 lacking the entire core ARID (ΔARID) domain (including the HTH domain) in motor neurons of cfi-1 mutants led to partial rescue, i.e., ΔARID CFI-1 did not completely repress glr-4 expression compared to WT CFI-1 (p = 0.0011) (Fig. 7B). Altogether, our analysis suggests that the eARID and HTH domains of CFI-1 are dispensable, but the core ARID domain is partially required for glr-4 repression in motor neurons.
DISCUSSION

ARID3 proteins are the founding members of the ARID family, but their functions in the nervous system are poorly understood. Here, we performed ChIP-Seq for CFI-1, the sole ARID3 ortholog in C. elegans, and established its genome-wide binding map in vivo. We found that most CFI-1 target genes (77%) are expressed in post-mitotic neurons and encode proteins critical for terminal differentiation and neuronal function (e.g., neurotransmitter receptors, ion channels, neuropeptides). Further, our study offers mechanistic insights into how a single ARID3 protein controls the terminal differentiation program of distinct neuron types, uncovering cell context-depending CFI-1 functions.

ARID3 proteins bind to proximal and distal cis-regulatory regions

In vitro assays like PBM (protein binding microarrays) and SELEX (systematic evolution of ligands by exponential enrichment) have defined the binding site of CFI-1, Dead ringer and Arid3a (Mathelier et al., 2014, Nitta et al., 2015, Weirauch et al., 2014). To assess their mechanism of action, however, unbiased assays to monitor genome-wide binding of ARID3 proteins remain necessary. ChIP-Seq in C. elegans for endogenously tagged CFI-1 revealed binding events predominantly located between 0 and 3kb upstream of transcription start sites (Fig. 1H). Because the size of intergenic regions for most C. elegans genes is less than 3kb (Dupuy et al., 2004, Nelson et al., 2004), our in vivo binding map strongly suggests that CFI-1 can act both at proximal (e.g., promoters) and distal (e.g., enhancers) regions to regulate gene expression. Consistently, a previous in vitro study found that overexpressed Arid3a in mouse embryonic stem cells also binds to both proximal and distal cis-regulatory elements (Rhee et al., 2014).

The genome-wide binding map suggests a prominent role for CFI-1 in neuronal terminal differentiation

Our current knowledge of ARID3 functions in the nervous system remains rudimentary. In vertebrate nervous systems, the role of ARID3 proteins is completely unknown. In Drosophila, dead ringer has been implicated in the control of axonal pathfinding (Ditch et al., 2005, Shandala et al., 2003, Sibbons, 2004). In C. elegans, a handful of effector genes have been identified as CFI-1 targets in distinct neuron types (Glenwinkel et al., 2021, Kerk et al., 2017, Shaham and Bargmann, 2002, Zhang et al., 2014). Hence, a comprehensive understanding of ARID3-mediated biological processes in the nervous system is lacking.
To address this knowledge gap, we globally identified 6,396 protein-coding genes as putative direct targets of CFI-1, most of which (77%) are expressed in post-mitotic C. elegans neurons. GO analysis suggested a prominent role for CFI-1 in neuronal terminal differentiation, as ~70% of its target genes encode NT receptors, transporters, ion channels, transmembrane receptors, cell adhesion molecules, etc. Moreover, 23% of CFI-1 targets encode transcription factors, chromatin factors, and proteins involved in DNA/RNA metabolism, suggesting CFI-1 can affect gene expression indirectly through these factors. Altogether, our ChIP-Seq dataset illuminates the biological processes under the control of an ARID3 protein in C. elegans.

CFI-1 acts as a terminal selector in IL2 sensory neurons

Transcription factors that bind directly to the cis-regulatory region of terminal differentiation genes (e.g., NT biosynthesis components, NT receptors, ion channels, neuropeptides, membrane proteins) and activate their expression have been termed “terminal selectors” (Hobert, 2008, Hobert, 2016b, Hobert and Kratsios, 2019). Terminal selectors are continuously required in individual neuron types to initiate and maintain expression of terminal differentiation genes, thereby safeguarding neuronal functionality throughout life. To date, terminal selectors have been described in C. elegans, Drosophila, simple chordates and mice (Hobert and Kratsios, 2019), suggesting an evolutionarily conserved role for these critical regulators of neuronal differentiation. For most terminal selectors, however, biochemical evidence for direct binding to their target genes is currently lacking. For example, CFI-1 is a candidate terminal selector in IL2 sensory neurons because five terminal differentiation genes (cho-1/ChT, unc-17/VACht, gcy-19 [receptor-type guanylate cyclase], klp-6 [kinesin-like protein], unc-5 [netrin receptor]) fail to be properly expressed in cfi-1 mutants (Zhang et al., 2014). Here, we provide biochemical evidence that CFI-1 binds directly to all these genes, indicating CFI-1 acts as a direct activator. Further, our analysis of the top 1,000 highly expressed genes in IL2 neurons revealed that the majority of CFI-1 binding (~70%) occurs at terminal differentiation genes, consistent with an in silico prediction study for CFI-1 binding (Glenwinkel et al., 2021).

Altogether, a synthesis of our findings with the aforementioned studies indicate that CFI-1 functions as a bona fide terminal selector and directly activates IL2 terminal differentiation genes. This mode of action is reminiscent of mouse Arid3a, which is known to also act as a direct activator of gene expression in cells outside the nervous system (Herrscher et al., 1995, Ratliff et al., 2014, Rhee et al., 2014).

Accumulating evidence suggests that terminal selectors act in combination with other transcription factors to determine the differentiation of individual neuron types (Glenwinkel et al., 2021).
2021, Lloret-Fernandez et al., 2018). Supporting this notion, genetic and in silico prediction studies found that CFI-1 collaborates with the POU homeodomain transcription factor UNC-86 to activate IL2-specific terminal differentiation genes (Glenwinkel et al., 2021, Zhang et al., 2014). Similarly, it was proposed that CFI-1 collaborates with two different homeodomain proteins, UNC-42/Prop-1 like and CEH-14/LIM, to respectively control the terminal differentiation of AVD and PVC interneurons (Berhoff et al., 2021, Glenwinkel et al., 2021), albeit the underlying mechanisms remain unclear.

Insights into ARID3-mediated gene repression

In IL2 sensory neurons, CFI-1 exerts a dual role (Fig. 2). It functions as a direct activator of IL2-specific terminal differentiation genes and indirect repressor of ion channel-encoding genes (pkd-2, lov-1), which are normally expressed in CEM neurons (cells responsible for pheromone detection) (Chasnov et al., 2007). Hence, it promotes IL2 terminal differentiation and inhibits an alternative neuronal identity (CEM). However, in nerve cord motor neurons, CFI-1 functions as a direct repressor of the glutamate receptor-encoding gene glr-4/GRIK1. Altogether, these observations indicate that a single ARID3 protein can control the terminal differentiation program of distinct neuron types through mechanisms that depend on cell context, possibly due to CFI-1 participating in distinct neuron type-specific regulatory complexes that function either as dedicated activators or repressors.

Through an in-depth regulatory analysis of glr-4/GRIK1, our findings advance our understanding of how ARID3 proteins mediate gene repression in several aspects. First, cis-regulatory analysis combined with mutagenesis of endogenous CFI-1 binding sites strongly suggests that proximal CFI-1 binding to the glr-4 locus is required for repression (Fig. 5). Second, CFI-1 antagonizes three conserved transcription factors (UNC-3/Ebf, LIN-39/Hox4-5, MAB-5/Hox6-8) that directly activate basal levels of glr-4/GRIK1 expression in nerve cord motor neurons (Fig. 6). Third, ChIP-Seq for UNC-3 in WT and cfi-1(-) mutants did not reveal any changes in the UNC-3 binding pattern to glr-4, arguing against a model in which glr-4 is repressed because the repressor (CFI-1) competes with the activator (UNC-3) for binding to the same cis-regulatory elements. Lastly, we found that deletion of highly conserved protein domains (eARID, HTH) predicted to bind DNA (based on Dead ringer structural studies) did not affect the ability of CFI-1 to repress glr-4 expression (Fig. 7). This suggests that either eARID and HTH act redundantly, or other CFI-1 domains are responsible for glr-4 repression.

Supporting the latter, deletion of the entire core ARID domain (including the HTH domain) of CFI-1 led to a partial failure to repress glr-4 in motor neurons.
One unresolved question is how exactly CFI-1 represses gene expression in *C. elegans* motor neurons. Because proximal binding is required for *glr-4* repression, it is possible that CFI-1 interferes with the function of the basal transcription complex (Baumann et al., 2010). Another possibility stems from patterning studies in the *Drosophila* embryo, where *Dead ringer* binds to Groucho, a well-characterized transcriptional corepressor (Hader et al., 2000, Valentine et al., 1998). In mouse stem cells, Arid3a directly represses pluripotency genes by recruiting histone deacetylases (HDACs) (Rhee et al., 2014). Future studies are needed to determine whether CFI-1 acts through any of these repressive mechanisms in motor neurons.

CFI-1 continuously antagonizes the activator function of terminal selectors

The *glr-4* gene receives positive regulatory input from three conserved transcription factors (UNC-3/Ebf, LIN-39/Hox4-5, MAB-5/Hox6-8) and negative input from CFI-1. UNC-3 and the Hox proteins LIN-39 and MAB-5 are known terminal selectors in *C. elegans* nerve cord motor neurons (Feng et al., 2020, Kratsios et al., 2017, Kratsios et al., 2012). As such, they are continuously required from embryonic to adult stages to activate expression of multiple terminal differentiation genes (Feng et al., 2020, Li et al., 2020). On the other hand, our constitutive (null alleles) and conditional (temporally controlled protein depletion) approaches also revealed a continuous requirement for CFI-1 in motor neurons (Fig. 4). This argues against a transient role where, for example, CFI-1 establishes a repressive chromatin environment during early development and its activity becomes unnecessary at later stages of life. Instead, we favor a model where CFI-1 is required continuously to prevent high levels of *glr-4* expression driven by terminal selectors (UNC-3, Hox) (Fig. 7C). Such model is also supported by the continuous requirement of two other repressor proteins (BNC-1/Bnc1, MAB-9/Tbx20) in *C. elegans* motor neurons (Kerk et al., 2017). Antagonism between repressor proteins and terminal selectors has also been reported in *C. elegans* touch receptor neurons with EGL-44/Tead3 and EGL-46/Insm2 repressing terminal selector target genes (Zheng et al., 2018a). Further, studies in mice indicated that the activity of two terminal selectors, Nurr1 and Crx, which respectively control dopamine neuron and photoreceptor identities, is counteracted by repressor proteins (Otx2, Nr2e3) (Di Salvio et al., 2010, Peng et al., 2005). Additional work is needed, however, to determine whether all these repressor proteins (e.g., EGL-44, Otx2) act directly and are continuously required.

Evolutionary implications
The terminal selector UNC-3 is required to maintain cfi-1 expression in nerve cord motor neurons (Li et al., 2020). Hence, the repressor protein (CFI-1) and glr-4 are both targets of UNC-3, thereby generating an incoherent feedforward loop (FFL) (Fig. 7C). In SAB motor neurons, however, CFI-1 is not expressed, and UNC-3 is able to drive high levels of glr-4 expression (Fig. 7C) (Kratsios et al., 2015). From an evolutionary perspective, incoherent FFLs have been proposed to diversify a ground state into various substates (Hobert, 2016a). One can envision an ancestral state where an UNC-3 ortholog is present in a relatively homogeneous population of motor neurons, but the recruitment of a repressor (CFI-1) enabled their diversification. Hence, the UNC-3 → CFI-1 → glr-4 incoherent FFL may help distinguish, at the molecular level, nerve cord motor neurons that control locomotion from SAB motor neurons that control head movement. In agreement with this idea, incoherent FFLs are known to diversify gustatory neurons in C. elegans and photoreceptor cells in Drosophila (Etchberger et al., 2009, Johnston, 2013).
MATERIALS AND METHODS

C. elegans strain culture
Worms were grown at 20°C or 25°C on nematode growth media (NGM) plates supplied with E. coli OP50 as food source (Brenner, 1974). All strains used or generated for this study are listed in Supplementary File 4.

Generation of transgenic animals carrying transcriptional fusion reporters and overexpression or rescue constructs
Reporter gene fusions for cis-regulatory analyses of glr-4 were made with PCR fusion (Hobert, 2002). Genomic regions were amplified and fused to the coding sequence of tagrfp followed by the unc-54 3' UTR. PCR fusion DNA fragments were injected into young adult pha-1(e2123) hermaphrodites at 50 ng/µl together with pha-1 (pBX plasmid) as co-injection marker (50 ng/µl). To generate animals with cfi-1 overexpression in the SAB neurons, the unc-4 promoter was fused to the cDNA sequence of cfi-1 followed by the unc-54 3' UTR. The fluorescent co-injection marker myo-2::gfp was used (2 ng/ul) and the PCR fusion DNA fragments were injected into young adult animals carrying the glr-4::tagrfp reporter at 50 ng/ul. To generate transgenic animals carrying different versions of the cfi-1 cDNA rescue constructs (WT, ΔARID, ΔeARID, ΔHTH), the cfi-1 enhancer driving expression in motor neurons was fused to the corresponding version of cfi-1 cDNA followed by the unc-54 3' UTR. The fluorescent co-injection marker myo-2::gfp was used (2 ng/ul) and the PCR fusion DNA fragments were injected into young adults of cfi-1(-) mutants carrying the glr-4::tagrfp reporter at 50 ng/ul.

Targeted genome editing
The endogenous glr-4 reporter allele syb3680 [2xNLS::mScarlet::glr-4] was generated by SunyBiotech via CRISPR/Cas9 genome editing by inserting the 2xNLS::mScarlet cassette immediately after the ATG of glr-4. Moreover, the endogenous glr-4 reporter allele syb5348 [2xNLS::mScarlet::SL2::glr-4[11 CFI-1 sites MUT]] that carries nucleotide substitutions in eleven CFI-1 binding sites was also generated by SunyBiotech. The endogenous glr-4 reporter allele kas29 [2xNLS::mScarlet::SL2::glr-4[COE1 MUT]] that carries nucleotide substitutions in a single UNC-3 binding site (COE1 motif) was generated in the Kratsios lab by using homology dependent repair and inserting a synthesized DNA fragment that carries the desired mutations.
Microscopy

Imaging slides were prepared by anesthetizing worms with sodium azide (NaN₃, 100 mM) and mounting them on a 4% agarose pad on glass slides. Images were taken with an automated fluorescence microscope (Zeiss, Axio Imager Z2). Images containing several z stacks (0.50 µm intervals between stacks) were taken with Zeiss Axiocam 503 mono using the ZEN software (Version 2.3.69.1000, Blue edition). Representative images are shown following max-projection of 2-5 µm Z-stacks using the maximum intensity projection type. Image reconstruction was performed with Image J (Schindelin et al., 2012).

Motor neuron subtype identification

Motor neuron subtypes were identified based on combinations of the following factors: [1] co-localization with or exclusion from additional reporter transgene with known expression patterns; [2] Invariant position of neuronal cell bodies along the ventral nerve cord, [3] Birth order of specific motor neuron subtypes (e.g., during embryonic or post-embryonic stages); [4] Total cell numbers in each motor neuron subtype.

Bioinformatic prediction of binding motifs

Information of the CFI-1 binding motif is curated in the Catalog of Inferred Sequence Binding Preferences database (http://cisbp.ccbr.utoronto.ca). To predict and identify CFI-1 binding motifs in the glr-4 promoter, we utilized tools provided by MEME (Multiple Expectation maximization for Motif Elicitation) bioinformatics suite (http://meme-suite.org/), and performed FIMO (Find Individual Motif Occurrences) motif scanning analysis.

Chromatin Immunoprecipitation (ChIP)

ChIP assay was performed as previously described, with the following modifications (Yu et al. 2017; Zhong et al. 2010). Synchronized L1 cfi-1(syb1778[3xFLAG::cfi-1]) worms and N2 worms were cultured on 10 cm plates seeded with OP50 at 20°C overnight. Late L2 worms were cross-linked and resuspended in FA buffer supplemented with protease inhibitors (150 mM NaCl, 10 µl 0.1 M PMSF, 100 µl 10% SDS, 500 µl 20% N-Lauroyl sarsosine sodium, 2 tablets of cOmplete ULTRA Protease Inhibitor Cocktail [Roche Cat.# 05892970001] in 10ml FA buffer).

For each IP experiment, 200 µl worm pellet was collected. The sample was then sonicated using a Covaris S220 with the following settings: 200 W Peak Incident Power, 20% Duty Factor, 200 Cycles per Burst for 1 min. Samples were transferred to centrifuge tubes and spun at the
highest speed for 15 min. The supernatant was transferred to a new tube, and 5% of the material was saved as input and stored at -20°C. The remainder was incubated with FLAG antibody at 4°C overnight. Wild-type (N2) worms do not carry the 3xFLAG tag and serve as negative control. The cfi-1(syb1778[3xFLAG::cfi-1]) CRIPSR generated allele was used in order to immunoprecipitate the endogenous CFI-1 protein. On the next day, 20 µl Dynabeads Protein G (1004D) was added to the immunocomplex which was then incubated for 2 hr at 4°C. The beads were then washed at 4°C twice with 150 mM NaCl FA buffer (5 min each), once with 1M NaCl FA buffer (5 min). The beads were transferred to a new centrifuge tube and washed twice with 500 mM NaCl FA buffer (10 min each), once with TEL buffer (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate, 1mM EDTA, 10 mM Tris-HCl, pH 8.0) for 10 min, twice with TE buffer (5 min each). The immunocomplex was then eluted in 200 µl elution buffer (1% SDS in TE with 250 mM NaCl) by incubating at 65°C for 20 min. The saved input samples were thawed and treated with the ChIP samples as follows. One (1) µl of 20 mg/ml proteinase K was added to each sample and the samples were incubated at 55°C for 2 hours then 65°C overnight (12-20 hours) to reverse cross-link. The immunoprecipitated DNA was purified with Ampure XP beads (A63881) according to manufacturer's instructions.

ChIP-seq data analysis

Unique reads were mapped to the *C. elegans* genome (ce10) with bowtie2 (Langmead and Salzberg 2012). Peak calling was then performed with MACS2 (minimum q-value cutoff for peak detection: 0.005) (Zhang et al. 2008). For visualization purposes, the sequencing depth was normalized to 1x genome coverage using bamCoverage provided by deepTools (Ramírez et al. 2016) and peak signals were shown in Integrated Genome Viewer (Siponen et al.). Heatmap of peak coverage in regard to CFI-1 enrichment center was generated with NGSplot (Shen et al. 2014). The average profile of peaks binding to TSS region was generated with ChIPseeker (Yu et al. 2015).

Enrichment of CFI-1 targets in IL2 expressed genes

The top 1,000 highest expressed genes in IL2 (transcripts per million, tpm) were mined from available single-cell RNA-sequencing data (CenGEN). This dataset was computationally compared to a dataset of CFI-1 ChIP-Seq targets using the ‘semi_join’ function in R (package Dplyr 1.0.7). This generated a new data frame containing genes in the scRNA-seq dataset that are also putatively bound by CFI-1. Similarly, the ‘set_diff’ function (Dplyr 1.0.7) was used to
generate a new data frame containing genes that are expressed in IL2 based on scRNA-seq but which are not found in the CFI-1 ChIP-seq dataset. Gene list analysis (PANTHER 17.0) was performed on both data frames to functionally classify all genes based on protein class ontology.

Temporally controlled protein degradation

Temporally controlled protein degradation was achieved with the auxin-inducible degradation system (Zhang et al., 2015). TIR1 expression was driven by the pan-neuronal promoter in the transgene otTi28[unc-11prom8+ehs-1prom7+rgef-1prom2::TIR1::mTurquoise2::unc-54 3'UTR]. To induce degradation of CFI-1 proteins, we used the allele kas16[cfl-1::mNG::AID]. Worms at the L4 stage were grown at 20 °C on NGM plates coated with 4 nM auxin (indole-3-acetic acid [IAA] dissolved in ethanol) or ethanol (negative control) for 2 days before testing (see figure legends for exact time in specific experiments). All plates were shielded from light.

Statistical analysis

For data quantification, graphs show values expressed as mean ± standard error mean of animals. The statistical analyses were performed using the unpaired t-test (two-tailed). Calculations were performed using the GraphPad QuickCalcs online software (http://www.graphpad.com/quickcalcs/). Differences with p<0.05 were considered significant.

Single molecule RNA fluorescent in situ hybridization (sm RNA FISH)

Synchronized L1 worms were collected from the plates and washed with M9 buffer 3 times. Worms were incubated in the fixation buffer (3.7% formaldehyde in 1x PBS) for 45 minutes at room temperature. Worms were then washed twice with 1x PBS, resuspended in 70% ethanol and left at 4°C for two nights. After removing the ethanol, worms were incubated in the wash buffer (10% formamide in 2x SSC buffer) for 5 minutes and the wash buffer was removed afterwards. A glr-4 probe was designed using the Stellaris Probe Designer website (Biosearch Technologies). The probe was mixed in hybridization buffer (0.1 g/ml dextran sulfate [Sigma D8906-50G], 1 mg/ml Escherichia coli tRNA [ROCHE 10109541001], 2 mM vanadyl ribonucleotide complex [New England Biolabs S1402s], 0.2 mg/ml RNase-free BSA [Ambion AM2618], 10% formamide) and added to the worms. The hybridization buffer was removed and worms were washed twice in wash buffer (DAPI was added during the second wash and incubated for 30 minutes in the dark for nuclear counterstaining). Worms were washed once in 2x SSC, incubated in GLOX buffer (0.4% glucose, 0.1 M Tris-HCl, 2x SSC) for 2 minutes for
equilibration, and the resuspended in GLOX buffer with glucose oxidase and catalase added. The samples were then examined under the fluorescent microscope.

Real-time PCR assay for glr-4 expression level analysis

Synchronized L4 stage wildtype and cfi-1(-) worms were collected, and mRNA was extracted. cDNA library was prepared using the Superscript first strand cDNA synthesis kit (Invitrogen #11904-018). RT-PCR TaqMan assays for the genes glr-4 (assay ID: Ce02435302_g1) and pmp-3 (Ce02485188_m1) were performed, and the expression level of glr-4 was determined in each genotype after normalizing to the expression of the housekeeping gene pmp-3.

Harsh touch behavioral assay

Harsh touch was delivered with a platinum wire pick as previously described (Marques et al., 2019). The stimulus was applied from above the animals by pressing down with the edge of the pick on the tail of non-moving adult animals. Each animal was tested only once. Worms that moved forward in response to harsh touch were scored as normal response. Results are presented as fractions of animals that responded normally.
ACKNOWLEDGEMENTS

We thank the Caenorhabditis Genetics Center (CGC), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440), for providing strains. We are grateful to Oliver Hobert and Manasa Prahlad for comments on this manuscript. This work was funded by two NIH grants to P.K (R21 NS108505, R01 NS118078).

AUTHOR CONTRIBUTIONS

Y. L., Conceptualization, Data curation, Investigation, Visualization, Methodology, Writing—review and editing; J.J.S. Formal analysis, Validation, Investigation, Writing—review and editing; F.M., A.O., H.C.H., Formal analysis, Validation, Investigation; P. K., Conceptualization, Supervision, Investigation, Funding acquisition, Project administration, Writing—original draft, review and editing.

COMPETING INTERESTS

The authors declare no competing interests.

DATA AVAILABILITY

Sequencing data have been deposited in GEO under accession code GSE 205628. Moreover, all data generated or analyzed for this study are included in the manuscript and supporting files.
FIGURE LEGENDS

Figure 1. Mapping genome-wide CFI-1 binding with ChIP-seq.

A: Schematics of the coding sequences of CFI-1 and its *Drosophila* homolog *Dead ringer (Dri)* and Mouse homologs Arid3a-c. The ARID (yellow) and REKLES (blue) domains are highlighted.

B: (Doitsidou et al.) Diagram of the 3xflag::cfi-1 allele. The endogenous CFI-1 proteins are tagged with 3xFLAG which are inserted immediately after the ATG. (Bottom) Schematic of *C. elegans* with dashed line boxes highlighting regions where immunostaining images are shown in C-E.

C-E: The expression of 3xFLAG::CFI-1 fusion protein is confirmed by immunostaining (DAPI, blue; anti-FLAG, red) in the ventral cord motor neurons (C), muscles (indicated by arrowheads) and neurons in the head (D), and neurons in the tail (E).

F: Fingerprint plot indicating localized, strong enrichment of CFI-1 binding events in the genome. Specifically, when counting the reads contained in 86% of all genomic bins, only 50% of the maximum number of reads are reached, which indicates 14% of the genome contain half of total reads.

G: Heatmap of CFI-1 ChIP-seq signal around 1.0 kb of the center of the binding peak.

H: Summary plot of CFI-1 ChIP-seq signal with a 95% confidence interval (grey area) around 3.0 kb of the transcription start site (Kadkhodaei et al.). The average signal peak is detected at ~140 bp upstream of the TSS.

I: Graph summarizing protein class ontology analysis of global CFI-1 target genes identified by ChIP-seq. A total number of 7,995 genes are analyzed, 4,984 of which hit known protein class terms.

J: Pie chart summarizing three main categories of genes bound by CFI-1.

K: Venn diagram showing that 77.1% of the protein-coding genes (4,931 out of 6,396) that are bound by CFI-1 are expressed in the nervous system based on RNA-Seq data from the CenGEN project.

Figure 2. CFI-1 directly activates terminal differentiation genes in the IL2 sensory neurons.

A: Diagram showing the location of the IL2 sensory neurons.

B: Model summarizing known targets of CFI-1 in the IL2 sensory neurons.

C: CFI-1 binding signals at the loci of genes activated by CFI-1 in the IL2 neurons.

D: CFI-1 binding signals at the loci of genes repressed by CFI-1 in the IL2 neurons.
E: Protein class ontology analysis of genes expressed in IL2 sensory neurons binned by CFI-1 binding based on ChIP-seq data. Bar colors correspond to colors in Fig 1I: Blue, genes involved in terminal differentiation; yellow, genes involved in regulating gene expression; green, miscellaneous genes.

Figure 3. CFI-1/Arid3a represses glr-4/GRIK1 in the ventral cord motor neurons

A: Summary of the endogenous expression patterns of cfi-1 and glr-4 in the five cholinergic nerve cord motor neuron subtypes and the SAB neurons in the retrovesicular ganglion (RVG). The expression patterns are determined by colocalization with neuron subtype-specific reporters. Filled boxes represent positive expression, while empty boxes indicate no detectable expression.

B: CFI-1 binding signal at the glr-4 locus. (Bottom) Design of an endogenously tagged, nuclear localized fluorescent reporter allele of glr-4 (2xNLS::mScarlet::SL2::glr-4). The reporter cassette is inserted immediately downstream of the ATG of glr-4 with CRISPR/Cas9.

C: Representative fluorescent micrographs showing that the expression of 2xNLS::mScarlet::SL2::GLR-4 is unaffected in SAB neurons (arrowheads) in cfi-1(-) mutants. Bright white signal to the left of the SAB neurons indicates glr-4 expression in head neurons.

D: 2xNLS::mScarlet::SL2::glr-4 expression in the ventral cord motor neurons (indicated by arrowheads in the representative images) in WT and cfi-1(-) animals at L4 stage. Ectopic expression of glr-4 was detected in cfi-1(-) mutants. (Bottom) Each dot in the quantification graph of total number of motor neurons (left) represents an individual animal. Each dot in the fluorescence intensity quantification graph (right) represents an individual motor neuron that shows glr-4 expression. For simplicity, only motor neurons in the anterior VNC are included in the fluorescence intensity quantification. p-values are indicated in the graphs. N ≥ 15.

E: RNA-seq data from the CeNGEN project showing expression of glr-4 transcripts in SAB, DB, VB, AS, VA, and DA motor neurons.

F: Single molecule fluorescent in situ hybridization (smFISH) shows mild ectopic expression of glr-4 transcripts in the motor neurons of L1 cfi-1(-) animals. Left: represented images showing ectopic glr-4 mRNA molecules (Cy5, red) in the nucleus (DAPI, blue) of a motor neuron in cfi-1(-) mutants. Right: quantification of the number of glr-4 transcripts detected in the anterior ventral nerve cord in WT and cfi-1(-) animals. p-value is indicated in the graph. N ≥ 18.

G: RT-PCR from whole worm lysates showing upregulation of glr-4 transcripts in cfi-1(-) mutants.
H: Models summarizing the repressive regulation of glr-4 expression by CFI-1 in the SAB neurons versus ventral nerve cord motor neurons.

Figure 4. CFI-1 is sufficient to repress glr-4 and continuously required to maintain this repression in ventral cord motor neurons.

A: Quantification of the number of motor neurons expressing glr-4 in WT and cfi-1(-) animals at four developmental stages – L2, L3, L4, and day 2 adults (D2). p-values are indicated in the graph. N ≥ 12.

B: Diagram showing the timeline for the administration of auxin to induce degradation of CFI-1 protein in kas16[mNG::AID::cfi-1]; otTi28[unc-11prom8+ehs-1prom7+rgf-1prom2::TIR1::mTurquoise2::unc-54 3’UTR] animals. otTi28 drives expression of TIR1 specifically in neurons.

C: Quantification graph comparing expression of the endogenous glr-4 reporter between the ethanol group (control) and auxin group on kas16[mNG::AID::cfi-1]; otTi28[unc-11prom8+ehs-1prom7+rgf-1prom2::TIR1::mTurquoise2::unc-54 3’UTR] animals. Ectopic expression of 2xNLS::mScarlet::SL2::glr-4 in motor neurons was detected upon CFI-1 protein knock-down. p-values are indicated in the graph. N = 15.

D: CFI-1 is sufficient to repress glr-4 expression. Left: representative images showing loss of glr-4::tagRFP expression in the SAB neurons (arrowheads) upon overexpression (OE) of cfi-1. Right: quantification of the number of SAB neurons expressing glr-4::tagRFP in wildtype and cfi-1 overexpression animals. p-value is indicated in the graph. N ≥ 14.

E: Model summarizing the sufficiency of CFI-1 to repress glr-4 in SAB neurons.

Figure 5. CFI-1 directly represses glr-4 by binding to its promoter via a conserved binding motif

A: CFI-1 ChIP-seq tracks at the glr-4 locus. (Bottom) Schematics of a series of glr-4 transgenic reporter lines which contain different parts of the cis-regulatory regions upstream of the gene. CFI-1 recognizes a highly conserved binding motif shared by the ARID family (right). Using bioinformatic analysis, 13 of these binding motifs were identified in the cis-regulatory region upstream of glr-4, which overlap with the CFI-1 binding peaks.

B: Quantification of the number of motor neurons expressing the reporters of glr-4 shown in panel A in WT and cfi-1(-) animals in day 2 adults. Only the reporters that contain the proximal glr-4 promoter regions show ectopic expression in cfi-1(-) mutants. p-values are indicated in the
All reporters were analyzed in the adult (D2), except the 4.9kb reporter which was analyzed at the L4 stage. N ≥ 13.

C: Schematic depicting the design of the 2xNLS::mScarlet::SL2::glr-411CFI-1 sites MUT allele. Point mutations were introduced to the 11 CFI-1 binding motifs that fall in the proximal CFI-1 binding peaks at the glr-4 promoter.

D: Quantification of the number of motor neurons expressing WT 2xNLS::mScarlet::SL2::glr-4 reporter and the 2xNLS::mScarlet::SL2::glr-411CFI-1 sites MUT allele at day 2 adult stage. Ectopic expression of the reporter was observed with the point mutation allele, which shows a total number of glr-4-expressing motor neurons comparable to what was observed in cfi-1(-) null mutants.

Figure 6. CFI-1 represses glr-4 by counteracting activation from the cholinergic terminal selector UNC-3 and Hox proteins LIN-39 and MAB-5.

A: Summary of the endogenous expression patterns of cfi-1/Arid3, glr-4/GRIK1, unc-3/COE, lin-39/ HOX, and mab-5/HOX in the five cholinergic motor neuron subtypes and in the SAB neurons of the retrovesicular ganglion (RVG). Filled boxes represent positive expression, while empty boxes indicate no detectable expression.

B: Graph summarizing quantification results of the expression of the 2xNLS::mScarlet::SL2::glr-4 reporter in WT animals, cfi-1(-) mutants, lin-39(-); mab-5(-) double mutants, and unc-3(-); lin-39(-); mab-5(-) triple mutants at the L4 stage. p-values are indicated in the graph. N = 15.

C: (Doitsidou et al.) ChIP-seq binding peaks for UNC-3 (in WT animals and cfi-1(-) mutants), CFI-1, LIN-39, and MAB-5 at the glr-4 locus. (Bottom) Schematic showing the details in the design of 2xNLS::mScarlet::SL2::glr-4COE1 MUT. Point mutations were introduced to the proximal COE motif (UNC-3 binding site) to the glr-4 gene.

D: Graph summarizing expression of the 2xNLS::mScarlet::SL2::glr-4 reporter in WT animals and unc-3(-) mutants, and the expression of the 2xNLS::mScarlet::SL2::glr-4COE1 MUT allele. Quantification was conducted at the day 2 adult stage. P-values are indicated in the graph. N ≥ 13.

E: Graph summarizing expression of the 2xNLS::mScarlet::SL2::glr-4 reporter in WT animals, cfi-1(-) mutants, unc-3(-) mutants, and cfi-1(-); unc-3(-) double mutants and the expression of the 2xNLS::mScarlet::SL2::glr-4COE1 MUT allele in WT animals and cfi-1(-) mutants in day 2 adults. p-values are indicated in the graph. N ≥ 13.
Figure 7. Protein motif analysis of CFI-1. **A:** Schematics of the four CFI-1 cDNA constructs tested for rescue effects including the WT cDNA, cDNA with deletion of the ARID domain (ΔARID), cDNA with deletion of the eARID domain (ΔeARID), and cDNA with deletion of the helix-turn-helix structure (ΔHTH).

B: Quantification results of the number of motor neurons showing expression of *glr-4::tagrfp* in *cfi-1*(ot786) mutant animals expressing the rescue constructs.

C: Schematic model summarizing our findings in SAB and nerve cord motor neurons.
LEGENDS OF SUPPLEMENTARY FIGURES AND FILES

Supplementary Figure 1. Harsh touch assay on C. elegans animals carrying the 3xflag::cfi-1 allele used for ChIP-Seq.
Summary of the percentage of animals that show normal response to harsh touch stimulation for each genotype. Normal response is determined by forward locomotion upon harsh touch of the tail. See Materials and Methods for details. The null ot786 allele of cfi-1 is used as a positive control. N = 60.

Supplementary Figure 2. Expression of glr-4 in nerve cord motor neurons.
A: Representative images showing colocalization analysis of glr-4 expression and motor neuron subtype-specific reporters unc-30::mNG (marker for GABAergic motor neurons), glr-5::gfp (marker for VC neurons), and cho-1::yfp (marker for cholinergic motor neurons).
B: Summary of the expression of glr-4 in the VNC motor neurons. Filled boxes indicate expression, while empty boxes indicate no detectable expression. Each row represents an individual worm scored at larval stage 4 (L4) for colocalization of glr-4 and motor neuron subtype-specific reporters.
C: Representative images showing the colocalization analysis for cfi-1 expression in RVG and ventral cord motor neurons. The cho-1::mCherry reporter is expressed in cholinergic motor neurons.

Supplementary Figure 3. The expression of motor neuron terminal differentiation genes is not affected in cfi-1 mutant animals.
A-F: Quantification of the number of motor neurons expressing fluorescent reporters for terminal differentiation genes in WT and cfi-1 (ot786) mutant animals. Stage: L4. P-value is indicated in the graph. N ≥ 10. G: All genes are bound by CFI-1 based on ChIP-seq data.

Supplementary File 2. Protein ontology analysis on genes bound by CFI-1.
Supplementary File 3. Protein ontology analysis on genes expressed in IL2 neurons and bound by CFI-1.
Supplementary File 4. List of C. elegans strains used or generated for this study.
REFERENCES

Figure 1

Terminal differentiation

Gene expression

Miscellaneous

9,733 genes expressed in neurons
6,396 genes bound by CFI-1

23% 7% 70%

Number of Genes

Terminal differentiation
Gene expression
Miscellaneous
Figure 2

A) **IL2 sensory neurons**

C. elegans head (left side)

B) **IL2 sensory neurons**

CFI-1

unc-17/VACHT
cho-1/ChT
lo-1/PKD1L3

pkd-2/PKD2L1

gcy-19

unc-5

klp-6

C) **Genes activated by CFI-1**

CFI-1 ChIP [0, 10] 1kb

CFI-1 Input [0, 10]

unc-17

CFI-1 ChIP [0, 5] 1kb

CFI-1 Input [0, 5]

cho-1

CFI-1 ChIP [0, 5] 1kb

CFI-1 Input [0, 5]

gcy-19

CFI-1 ChIP [0, 5] 1kb

CFI-1 Input [0, 5]

unc-5

CFI-1 ChIP [0, 25] 1kb

CFI-1 Input [0, 25]

klp-6

D) **Genes repressed by CFI-1**

CFI-1 ChIP [0, 5] 1kb

CFI-1 Input [0, 5]

pkd-2

CFI-1 ChIP [0, 5] 1kb

CFI-1 Input [0, 5]

lov-1

E) **Protein Class Ontology (IL2 expressed genes)**

Number of Genes

Terminal differentiation

Gene expression

Miscellaneous
Figure 3

A

Class: SAB DA DB VA VB AS

Neurons:

cfi-1/ARID3 (29 MNs)

glr-4/GRIK1 (14 MNs)

Ventral Nerve Cord (VNC) motor neurons

B

CFI-1 ChIP [0, 5]

CFI-1 Input [0, 5]

C

WT

cfi-1(-)

D

2xNLS::mScarlet::SL2::glr-4 (L4 stage)

WT

cfi-1(-)

E

glr-4 mRNA (L4 stage - CeNGEN project)

Transcripts per million (TPM)

F

smRNA FISH for glr-4

WT

cfi-1(-)

G

RT-PCR for glr-4

Fold change

H

SAB neurons

WT

cfi-1(-)

Nerve cord motor neurons

glr-4 levels: High

Not detectable

Low

High
Figure 4

A 2xNLS::mScarlet::SL2::glr-4

- **WT**
- **cfi-1(-)**

Number of MNs expressing reporter

<table>
<thead>
<tr>
<th>Time</th>
<th>Number of MNs expressing reporter</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>0.44</td>
</tr>
<tr>
<td>L3</td>
<td>2.11e-14</td>
</tr>
<tr>
<td>L4</td>
<td>2.11e-14</td>
</tr>
<tr>
<td>D2</td>
<td>6.11e-18</td>
</tr>
</tbody>
</table>

B DA/DB birth VA/VB birth Imaging

C 2xNLS::mScarlet::SL2::glr-4

Number of MNs expressing reporter

<table>
<thead>
<tr>
<th>EtOH Auxin</th>
<th>Number of MNs expressing reporter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.49e-7</td>
</tr>
</tbody>
</table>

D glr-4::tagRFP

- **WT**
- **cfi-1 OE in SAB**

E SAB neurons

- **WT**
- **cfi-1 OE**

[CFI-1]
Figure 5

A

CFI-1 ChIP

CFI-1 Input

1 kb

CFI-1 binding site

B

4.9 kb (L4)

3.7 kb

3.14 kb

2.23 kb

938 bp

Number of GFP+/RFP+ MNs

0

5

10

15

20

25

30

35

40

WT

cfi-1(-)

WT

cfi-1(-)

WT

cfi-1(-)

WT

cfi-1(-)

WT

cfi-1(-)

C

syb3680 allele

2xNLS::mScarlet::SL2::glr-4

syb5348 allele

2xNLS::mScarlet::SL2::glr-4

D

2xNLS::mScarlet::SL2::glr-4

Number of MNs expressing endogenous reporter

0

5

10

15

20

25

30

35

40

WT

1 CFI-1 sites MUT

WT

cfi-1(-)
Figure 6

A

Class: SAB DA DB VA VB AS

Neurons: glr-4/GRK1 (14 MNs) dci-1/ARID3 (29 MNs) unc-3/COE (39 MNs) lin-39/HOX (28 MNs) mab-5/HOX (22 MNs)

Ventral Nerve Cord (VNC) motor neurons

B

2xNLS::mScarlet::SL2::glr-4

Number of MNs expressing reporter

WT unc-3(-) lin-39(-) mab-5(-) unc-3(-) lin-39(-) mab-5(-)

Number: 2.57e-14 0.89 1.31e-6 2.69e-15

C

 UNC-3 ChIP in WT

UNC-3 ChIP in dci-1(-)

LIN-39 ChIP

MAB-5 ChIP

CFI-1 ChIP

glr-4 gene

syb3680 allele

kas29 allele

2xNLS::mScarlet::SL2::glr-4

ctCCCAAGGGaa: COE1 WT
tCTTTCCAAAaa: COE1 MUT

D

2xNLS::mScarlet::SL2::glr-4

Number of MNs expressing reporter

WT unc-3(-) COE1 MUT

Number: 2.03e-10 0.025

E

2xNLS::mScarlet::SL2::glr-4

Number of MNs expressing reporter

WT dci-1(-) unc-3(-) dci-1(-) unc-3(-) COE1 mut COE1 mut

Number: 7.92e-7 2.23e-10 6.11e-18 8.82e-9 2.15e-7
Figure 7

(A) Schematic representation of CFI-1 domain structures and expression levels in different genetic backgrounds.

(B) Graph showing the number of motor neurons expressing glr-4::tagRFP in different conditions. The Y-axis represents the number of MNs expressing reporter, with error bars indicating standard deviation.

(C) Diagram of the Incoherent Feed-Forward Loop (FFL) involving UNC-3 and SAB motor neurons, with glr-4/GRIK1 expression levels indicated as High or Low or N.D.
Supplementary Figure 1. Harsh touch assay on *C. elegans* animals carrying the 3xflag::cfi-1 allele used for ChIP-Seq.

Summary of the percentage of animals that show normal response to harsh touch stimulation for each genotype. Normal response is determined by forward locomotion upon harsh touch of the tail. See Materials and Methods for details. The null *ot786* allele of *cfi-1* is used as a positive control. N = 60.
Supplementary Figure 2. Expression of \textit{glr-4} in nerve cord motor neurons.

A: Worm schematic with motor neuron subtypes. Representative images showing colocalization analysis of \textit{glr-4} expression and motor neuron subtype-specific reporters \textit{unc-30::mNG} (marker for GABAergic motor neurons), \textit{glr-5::gfp} (marker for VC neurons), and \textit{cho-1::yfp} (marker for cholinergic motor neurons).

B: Summary \textit{glr-4} expression in VNC MNs. Filled boxes indicate expression, while empty boxes indicate no detectable expression. Each row represents an individual worm scored at larval stage 4 (L4) for colocalization of \textit{glr-4} and motor neuron subtype-specific reporters.

C: Representative images showing the colocalization analysis for \textit{cfi-1} expression in RVG and ventral cord motor neurons. The \textit{cho-1:: mCherry} reporter is expressed in cholinergic motor neurons.
Supplementary Figure 3. The expression of motor neuron terminal differentiation genes is not affected in cfi-1 mutant animals.

A-F: Quantification of the number of MNs expressing fluorescent reporters for terminal identity genes in WT and cfi-1 (ot786) mutant animals. Stage: L4. P-value is indicated in the graph. N = 10.

G: All genes are bound by CFI-1 based on ChIP-seq data.

<table>
<thead>
<tr>
<th>Gene</th>
<th>CFI-1 binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>twk-40</td>
<td>YES</td>
</tr>
<tr>
<td>twk-43</td>
<td>YES</td>
</tr>
<tr>
<td>ncs-2</td>
<td>YES</td>
</tr>
<tr>
<td>npr-29</td>
<td>YES</td>
</tr>
<tr>
<td>dbl-1</td>
<td>YES</td>
</tr>
<tr>
<td>nrx-1</td>
<td>YES</td>
</tr>
<tr>
<td>acr-5</td>
<td>YES</td>
</tr>
<tr>
<td>del-1</td>
<td>YES</td>
</tr>
<tr>
<td>inx-12</td>
<td>YES</td>
</tr>
</tbody>
</table>