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Motivation: Oxford Nanopore Technologies (ONT) sequencing has become very popular over the
past few years and offers a cost-effective solution for many genomic and transcriptomic projects.
One distinctive feature of the technology is that the protocol includes ligation of adapters to both
ends of each fragment. Those adapters should then be removed before downstream analyses,
either during the basecalling step or by explicit trimming. This basic task may be tricky when the
definition of the adapter sequence is not well-documented.

Results: We have developed a new method to scan a set of ONT reads to see if it contains
adapters, without any prior knowledge on the sequence of the potential adapters, and then trim
out those adapters. The algorithm is based on approximate k-mers and is able to discover adapter
sequences based on their frequency alone. The method was successfully tested on a variety of ONT
datasets with different flowcells, sequencing kits and basecallers.

Availability: The resulting software, named Porechop ABI, is open-source and is available at
https://github.com/bonsai-team/Porechop_ABI.
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1 Introduction

ONT is a versatile sequencing technology that produces long reads and has many applications,
including de novo genome sequencing, metagenomics [5], analysis of structural variants [7] and
transcriptome sequencing [12, 8]. One common feature to all sequencing kits and flowcells is that
library preparation includes ligation of adapter sequences to both ends of DNA, cDNA or RNA
fragments. These adapters facilitate strand capture and loading of a processive enzyme.

Since the adapters are sequenced with the fragment, this implies that each resulting read may
contain either full-length or partial adapters due to incomplete sequencing.

In this context, read trimming is a mandatory pre-processing step to remove these artificial
sequences from raw reads and avoid unexpected interference in downstream analyses. Tools such
as Porechop, that finds and removes adapters, were designed to perform this task efficiently [10].
The main limitation however is that such tools rely on a static database of known adapter se-
quences, which is a critical issue when the adapter sequences used are not known, or when there
is no information about the fact that the reads have already been trimmed out or not. Addi-
tionally, Porechop and its database are no longer maintained since october 2018. More recently,
ONT released the Guppy toolkit that contains several basecalling and post-processing algorithms,
including adapter trimming. But this toolkit can be seen as a black box with no control on the
output. Moreover, it cannot be applied to previously published public datasets when the FAST5
files are no longer available.

To solve these problems, we have developed a new software to automatically infer adapter
sequences from raw reads alone, without any external knowledge or database. This algorithm
determines whether the reads contain adapters, and if so what the content of these adapters is.
It uses technics coming from string algorithms, with approximate k-mer, full text indexing and
assembly graphs.

The method is available as an extension of the existing Porechop tool, and the resulting software
is named Porechop ABI. This new tool is proving to be useful to clean untrimmed reads for which
the adapter sequences are not documented, to check whether a dataset has been trimmed or not.
It is even able to find leftover adapters in datasets that been previously processed with Guppy
with trimming mode activated, or to deal with datasets with several distinct adapters.

2 Algorithm

The goal is to design a computational method that is able to infer, or to guess, the adapter sequences
from a set of untrimmed reads. The starting point of the method is that adapters are expected to
be found mainly at each extremity on untrimmed reads and are over-represented sequences that
could be distinguished from the biological content. To work properly, the method should fulfill
several additional constraints: it should be tolerant of sequencing errors; it should scale to large
datasets; it should deal with adapters of varying length (from 16nt to more than 30nt); it should
accomodate to the presence of several distinct adapters in the data set.

For that, we have developed a new algorithm that is based on four main steps :

(i) Reads sampling: Select 10 independent samples of 40,000 reads from the dataset, then for
each reads of the samples select start and end regions of length 100 nt

(ii) Approximate k-mer counting: Find and count k-mers that are over-represented throughout
the start (resp. end) region. This search allows for edit errors (insertions, deletions and
substitutions)

(iii) Adapter construction: Reconstruct the start (resp. end) adapter sequence by assembling
k-mers using an assembly graph based on most represented k-mers

(iv) Consensus between samples: Align and compare the start (resp. end) adapters found for
each of the 10 samples, and build a consensus sequence. When the sequences are not fully
compatible, when there is no single consensus sequence, the method outputs several adapter
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sequences associated to a support score, that corresponds to the proportion of samples con-
taining the adapter.

We detail each of these steps in Subsections 2.1, 2.2 and 2.3, which consitutes the core mod-
ule. This core module is then used in a sampling and consensus approach, that is described in
Subsection 2.4. Finally, the choice of the parameters is discussed in Subsection 2.5. The overal
organization of the tool is given in Figure .

Figure 1: Organization of Porechop ABI. (1) The tool takes as input a set of reads. When those
reads are untrimmed, the ABI module is able to determine the sequences of the adapters that have
been used in the sequencing protocol. (2) Those sequences are then ready to be used by Porechop
for downstream trimming. If the reads are already trimmed out, no adapter sequence is returned
by the ABI module.

2.1 Selection of the most frequent k-mers

2.1.1 Overal principle

The starting point of the algorithm is to search for frequent k-mers appearing at the beginning
(they are included in the region [1, 100] for the start adapter) or at the end (they are included
in the region [−99,−0] for the end adapter) of the reads. This step is motivated by a simple
observation. In a raw dataset with untrimmed adapters, most of the reads include the adapters in
these regions, whereas the content of the biological sequence in between is more variable. So the
k-mers composing the adapter sequences should be more frequent than the other k-mers occurring
in the dataset.

For each of the two regions separately, we search for the 500 most frequent k-mers. Authorized
values of k for k-mer lengths vary from 2 to 32. In practice, recommended values range between
16 and 22, and the default value is k = 16 which is a compromise between the length of adapter
sequences and the error sequencing rate (see Subsection 2.5).

2.1.2 Low complexity k-mers.

During the k-mer count, we filter out low complexity k-mers. Indeed, such k-mers can have high
counts despite not being part of the adapter. Common examples are homopolymers or poly-A
tail of mRNA. To detect low complexity k-mers, we use a complexity score inspired by the DUST
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score [4]. The difference is that we use dimers instead of triplets, because of the shorter length of
the sequences.

The definition of the score is as follows. Let a be a k-mer (k > 2) and let R be the set of all 16
possible dimers on the alphabet {A, T,C,G}. We define cd(a) to be the number of occurrences of
a dimer d ∈ R in the k-mer a. The low complexity score of a, denoted Lc(a), is :

Lc(a) =

∑
d∈R

cd(a)(cd(a)− 1)

2(k − 2)

The higher the Lc score, the lower the complexity of the k-mer. We define a a score threshold
above which the k-mer is rejected. This score depends on the value k. For k = 16, it equals
lc16 = 1.0, which amounts to discard approximately 2.7% of all possible 16-mers. For other values
of k, we automatically readjust the score threshold using a regression wrt k = 16:

lck = lc16 ∗
(k − 1)

2

(16− 1)
2

2.2 Computation of the 2-errors frequency

The first step allowed to identify exact frequent k-mers. Because of the high error rate of ONT
reads, we also expect to have sequencing errors in the adapters. This means that some erroneous
k-mers will be found inside the 500 selected k-mers, and that some actual k-mers may have a
higher frequency in the initial data than that observed frequency in the sequencing data.

To take this phenomenon into account, we perform a second count and compute for each k-mer
its number of occurrences with up to two errors (substitutions, insertions or deletions). We call
it the 2-error frequency of the k-mer. To do that, we re-scan the start and end regions of the
sample, and compute for each of the top 500 k-mers previously found its number of approximate
occurences. This search is performed efficiently by the use of the Optimal Search Scheme algorithm
[3] implemented in the SeqAn library [6].

2.3 Reconstruction of the adapter sequence

The last step of the core module aims at reconstructing the adapter sequences from the k-mers. It
is based on an assembly graph. The nodes of the graph are the 500 most frequent k-mers weighted
by their 2-errors frequency. There is an arc between two nodes when these nodes have an overlap
of length k− 1 (as in a De Bruijn graph). The goal is to find a path in the graph that corresponds
to the original adapter sequence.

2.3.1 Path construction in the graph

Our approach is to search for the heaviest path, where the weight of a path is defined as the sum
of the weights of the nodes composing the path. This is done by dynamic programming, using the
algorithm available in the NetworkX library (https://networkx.org/).

2.3.2 Boundaries of the adapter sequence within the path

The construction of the path tends to make the resulting path longer than the actual adapter,
because it keeps incorporating k-mers as long as k-mer nodes are available in the graph. It means
that the actual adapter sequence is a substring of the path.

So there is a need to devise a specific method that is able to limit the impact of the outlier
k-mers with very high or low counts relative to their neighbouring k-mers.

Let n1, . . . , nℓ be the nodes composing the path for the start adapter sorted from left to right.
We smooth the distribution of 2-errors frequencies by using a sliding window median approach.
For a given position i in the path, we consider the w preceding nodes ni−w, . . . ni−1 and the w
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Figure 2: Boundaries of the adapter sequence within the path

following nodes ni+1, . . . , ni+w. The value fi is defined as the median values of the 2w+1 2-errors
frequencies. We then search for consecutive positions in the path with higher contrast. It means
that from the list f1, . . . , fℓ, we select the largest index j such that fj−fj+1 is greater than a given
threshold. This threshold corresponds to a drop in the curve. It is defined as the median value
of fi − fi+1 plus 7.5% of the maximum count. The length of the window and the 7.5% threshold
are determined empirically. A window of size 7 (corresponding to w = 3) yields the best results,
with some variations on very small raw adapters (≤ 22 bases, or if too close to the k-mer size).
Selecting the largest value for j corresponds to the longest prefix, and allows to capture series of
consecutive adapters. All this process is illustrated in Figure 2. If no such threshold exists, we
keep the entire sequence: there is no need to readjust the boundaries.

Similarly, we consider the path e1, . . . , em obtained for the end adapter, construct the smoothed
distribution of 2-errors frequency and search for the longest suffix ei, . . . em, which is characterised
by the smallest position i such that ei+1 − ei is greater than the threshold.

2.3.3 Low frequency warning

The general principle of the algorithm, through the different steps, is to exploit the frequency
differences between k-mers of the adapter and the other k-mers present in the reads. In case
the most frequent k-mers do not show a clear over-representation, the result of the algorithm is
questionable, because the signal is not reliable. This may happen when the input sequences are
already trimmed, for example. Such case is easily detected. When the 2-errors frequency of the
k-mer with the highest 2-errors frequency is smaller than 10% of the total number of sequences of
the sample (by default 40,000), the program outputs a low frequency warning message, meaning
that the adapter may be unstable or that the dataset is not suitable for trimming.

2.4 Sampling and consensus

Subsections 2.1, 2.2 and 2.3 constitute what we call the core module of Porechop ABI. We do not
run this core module on the whole set of reads, because it would be time-consuming. Instead, we
work with random samples of the set of reads. This sampling strategy is described in Figure 3. It
has several benefits: this speeds up the computation, this allows to capture diversity between the
samples and this allows to improve the prediction through the construction of consensus sequences
between samples.

2.4.1 Sampling

We first randomly pick up 10 datasets of 40,000 reads with length at least 200 nt, and compute one
putative sequence for each of these datasets using the algorithm described previously in Subsections
2.1, 2.2 and 2.3. If the 10 sequences found for each sample are identical, we stop and output this
sequence: this is the adapter sequence. If not, we pick up 20 more random samples of 40,000 reads,
and compute a candidate sequence for each of these datasets. This gives a total number of 30
sequences, for which we build a consensus sequence.
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2.4.2 Building consensus sequences

In the case where there are 30 sequences, we try to build one or more consensus sequences. For that,
we first cluster sequences according to their similarity score. We compute all pairwise alignments
in semi-global mode. A pair of sequences is considered compatible if the alignement is above 85%
identity. We also look at included sequences (a sequence is a substring of the other sequence).
This allows us to build a compatibility matrix, containing either 0 (not compatible), 1 (compatible)
or 2 (included) for each pair of alignments. We then use a greedy clustering approach to build
groups of similar sequences, where all pairs of sequences are either of value 1 or 2. Starting by
the most frequent non-included adapter, we add all included sequences to the cluster and then all
sequences compatible with all previously selected sequences. For each cluster of size at least 2,
we then contruct a multiple sequence alignment. One consensus sequence is computed per cluster
using a simple vote for each nucleotide. Singleton sequences (that could not be clustered with any
other sequences) are rejected.

Pairwise alignments and multiple sequence alignments are computed with the SeqAn library
using the functions globalAlignment and globalMsaAlignment respectively.

2.4.3 Poor consensus warning

At the end, each consensus sequence is a putative adapter sequence with an associated frequency
level: the relative size of the cluster. When all frequency levels are below 30%, we raise a warning to
express the fact that the prediction is not conformed to what is expected with untrimmed datasets.

2.5 Parameters

The algorithm depends on a series of parameters. They all have default values that work well in
practice on a large variety of datasets (see section 4). Those parameters are as follows.

• Number of reads in each sample set (subsection 2.4): By default, the value is 40,000.

• Length of start and end regions selected for each read (subsection 2.1.1). By default, the
value is 100.

• Length of the k-mers (subsection 2.1.1): By default, the value is 16.

• Number of top k-mers in the selection of frequent k-mers (subsection 2.1.1): by default, the
value is 500.

• Low complexity threshold: The value depends on the k-mer length. By default, it equals 1
for k-mers of length 16. It is adjusted automatically for other values of k (subsection 2.1.2)

They can be customized by the user in the config file ab initio.config

k=16 # Size of the kmers

sl=100 # Length of the windows (one window for the start adapter,

one window for the end adapter)

sn=40000 # Number of sequences in one sample

lim=500 # Number of top k-mers kept after exact count

lc=1.0 # Low Complexity threshold for k=16 (automatically adjusted to kmer size)

# This value is computed using quadratic regression.

3 Implementation

The algorithm is implemented in C++ and Python, using the SEQAN library [6] and the Net-
workX library1. The SEQAN library provides Optimal Search Schemes together with a bidrectional

1https://networkx.org/
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Figure 3: Sampling strategy with the core module
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Organism, tissue Type Flowcell Sequencing Kit Base caller Source

Mouse cDNA Simulated with BadReads

Eucalyptus pauciflora DNA r9.5 SQK-LSK108 Albacore 2.0.2 SRR7153074.1

Prunus dulcis DNA r9.4 SQK-NSK007 Metrichor SRA ERR3430401

Mouse brain cDNA r9.4 SQK-LSK008 Metrichor SRA PRJEB25574

Human B-lymphocyte cDNA r9.4 SQK-PCS108 Albacore 2.1

Zea mays cDNA r9.4 SQK-PCS108 Guppy SRA PRJNA643165

Table 1: List of tested datasets

Burrows-Wheeler Transform and a FM-index for reads indexing, which makes the search of ap-
proximate k-mers very efficient [3, 2]. NetworkX is a graph library that is used in the assembly
step of the algorithm.

This new code is available as an extension of Porechop to form a new software: Porechop ABI.
More precisely, the algorithm presented in Section 2 is implemented in the ABI module (ab initio),
which is interfaced with Porechop. Porechop ABI, as a whole, allows to automatically infer adapters
and trim them in a single run. In practice, adapter sequences found by the ABI module are loaded
in the database used by Porechop (file adapter.py). This organization is summarized in Figure 1.
It is also possible for the user to only run the ABI module. In this specific case, the output is
simply a set a putative start adapters and end adapters, when such sequences are extracted from
the raw reads.

4 Experimental results

To assess the performances of Porechop ABI, we selected a variety of datasets that correspond
to the standard usage of the tool: ONT raw sequencing reads which have not been previously
trimmed. We considered both simulated reads, and real DNA or cDNA reads generated with
several flowcells, sequencing kits and base callers. The list is in Table 1. To complement this
analysis, we also tested Porechop ABI on a dataset trimmed with Guppy, which revealed that
some residual fragments of adapters remain in the data.

For all of these datasets, the software was launched with default parameters, such as defined
in the config file (see Subsection 2.5). The command-line is the following:

python3 ~/Porechop_ABI/porechop-runner.py -i $1 -go -abc $2 -v 0 >> results.txt

where $1 is the path to the tested dataset and $2 is the path to the config file.

All tests were ran on a HP-Compaq-Pro-6300-MT with an Intel(R) Core(TM) i5-3570 CPU @
3.40GHz 16Go RAM with four threads. For each dataset, the additional processing time taken
by Porechop ABI compared to the original Porechop is less than 30 seconds per sample. Note
that for this benchmark, we concentrate on the accuracy of the adapter sequences found. So
the computation time does not include the trimming step, only the inference of the adapters
(--guess adapter only option). In practice, both steps, inference and trimming, can be achieved
with a single command:

porechop -abi -i input_file.fastq -o output_file.fastq

4.1 Simulated Nanopore reads

The first dataset is composed of 983,330 artificial long reads generated using BadRead (v0.1.5) [11]
with default parameters. BadRead documentation specifies that the default adapters sequences
inserted are Nanopore ligation adapters. Each adapter has a probability to appear in a given read
(rate) and variable amount of the adapter will be visible (amount). The sequence for reads starts is
AATGTACTTCGTTCAGTTACGTATTGCT (28nt) with a rate of 90% and an amount of 60%, the sequence
for reads ends is GCAATACGTAACTGAACGAAGT (22nt) with a of rate 50% and an amount of 20% (more
details are available in the BadRead README).
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We used the GRCm38 assembly of the mouse transcriptome as a template to generate the
dataset using the following command-line:

badread simulate --reference Mus_musculus.GRCm38.cdna.fasta

--quantity 2G >

simulated_badreads_1M.fastq

This reference transcriptome is available from ftp://ftp.ensembl.org/pub/release-102/fasta/

mus_musculus/cdna/Mus_musculus.GRCm38.cdna.abinitio.fa.gz.

Figure 4 shows the results obtained with Porechop ABI. Regarding the start adapter, a single
sequence is found with 100% support. It is 27nt long, and matches the start adapter of BadReads.
The only difference is that the first nucleotide is missing, and that the predicted sequence has an
extra nucleotide T at the end. Regarding the end adapter, one again, there is a single sequence
found, with 100% frequency. This a 21nt long sequence. The last nucleotide is missing compared to
the Badreads end adapter. This result is very promising, because only half of the reads are intented
to contain the end adapter (rate=50%), with a mean length of 20% of the original adapter across
the whole dataset. Even in this case, Porechop ABI is able to correctly recover a large part of the
signal. In both cases, the difference between the predicted sequence and the reference sequence
consists in a single extra of missing nucleotide at 5’ and 3’ ends, which means the sequence can be
used for trimming.

Start adapter

BadRead Reference AATGTACTTCGTTCAGTTACGTATTGC-

Porechop ABI -ATGTACTTCGTTCAGTTACGTATTGCT 100%

**************************

End adapter

BadRead Reference GCAATACGTAACTGAACGAAGT

Porechop ABI GCAATACGTAACTGAACGAAG- 100%

*********************

Figure 4: Adapters found by Porechop ABI for simulated ONT reads (Section 4.1). The percentage
indicated with the Porechop ABI sequence is the support score, computed during the sampling
phase of the algorithm. We mark identical positions between the reference and our sequence by
stars.

4.2 Genome of Eucalyptus pauciflora

In [9], the authors generated high coverage of Nanopore reads (174×) from a single E. pauciflora
individual. They prepared 1D ligation libraries according to the ONT’s protocol, SQK-LSK108
(whose adapters are identical to SQK-NSK007), and sequenced the reads using MinKNOW v1.7.3
with R9.5 flowcells on a MinION sequencer. They performed base calling with Albacore v2.0.2.

The whole project was deposited at NCBI under BioProject number PRJNA450887 and the
whole-genome sequencing data are available in the SRA with accession number SRR7153044-
SRR7153116. In this archive, we used dataset SRR7153074.1, that contains 818,267 reads with
average read length 7959nt.

On this dataset, Porechop ABI finds a single start adapter sequence and a single end adapter
sequence, both with support 100%. Results are shown in Figure 5. As for the start region, adapter
found by Porechop ABI is very similar to the top adapter of SQK-NSK007-Y: SQK-NSK007-Y-top
is 28 nt long, and we correctly recovered 26 nucleotides at the 3’ end. Our sequence does, however,
contain 4 extranucleotides at the 5’ extremity. One can legitimately ask whether this difference
have an impact on the search for the adapter in the sequences when trimming out the reads. To
answer this question, we trimmed all reads of the dataset using the SQK-NSK007 Y adapters on
the one hand, and the predicted adapters on the other hand, and compared the results. Out of
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Start adapter

SQK-NSK007 Y Top ---AATGTACTTCGTTCAGTTACGTATTGCT

Porechop ABI ACTGTTGTACTTCGTTCAGTTACGTATTGCT 100%

**************************

End adapter

SQK-NSK007 Y Bottom ---GCAATACGTAACTGAACGAAGT

Porechop ABI ATAGCAATACGTAACTACA 100%

************* *

Figure 5: Adapters found by Porechop ABI for the Eucalyptus reads (section 4.2). We align the
sequences found against the SQK-NSK007 Y Top and SQK-NSK007 Y Bottom sequences, and
mark identical positions with a star. The percentage indicated at the end of the Porechop ABI
line is the support score.

NSK-007-Y-Top
porechop_ABI
adapter

364,108 
(44.6%)

29,066 
(3.5%)

27,135 
(3.3%)

start adapter 
 

NSK-007_Bottom porechop_ABI
adapter

134,378
(16.4%)

40,293
(4.9%)

39,122
(4.8%)

end adapter

397,958 (48.6%)

818,268 reads

604,475 (73.9%)

Figure 6: Venn diagram for Eucalyptus reads: we indicate the proportions of reads whoch have
been identically trimmed out using the SQK-NSK007 Y adapter and our adapter.

the 818,267 reads, 393,174 reads are trimmed out with the SQK-NSK007 Y top adapter (48.05%
total), and 391,243 reads are trimmed with porechop ABI adapters (47.81% total). Those numbers
are very closed and, what is more, they refer to the same reads: 364,108 reads were trimmed out for
both adapters and 397,958 reads had no adapters found by both tools. Regarding the end region,
the majority of reads (74%) have not been trimmed out with either the SQK-NSK007 Y bottom
adapter or the adapter found with Porechop ABI. For the remaining reads, they is a string overlap
(more than 60%) between two methods. See Figure 6 for a Venn diagram.

Stability accross sampling. To go further with this first real dataset, we then tested sampling
stability by running the program 100 times independently. For the start adapter, all runs produced
exactly the same output, with 100% support at each try. For the end adapter, there are some minor
variations: 91 tests obtained the same sequence with maximal support (100%), 8 tests obtained
the same sequence with a lower support (98.3%) and one test produced a sequence with one extra
nucleotide. See Table 2.

4.3 Almond genome

This dataset comes from the sequencing of the Prunus dulcis genome accessible on SRA (ref:
ERR3430401). It was sequenced on a r9.4 flowcell using the kit SQK-NSK007 and no prior PCR
step [1]. It contains 441,203 reads.

Porechop ABI finds one sequence for the start adapter, and one sequence for the end adapter
both with 100% support. As shown in Figure 7, the start adapter matches closely to the SQK-
NSK007 Y Top adapter, as expected. The end adapter matches to the beginning of the SQK-
NSK007 Y Bottom adapter, meaning probably that most reads were cut before the end of the
adapter.
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Start adapters (100 runs)

100 100% ACTGTTGTACTTCGTTCAGTTACGTATTGCT

End adapters (100 runs)

91 100% -ATAGCAATACGTAACTACA

8 98.3% -ATAGCAATACGTAACTACA

1 100% TATAGCAATACGTAACTACA

Table 2: Stability across sampling(section 4.2). We ran the software 100 times, and for each run
we report the adapter sequences found together with their support score. The first column is
the number of runs, the second column is the support and the third column is the sequence. We
obtained exactly the same start sequence for each of the 100 trials, with support 100%. As for the
end adapter, 99 out of 100 runs returned the same sequence with support ranging from 98.3 to
100, and one run produced a sequence with one extra nucleotide at the beginning, with support
100.

Start adapter

SQK-NSK007_Y_Top --AATGTACTTCGTTCAGTTACGTATTGCT

Porechop_ABI ATGTTGTACTTCGTTCAGTTACGTATTGCT 100%

**************************

End adapter

SQK-NSK007_Y_Bottom --GCAATACGTAACT-GAACGAAGT

Porechop _ABI CAGCAATACGTAACTTCAA------ 100%

*************. **

Figure 7: Start and end adapters found by Porechop ABI for the almond genome dataset (sec-
tion 4.3)
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4.4 Mouse brain cDNA

This dataset contains 1D cDNA reads sequenced from mouse brain transcriptome using a Min-
Ion equipped with a r9.4 flowcell. It was generated following a custom sequencing protocol: 2D
cDNA synthesis (SQK-LSK008) followed by a 1D library protocol for sequencing.2. The dataset
was basecalled using Metrichor 2.43.1 using 1D workflow 1D Basecalling RNN for LSK108, and
contains 1,256,967 reads. It is publicly available on ENA/SRA with the id PRJEB25574 (filename:
BYK CB ONT 1 FAF04998 A 1Donly).

In this dataset, Porechop ABI identified two distinct sequences for the start region, both with
support 50%. Those sequences have approximately the same length: 78nt for the first one, and
74 nt for the other one. They have the same initial motif and the same final motif. They dif-
fer with the middle part. When comparing all these parts to adapters present in the Porechop
database adapter.py, it appears that each of them can be aligned to known adpater, as shown
in Figure 8. The first part matches perfectly with SQK-NSK007 Y Top, the last part is SQK-
MAP006 Short Y Top LI32, and the middle part corresponds respectively to the PCR 1 start and
PCR 2 start. This organization with three adapters is consistent with ONT guidelines: ”this kind
of 3-motif pattern is apparently expected with this chemistry. The first part of your motif is the
adapter, the middle part is the primer and the last part is the leader (the PCA adapter is y shaped
and the rightmost portion of the sequence is the MAP006 short)”3.

Similarly, the program finds two sequences in the 3’ end region, with respective support 58.3%
and 41.3%, and both sequences exhibit a 3-motif organization. The beginning part is SQK-
NSK007 Y Top, the end is SQK-MAP006 Short Bottom LI33, and the middle part corresponds to
two distinct PCR adapters, PCR 2 end and PCR 3 end.

As a conclusion, this example shows the ability of Porechop ABI to successfully manage datasets
with mixed adapters. This distinctive feature of the tool comes from the clustering and consensus
step in the core module, described in subsection 2.4.2.

Start adapter
SQK-NSK007 Y Top PCR 1 start SQK-MAP006 Short Y Top LI32

Reference -AATGTACTTCGTTCAGTTACGTATTGCTACTTGCCTGTCGCTCTATCTTCCGGCGTCTGCTTGGGTGTTTAACCT

Porechop ABI 1 CTGTTGTACTTCGTTCAGTTACGTATTGCT-CTTGCCTGTCGCTCTATCTT-CGGCGTCTGCTTGGGTGTTTAACCTTTT 51.7%

************************** ******************** **********************

SQK-NSK007 Y Top PCR 2 start SQK-MAP006 Short Y Top LI32

Reference AATGTACTTCGTTCAGTTACGTATTGCTTTTCTGTTGGTGCTGATATTGCCGGCGTCTGCTTGGGTGTTTAACCT

Porechop ABI 2 -ATGTACTTCGTTCAGTTACGTATTGCT--TCTGTTGGTGCTGATATTG-CGGCGTCTGCTTGGGTGTTTAACCTTTT 48.3%

*************************** ******************* *************************

End adapter
SQK-MAP006 Short Y Bottom LI33 PCR 3 end SQK-NSK007 Y Bottom

Reference GGTTAAACACCCAAGCAGACGCCGGAAGATAGAGCGACAGGCAAGTAGCAATACGTAACTGAACGAAGT

Porechop ABI 1 GGTTAAACACCCAAGCAGACGCCG-AAGATAGAGCGACAGGCAAGTAGCAATACGTAACTGA 50%

************************* **********************************

SQK-MAP006 Short Y Bottom LI33 PCR 2 end SQK-NSK007 Y Bottom

Reference GGTTAAACACCCAAGCAGACGCCG GCAATATCAGCACCAACAGAAA GCAATACGTAACTGAACGAAGT

Porechop ABI 2 GGTTAAACACCCAAGCAGACGCCG -CAATATCAGCACCAACAGAAA GCA 50%

************************* ********************* ************

Figure 8: Start and end adapters for the mouse brain dataset (section 4.4)

4.5 Data from the Nanopore WGS consortium

The Nanopore WGS Consortium4 sequenced a human poly(A) transcriptome from B-lymphocyte
cell line (GM12878) [12]. Two datasets from two different sequencing centers were selected for this
benchmark. The first center is Bham (University of Birmingham, file

2Personal communication, Genoscope
3ONT customer service, personal communication
4https://github.com/nanopore-wgs-consortium/NA12878
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Start adapter

PCR_1_start ACTTGCCTGTCGCTCTATCTTC

BHAM Porechop_ABI TTGTTGTACTTCGTTCAGTTCAGATTTGGGTGTTTAACCAGTTCACTTGCCTGTCGCTCTATCTTCT 100%

UCSC Porechop_ABI 1 TTGTTGTACTTCGTTCAGTTCAGATTTGGGTGTTTAACCAGTT-ACTTGCCTGTCGCTCTATCTTCT 50%

PCR_2_start TTTCTGTTGGTGCTGATATTGC

UCSC Porechop_ABI 2 TTGTTGTACTTCGTTCAGTTCAGATTTGGGTGTTTAACCGGTTTCTGTTGGTGCTGATATTGCTGGGG- 50%

End adapter

PCR_2_end GCAATATCAGCACCAACAGAAA

UCSC Porechop_ABI GAGCCCCAGCAATATCAGCACGCA------ 100%

BHAM Porechop_ABI GAGCCCCAGCAATATCAGCAG--------- 93%

Figure 9: Porechop ABI results for UCSC and BHAM human datasets

Bham Run1 20171115 1D.pass.dedup.fastq), and the second is UCSC (University of California,
Santa Cruz, file
UCSC Run1 20170919 1D.pass.dedup.fastq). Both datasets were sequenced using the 1D cDNA
protocol, a r9.4 flowcell and the SQK-PCS108 kit. They were basecalled using Albacore 2.1.
Adapter sequences for the SQK-PCS108 kit are not documented or referenced in Porechop database.
All we know is that the sequencing protocol involves a PCR step.

We ran Porechop ABI on the two datasets independently, with the idea in mind that since
experimental conditions are similar, we should obtain similar results from these two datasets. The
results are presented in Figure 9. For the start adapter, we found two sequences with UCSC
dataset, both with support 50%, and a single sequence with the BHAM dataset. All these three
sequences begin with the same prefix:

TTGTTGTACTTCGTTCAGTTCAGATTTGGGTGTTTAACCAG

Then adapter 1 found on UCSC dataset and the single adapter found on BHAM dataset both
match to the PCR1 start adapter, while adapter 2 of UCSC dataset matches the PCR2 start
adapter. The presence of PCR adapters is expected with the standard 1d cDNA protocol, since a
PCR step is involved.

As for the end adapter, both datasets give a single sequence. The end adapters is much shorter,
and only a partial alignment of the PCR 2 end adapter was possible.

4.6 Zea mays: testing basecaller trimming with Guppy

All previously processed datasets were basecalled with either Metrichor or Albacore, which both
require a downstream trimming phase. In this example, we tested Porechop ABI on a dataset
basecalled with Guppy, that supposedly trims out adapters at the basecalling stage. Our goal
is to test Guppy trimming ability, and check whether or not Porechop ABI could detect leftover
adapters.

We used a Zea mays 1D cDNA dataset picked from SRA: PRJNA643165. It was basecalled
with Guppy with trimming mode activated. It contains a total of 5,396,492 reads obtained using a
r9.4 flowcell and the SQK-PCS108 sequencing kit (like the human cDNA datasets of Section 4.5).

Results are shown on Figure 10. In both cases, start and end regions, Porechop ABI found a
stable adapter sequence. The start sequence closely matches the PCR 2 start adapter sequence
with some excess on both sides. The analysis of the end adapter raises additional questions. The
sequence maps partially on the PCR 2 end adapter. This confirms the fact that parts of the
PCR 2 adapter sequences were still be found in this dataset. Since no other adapter sequences
were discovered, we suggest that Guppy may have been able to trim out other adapter sequences.

In order to look at the prevalence of residual adaptor sequences, we used Porechop in trimming
mode with our predicted adapters on the entire dataset (5,396,492 reads). The result is as follows:
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Start adapter

PCR 2 start TTTCTGTTGGTGCTGATATTGC

Porechop ABI TTATGGTTTCTGTTGGTGCTGATATTGCTGGGG 100%

**********************

End adapter

PCR 2 end GCAATATCAGCACCAACAGAAA

Porechop ABI ATCCCCAGCAATATCAGC 100%

***********

Figure 10: Adapters for the Guppy maize dataset (section 4.6)

• 1,699,193 reads contained start adapters in the 1-150 region, resulting in 103,923,858 base
pairs removed.

• 2,102,217 reads contained end adapters from position -150, resulting in 38,466,512 base pairs
removed.

• 2,257 reads were split based on middle adapters.

It means that 31% reads still contain traces of the start adapter near the 5’ extremity, and 39%
reads traces of the end adapter near the 3’ extremity. The rate of middle adapters, found in the
middle part, is approximately 4%. It is an indication that the dataset may contain some chimeric
reads.

If this behavior is consistent on all datasets trimmed by Guppy, it is more than likely that some
adapter sequences are still present in a lot of recent public dataset.

5 Negative controls

In this section, we provide negative controls, in order to evaluate the selectivity of the tool. We
look at the existence of false negative predictions: what is the outcome of Porechop ABI when
there is no adapter sequence to find ?

5.1 Random sequences

The first test is made of 100 datasets composed of 1 million randomly generated sequences of length
100nt (independently distributed sequences with 25% A’s, 25% C’s, 25% G’s and 25% T’s). We
ran Porechop ABI on each of these datasets. It did not find any adapter sequence in all cases.

5.2 Control from the eucalytpus genome

A second negative control was built from the E. pauciflora dataset of Section 4.2. Since adapters
are intended to be inserted at the extremities of the reads, alternative regions of the reads are
supposed to be adapter-free, except for some chimera reads. To test whether Porechop ABI would
find motifs in the middle of the reads, we selected all reads whose length is greater than 700 nt and
ran the algorithm on the region [500, 600]. We did this 100 times, in order to test the stability. For
each of these 100 runs, Porechop ABI issued a low frequency warning, meaning that the k-mers
used to build the sequences are questionable (see subsection 2.3.3). In some cases, the program
was able to build consensus sequences and output adapter sequences, but none of these sequences
exceed the recommended 30% support threshold, and the poor consensus warning was activated
in all cases (see subsection 2.4.3). It means that Poerchop ABI did not find any motif.
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Window [201, 300]

Porechop_ABI TTTTCTCTTACCCTCACGTTATTGTGGCGATACATTAATCGGTGTTATCTTAAACCCAC 90%

NM_001025251.2 2004-1946 TTTTCTCTTACCCTCACGTTATTGTGGCGATACATTAATCGGTGTTATCTTAAACCCAC

***********************************************************

Window [−300,−201]

Porechop_ABI consensus 1 GTAGAGTGTGGGTTTAAGATAACACCGATTAATGTATCGCCACAATAACGTGAGGTAA 53.3%

NM_001025251.2 1939-1993 GTAGAGTGTGGGTTTAAGATAACACCGATTAATGTATCGCCACAATAACGTGAGG---

*******************************************************

Porechop_ABI consensus 2 (top)

NM_013494.4 1909-1984 (below)

AGTTCCATATAAGTTGTCCTTAGTCTCTTGTGCTGATTCACTGTATAAGCATGATCCTGGTAATGCACTTTGGATG 36.7%

AGTTCCATATAAGTTGTCCTTAGTCTCTTGTGCTGATTCACTGTATAAGCATGATCCTGGTAATGCACTTTGGATG

****************************************************************************

Figure 11: Adapters for negative control dataset built from mouse brain transcriptome (subsection
5.3). NM 001025251.2 is the transcript identifier for the Mus musculus myelin basic protein, and
NM 013494.4 the transcript identifier for theMus musculus carboxypeptidase E. For both windows,
the total support is strictly smaller than 100%, because the method also found orphan sequences
whose support is below the 30% threshold.

5.3 Control from the brain mouse transcriptome

The last negative control was built from the mouse brain cDNA dataset of Section 4.4, looking
at windows where start and end adapters are not supposed to be found. The first window is
[201, 300] and the second window is [−300,−201] in vicinity to the 3’ end of the reads. In both
cases, the low frequency warning was triggered, but a mild signal was found. On the start area,
Porechop ABI finds a sequence of length 52nt, visible in Figure 11. A Blast search showed that
this pattern exactly maps on the coding sequence of the myelin basic protein (NM 001025251.2),
which is a major constituent of the myelin sheath of oligodendrocytes and Schwann cells in the
nervous system. For the other window, we found two sequences, that are also visible on Figure 11.
Blast search establishes that those two sequences are fragments of the myelin basic protein and of
the carboxypeptidase E that is involved in the biosynthesis of most neuropeptides (NM 013494.4).

So in both windows, Porechop ABI indicates that there is no adapter left, and finds fragments
of genes that are known to be expressed in brain cells. This example shows that the tool is highly
sensitive and is able detect a low biogical signal, even if this not its primary purpose. The warning
messages are solid indications that there is no adapter present, and that the sequences found a
must be treated with caution.

6 Discussion

We have developed a new software that meets the initial requirements: to infer the adapter se-
quences in ONT reads, without any prior knowledge about the adapters. It allows to determine
whether the reads have already been trimmed out, and if not, which adapters have been used.
This algorithm is integrated into the open source software Porechop, which makes it easy to use
and allows trimming out in a single pass once the adapters have been identified.

We believe that Porechop ABI can be useful to help analysing freshly sequenced data, by
verifying that the reads indeed contain the expected adapters or that they have been accurately
trimmed out. It also facilitates the usage of data available on public repositories, that often lack
metadata on that matter.
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