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Abstract 
 
Mechanistic toxicology has emerged as a powerful framework to inform on the safety of 
chemicals and guide the development of new safe-by-design compounds. Although 
toxicogenomics provides support towards mechanistic evaluation of chemical exposures, the 
implementation of toxicogenomics-based evidence in the regulatory setting is still hindered 
by uncertainties related to the analysis and interpretation of such data. Adverse Outcome 
Pathways (AOPs) are multi-scale models that link chemical exposures to adverse outcomes 
through causal cascades of key events (KEs). The use of mechanistic evidence through the 
AOP framework is actively promoted for the development of new approach methods (NAMs) 
and to reduce animal experimentation. However, in order to unleash the full potential of 
AOPs and build confidence into toxicogenomics, robust and unified associations between KEs 
and patterns of molecular alteration need to be established. 

Here, we hypothesised that systematic curation of molecular events associated with 
KEs would enable the modelling of AOPs through gene-level data, creating the much-needed 
link between toxicogenomics and the systemic mechanisms depicted by the AOPs. This, in 
turn, introduces novel ways of benefitting from the AOP concept, including predictive models, 
read-across, and targeted assays, while also reducing the need for multiple testing strategies. 
Hence, we developed a multi-step strategy to annotate the AOPs relevant to human health 
risk assessment. We show that our framework successfully highlights relevant adverse 
outcomes for chemical exposures with strong in vitro and in vivo convergence, supporting 
chemical grouping and other data-driven approaches. Finally, we defined and experimentally 
validated a panel of robust AOP-derived in vitro biomarkers for pulmonary fibrosis. 
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Introduction 
 
Mechanistic aspects of chemical exposures have been long exploited in the context of 
academic research, resulting in the emergence of toxicogenomics and systems toxicology as 
independent fields (1,2). Although the mechanistic insight gained through the technologies 
employed in academia has been valued as supporting evidence in the regulatory setting, its 
incorporation into the regulatory framework is to date hindered by concerns related to the 
robustness and reproducibility of such data and its analysis (3). At the same time, the growing 
need for faster, cheaper, and more ethical approaches for chemical safety assessment have 
made mechanistic toxicology central for clarifying aspects important to regulatory decision 
making. Furthermore, uncovering exposure related mechanistic properties is emerging as a 
fundamental approach for the design of new drugs and chemicals (4,5). Hence, multiple high-
end research initiatives are underway to drive the shift from traditional animal-based 
assessment of apical toxicity endpoints towards in vitro and in silico approaches supported by 
mechanistic evidence (6–8).  

Adverse Outcome Pathways (AOP) emerged as models to organise biological 
mechanisms into causally linked sequences of multi-scale events to support chemical risk 
assessment (9). AOPs have since expanded beyond the limits of toxicology, showing their 
applicability in organising mechanisms of disease progression and adverse health outcomes 
(10,11), and could even be applied to assess beneficial effects of therapies. The mechanisms 
depicted by AOPs comprise a sequence of events that progress from the molecular initiating 
event (MIE) towards an adverse outcome (AO) through intermediate steps, key events (KEs), 
with biological complexity increasing as the AOP progresses. Individual KEs are connected by 
key event relationships (KER), that verbally explain the causal link between the events and 
provide context for the pathway. 

The AOP concept quickly attracted attention due to its potential in tackling one of the 
major challenges in the shift away from traditional toxicology: deciphering systemic and long-
term outcomes of chemical exposures without the use of animal experiments. While 
significant efforts still need to be made towards this goal, AOPs encompass the means to 
systematically guide the integration of in vitro -based evidence into the risk assessment 
framework (12). AOPs provide the grounds for various predictive approaches, read-across, 
and the development of targeted assays and new approach methods (NAMs), as also 
suggested by regulatory agencies and international organisations, such as the OECD (8). 
Furthermore, the construction of AOPs can help identify gaps in knowledge and guide 
resources towards mechanisms in need of further investigation, or alternatively, reveal 
connections that have not been previously characterised (13). 

Concurrently with the development of the AOP framework, the role of omics data in 
elucidating biomarkers and mechanisms of action of chemical exposures and diseases has 
become more prominent (14–18). Omics data have been used to support the development 
of AOPs, especially through the identification of molecular targets and mechanisms (19–23). 
However, full exploitation of omics-based evidence in the context of AOPs is hindered by the 
complication of linking molecular data to complex biological events, affecting both the 
development and the application of AOPs. Furthermore, while the value of omics data in 
answering questions of regulatory importance is recognised, the lack of standardisation in 
analysis and reporting have hampered widespread regulatory acceptance of omics-based 
evidence (24). Bypassing these challenges could broaden the application of AOPs and further 
aid in the development of the concept towards quantitative models and assays. While 
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molecular assays based on arbitrarily selected reporter genes have been proposed (e.g., 
ToxCast assays), there is an urgent need to develop new data-driven unbiased molecular 
assays for reliable and efficient mechanistic safety assessment of chemicals.  
Here we hypothesised that rigorous curation of molecular events associated with AOPs could 
facilitate the implementation of omics-based evidence to 1) support the development of new 
AOPs, 2) identify and fill gaps in knowledge, and 3) transfer AOP-based knowledge into robust 
assays to support chemical safety assessment. 

Well-curated gene ontologies, pathways, and biological processes are used to 
interpret omics results and their translation into biologically relevant information. While 
some KEs can be easily crosslinked with such terms and their associated genes, the annotation 
of complex KEs taking place at a higher level of biological organisation (e.g., at the tissue- or 
organism-level) is a more demanding task. This requires knowledge regarding ontologies and 
the biological events themselves. For instance, generic annotations are helpful for 
categorising KEs, but without the intention of modelling KEs using the associated gene sets, 
they will likely not reach the level of granularity required for such a task. This is currently 
reflected in the annotations provided in the AOP-Wiki repository (aopwiki.org). The 
annotation of KEs to selected ontologies is currently included as an option in AOP-Wiki.  
However, the coverage of the annotations is currently low and has not been intended for 
modelling the KEs using the gene sets associated with their annotations.  

Previous efforts to curate external annotation have shown the potential of the 
approach (25,26). However, these have either remained at the level of abstract associations 
or focused on individual examples (27,28). Hence, systematic, fit-for-purpose, and up-to-date 
annotation linking KEs to curated gene sets has not yet been established. To this end, we 
applied an integrated strategy for defining gene-KE-AOP associations through systematic 
curation. We show the applicability of our strategy for evaluating potential adverse outcomes 
of chemical exposures, and for the identification of AOP-driven biomarkers that can inform 
the development of target assays and novel approaches to chemical hazard characterisation. 

 

Results and discussion 
 
We developed an integrated approach to systematically associate curated gene sets to the 
KEs and AOPs. Our approach combines natural language processing (NLP) techniques with 
manual curation to link relevant biological processes and pathways, as well as their associated 
genes, to KEs of AOPs relevant for human health risk assessment. The resulting gene-KE-AOP 
connections enable the modelling of KEs and AOPs through gene-level data, which further 
introduces novel ways to benefit from the AOP concept. We applied this approach to generate 
an AOP fingerprint for a known profibrotic exposure in vivo and in vitro and finally combined 
the annotation to a framework for prioritising KE- and AOP-associated genes to guide the 
discovery of biomarkers and reporter genes. The complete approach described in the 
following sections is summarised in Figure 1. 
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Figure 1. Overall scheme of the study. Established gene sets were annotated to KEs of the 
AOPs relevant for human health risk assessment. The resulting gene sets were then used to 
model the KEs. The validity of the annotation was evaluated using gene signatures of 
exposures with known adverse outcomes. Finally, we combined the approach with a gene 
prioritisation framework resulting in the identification of AOP-driven biomarkers for 
pulmonary fibrosis. 
 
 
The majority of KEs can be successfully annotated to curated gene sets 
 
At the time of retrieving the data from the AOP-Wiki repository (November 2020), a total of 
289 AOPs and 1,131 distinct KEs were identified. However, after eliminating the AOPs for 
which taxonomic applicability was either not available nor in the scope of our investigation, 
176 AOPs and 856 unique KEs remained, forming a total of 1,245 unique AOP-KE pairs (specific 
KEs). Although the AOP-Wiki houses selected annotations for some of the KEs, majority of 
them were considered not to be specific enough for our purpose (i.e., KEs describing the 
dysregulation of a specific gene annotated to terms such as “gene expression”). Additionally, 
as the existing annotations only cover a part of the KEs, we decided to consistently curate the 
annotation of all KEs. As a result, 799 unique KEs mapped to 175 AOPs received a curated 
annotation. The KEs were treated as individual instances, hence the same KE mapped to 
multiple AOPs was always annotated to the same term(s). A summary of the number of terms 
annotated to the KEs is presented in Figure 2A along with the proportions of the different 
term sources (Figure 2B). GO biological processes (GO_BP) represent most of the mapped 
annotations, followed by GO molecular functions (GO_MF) and Human Phenotype Ontology 
(HPO). Since up to five annotations were provided for the KEs, the final gene sets used from 
herein comprise the union of the genes mapped to each annotated term. This structure 
allowed improved specificity, while also providing the possibility to further refine the gene 
sets using the hierarchical order implemented where applicable. The size of the gene sets 
associated to each KE range from one to 5,990 genes, with a median value of 81 genes. 
Consequently, when AOPs are modelled by combining the gene sets associated to their KEs, 
the gene set sizes range from 15 to 5,992 with the median size being 752 genes.  

In total, the annotations comprise 15,825 genes. While the majority of genes are 
annotated to less than 5 KEs (9,044 genes), 1,434 genes have more than 20 KEs associated to 
them, and 50 genes have more than 80 associated KEs (Figure 2C). Although these numbers 
can be affected by annotation bias, e.g., certain genes are better researched and annotated 
than others, they can also guide the selection of AOP-driven biomarkers when specificity is of 
importance. 
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Figure 2: Descriptive analysis of the KE annotation. (A) Bar plot describing the number of 
annotated terms per KEs. (B) Pie chart expressing the proportions of different annotation 
types. (C) Density distribution of the number of KEs each gene is annotated to.  
 
The result of the annotation suggests that the majority of human relevant KEs can be linked 
to gene ontology, phenotype, and pathway terms, and further to their corresponding sets of 
genes. Previous efforts to annotate KEs have provided similar implications (25,26). However, 
the applicability of the annotations has not been previously systematically explored, nor have 
they allowed modelling of the KEs and AOPs by use of gene sets on a large scale. Here, we 
present the first thorough mapping of all human relevant KEs to curated gene sets. 
 
 
AOP enrichment highlights relevant adverse outcomes associated to chemicals 
 
We tested the ability of our novel annotations to highlight relevant AOPs by analysing a set 
of curated reference chemicals as defined by EU Reference Laboratory for alternatives to 
animal testing (ECVAM) and National Toxicology Program Interagency Center for the 
Evaluation of Alternative Toxicological Methods (NICEATM). We focused on four categories 
of chemicals defined by their toxicity properties to include hepatotoxic and carcinogenic 
agents as well as thyroid disruptors and sex hormone receptor (estrogen receptor – ER, and 
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androgen receptor - AR) agonists. For each of the selected chemicals, we retrieved a list of 
associated genes from the Comparative Toxicogenomics Database (CTD) (29), resulting in a 
final set of 75 chemicals (Supplementary File 1). 
 
AOPs related to each category were then identified among the 175 AOPs we had curated, and 
the prevalence of relevant AOPs (i.e., AOPs describing carcinogenesis for carcinogenic 
chemicals, etc.) among the five most significantly enriched AOPs for each chemical were 
evaluated. The results suggest that the enrichment approach successfully highlights AOPs of 
relevance for each group of chemicals (Figure 3). All sex hormone receptor agonists had at 
least one relevant AOP among the top five enriched, while the proportions varied from 43% 
(thyroid disrupters) to 93% (carcinogens) in the other categories (Figure 3).   

 

 
Figure 3: Bar plot representing the proportion of chemicals with relevant AOPs among the top 
five enriched AOPs based on the chemical classification. Number in brackets after the 
category name refers to the number chemicals in each category while the percentage on the 
bars reflects the proportion of chemicals in each category highlighting relevant AOPs. SHR 
stands for sex hormone receptor agonist.  

In the group of carcinogenic chemicals, 93% of the compounds evaluated had cancer-
related adverse outcomes among the top enriched AOPs. In fact, the group of carcinogens 
had the highest proportion of relevant AOPs at the top as compared to the others (median 
four out of five compared to the median of two out of five in the other groups). However, it 
should be noted that AOPs related to cancer are among the most represented group of AOPs, 
and cancer-related genes are generally highly researched and annotated, which may 
introduce a level of annotation bias that should be recognised.  

The remaining four carcinogenic chemicals (7%) that showed no cancer AOPs among 
the top enriched AOPs were N-nitrosodiethanolamine, N-nitrosomorpholine, phenacetin, and 
tetrachloroethylene. N-nitrosomorpholine and N-nitrosodiethanolamine are both 
nitrosamines whose suspected adverse outcomes besides carcinogenesis include non-
alcoholic steatohepatitis (30). Indeed, both compounds contained hepatic steatosis related 
AOPs among the top five enriched AOPs (Supplementary File 1). Tetrachloroethylene 
(perchloroethylene, PCE) is a chlorocarbon solvent used in dry-cleaning and other degreasing 
applications (31). AOPs with the most significant enrichment for PCE were also related to 
hepatic adverse outcomes. Although neurotoxicity is one of the most frequent AOs associated 
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with PCE exposure, hepatotoxicity has also been reported (31). Our results documenting liver 
steatosis are supported by biopsy-based evidence of liver disease, both in human and animal 
models, in settings of high occupational exposures (32). Lastly, phenacetin is a drug that was 
widely used as pain medication until it was withdrawn from the market across the globe due 
to increasing evidence of carcinogenicity and renal toxicity (33). The most enriched AOPs for 
phenacetin included immune related AOPs “Immune mediated hepatitis” (Aop:362) and 
Aop:277 titled “Inhibition of IL-1 binding to IL-1 receptor leading to increases susceptibility to 
infection”. Although there is no described association between phenacetin and IL-1 or 
immuno-toxicity, it is known that they both play a role in paracetamol-associated liver 
toxicity, which is the main metabolite of phenacetin (33,34). 

In the case of the known liver toxicants, hexaconazole was the only compound not 
highlighting AOPs associated with liver toxicity among the top enriched AOPs. Hexaconazole 
is a widely used triazole fungicide. It acts by blocking sterol biosynthesis via inhibition of 
cytochrome P450 (35). Hexaconazole was considered as a Group C-Possible Human 
Carcinogen by the US EPA due to increased incidence of benign Leydig cell tumours in rats 
(https://www3.epa.gov/pesticides/chem_search/hhbp/R000356.pdf). Moreover, it was 
found to affect the reproduction of female rats (35). The top enriched AOPs correctly identify 
this signature. Furthermore, the top two pathways “HMG-CoA reductase inhibition leading to 
decreased fertility” and “Modulation of Adult Leydig Cell Function Subsequent to Decreased 
Cholesterol Synthesis or Transport in the Adult Leydig Cell” both suggest a decrease in 
cholesterol levels by inhibition of the HMG-CoA reductase. Drugs inhibiting this enzyme, such 
as statins, are known to possibly cause liver damage (36). 

Known thyroid toxicants performed poorest in our analysis. Bifenthrin, malathion, 
permethrin and simazine did not capture thyroid-related AOPs among the top five enriched. 
All these compounds have been widely used in agriculture as herbicides or pesticides. 
Agrochemicals represent a significant class of endocrine disrupting chemicals, albeit through 
varying mechanims. It is now accepted that many of these molecules may mimic the 
interaction of endogenous hormones with nuclear receptors, such as estrogen, androgen, and 
thyroid hormone receptors (37). Indeed, bifenthrin has already been reported as an 
endocrine-disrupting compound by blocking the binding of endogenous hormones (38). In our 
framework, its anti-estrogenic activity emerges as the most enriched AOP (Supplementary 
File 1). Malathion is an organophosphate pesticide that is known for its low acute toxicity and 
rapid degradation (39). In this light, it is not listed as a primary thyroid disrupting chemical, 
and its toxicity has been associated with the inhibition of acetylcholinesterase activity on 
nerve impulse (39). Recent studies, however, demonstrated that malathion acts as an 
endocrine disruptor, both in vitro and in vivo (40,41). Our results support these findings, 
highlighting the Aop:165: “Anti-estrogen activity leading to ovarian adenomas and granular 
cell tumors in the mouse” as well as Aop:112: “Increased dopaminergic activity leading to 
endometrial adenocarcinomas“. Furthermore, Moore et al. demonstrated that malathion 
exposure at higher concentrations induces cytotoxic and genotoxic effects in HepG2 through 
oxidative stress, which can finally lead to liver cancer (39). Similarly, our framework highlights 
both the “PPARalpha-dependent liver cancer” and “Cyp2E1 Activation Leading to Liver 
Cancer” AOPs. Simazine is a triazine herbicide whose use has been banned in most European 
countries for nearly two decades (42). Simazine has now been recognised, similarly to the 
other compounds, as an endocrine disrupter (42). Interestingly, the enrichment analysis for 
simazine highlighted AOPs related to the development of adenomas and carcinomas through 
endocrine disrupting activities (e.g., Aop:107 titled “Constitutive androstane receptor 
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activation leading to hepatocellular adenomas and carcinomas in the mouse and the rat”) as 
well as direct disruption of the GnRH pulse (Supplementary File 1). Although multiple in vivo 
and in silico evidence also indicate permethrin as possible endocrine disruptor (43,44), no 
endocrine related pathways are present in the top enriched AOPs. However, this framework 
was able to highlight the modulating effect of permethrin on the lipid metabolism. It has been 
demonstrated that in HepG2 cells, permethrin increases lipogenesis and decreases beta 
oxidation, possibly contributing to the development of NAFLD (45). Indeed, the “Inhibition of 
fatty acid beta oxidation leading to nonalcoholic steatohepatitis (NASH)” AOP is statistically 
enriched in our results.  

Together, these results highlight relevant AOPs modelled by our curated gene sets to 
be enriched by the genes associated to the compounds, suggesting that our framework is able 
to support robust mechanistic and data-driven chemical grouping as well as the identification 
of potential adverse outcomes using chemical-gene associations.   
 
Our annotation enables grouping of KEs resulting in improved modelling of the AOP 
network 
 
In order to fully unleash the potential of mechanistic toxicology, more informative testing 
strategies need to be developed that can monitor specific phases of the exposure-bio 
interactions and mechanisms. To this end, we defined accurate sets of genes capable of 
modelling specific KEs and AOPs. However, one of the challenges observed in the AOP-Wiki is 
the redundant semantics in the naming of KEs. While creating a new KE can be meaningful in 
many cases (e.g., the same biological process taking place in a distinct organ or a tissue), 
unnecessary redundancy can lead to challenges in the application of the AOP-based 
knowledge. This is especially true when modelling AOPs as a network and using such 
representation to identify hidden connections and to perform read across analysis (10,46–
51).  

Hence, we hypothesised that KEs could be grouped based on the degree of similarity 
of their associated gene lists. We calculated the similarity of the KEs based on their annotated 
gene sets and grouped together those mapped to identical sets of genes (Jaccard Index = 1). 
This resulted in the identification of 637 groups of varying sizes. These groups were 
characterised by four main concepts: 1) truly duplicated KEs due to distinct semantics, 2) same 
biological event in multiple biological systems, 3) subsequent KEs mapped to the same terms 
due to inadequate specificity, and 4) opposite regulation of the same biological event (i.e., 
increased vs. decreased signalling). 

Here, the grouping based on identical gene sets was selected due to the nature of the 
downstream application and statistical considerations (i.e., to avoid multiple testing against 
the same gene set in enrichment analysis). However, a parallel approach with varying cut-off 
values for similarity could be implemented to cluster KEs more roughly and to define specific 
categories of events. Similarly, further refinement of the KE clusters could help to enhance 
the AOP network by removing redundant nodes which, in turn, could reveal hidden links.  
The potential of the KE grouping was showcased using a subgraph formed by considering the 
AOPs related to pulmonary fibrosis (PF). PF is a chronic lung disease characterised by tissue 
damage and scarring that impairs lung function (52). A range of environmental exposures, 
including certain chemicals, drugs, nanomaterials and radiation, as well as infectious diseases 
have been identified as causative agents for PF (52–54). Moreover, the COVID-19 pandemic 
has raised concerns about increasing rates of PF (55–57). Understanding the disease 
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mechanisms can help in the development of strategies to treat and prevent the disease, and 
to control and modulate the exposures that contribute to its progression. Furthermore, it can 
serve as the foundation for developing targeted assays for evaluating PF as a toxicological 
endpoint.  

Six AOPs related to PF were available in the AOP-Wiki at the time of data retrieval 
(Figure 4A). These distinct AOPs characterise multiple pathways leading to the same adverse 
outcome. Together, these AOPs comprise 30 KEs, which form a connected graph when 
modelled as a network (Figure 4C). However, several redundancies were observed among the 
KEs. For instance, the adverse outcome was expressed either as lung fibrosis (Event:1276) or 
pulmonary fibrosis (Event:1458). Hence, the application of the similarity-based grouping 
resulted in 23 distinct KEs (Figure 4B) that were then used as the basis for merging the KE 
nodes in the PF network (Figure 4D). 
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Figure 4: A) Table presentation of pulmonary fibrosis (PF) AOPs identified in the current study. 
B) Heatmap representing the Jaccard index-based similarity of the PF KEs as per their 
associated gene sets. Values close to zero (light grey) correspond to a low similarity between 
distinct KEs, while the increasing similarity is expressed with the colour changing through 
green to blue. C) Graph presentation of the PF AOPs using their original KEs. Distinct colours 
denote the KEs of individual AOPs, grey nodes are KEs shared by multiple AOPs, and orange 
nodes correspond to the shared adverse outcomes. D) Graph presentation of the PF AOPs 
after KE grouping. The number of shared (grey) nodes has now increased, and the duplicated 
AO has been grouped into one distinct AO (orange). 
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The PF AOPs formed a connected network, indicating that each of the individual AOPs shared 
at least one KE with one or more of the other AOPs. However, as the duplicated KEs were 
merged, the similarities between the AOPs became more evident. This is evidenced by the 
increasing number of shared KEs in the graph after merging (the grey nodes in Figure 4D) as 
compared to the original graph (Figure 4C). Furthermore, the merging revealed Aop:206 to 
be fully contained within the other AOPs. 

The refinement of the AOP network through KE grouping simplifies the network while 
also enhancing the robustness of the KE relationships, depicted by the connections between 
the nodes. This process, in fact, removes redundant nodes, which supports the application of 
AOP networks in AOP research and risk assessment. Furthermore, as duplicated events are 
removed, the true influence of each node can be assessed more robustly though network 
analytics. 

This example demonstrates the effect of KE redundancy and the potential of data-
driven grouping of the KEs. While manual assessment and grouping would be achievable for 
a limited number of AOPs at a time, doing it AOP-Wiki wide would be a massive undertaking. 
Here, we show how our curated gene-KE-AOP connections can help guide the grouping and 
hence enhance network-based approaches in AOP research. Furthermore, our results suggest 
that it is often possible to identify meaningful genes that can successfully monitor multiple 
key events of a similar nature. 
 
 
The AOP fingerprint of multi-walled carbon nanotubes converges in vitro and in vivo 
 
Toxicogenomics has supported the development of mechanistic toxicology and further 
enhanced the possibility to obtain relevant information from in vitro studies, which could 
reduce the need for animal experimentation (58–60). Here, we tested the hypothesis that 
toxicogenomic data generated in two independent in vitro and in vivo exposure models would 
converge on a robust set of relevant AOPs. We focused on Mitsui-7, a known hazardous long 
and rigid multi-walled carbon nanotube (MWCNT). The airways provide the most prominent 
route of exposure to this nanomaterial, and it is best characterised for its lung-related adverse 
outcomes, including fibrosis (61–64). Hence, we selected data derived from a lung exposure 
to the MWCNT in mice (65), and an in vitro dataset with exposures on four cell lines 
representative of the human airways (59,66). These cell lines include differentiated THP-1 
cells as a model of macrophages, A549 representing alveolar basal epithelial cells, BEAS-2B as 
bronchial epithelial cells, and MRC as a model of lung fibroblasts. Differentially expressed 
genes (DEGs) from all experimental conditions in vivo and each cell line in vitro were obtained 
from Saarimäki et al. (67) and merged into a single mechanism of action in vivo and in vitro, 
respectively. 

We then performed enrichment analysis against both the AOPs and the KEs separately 
in order to evaluate the coverage of distinct KEs. We used the proportion of significantly 
enriched KEs to further filter the significant AOPs. This led us to identify 33 significant AOPs 
from the in vivo data, while 12 resulted significant from the in vitro exposure. These results 
were defined as the specific AOP fingerprint for the exposures, and it is presented in Figure 
5.  
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Figure 5: AOP fingerprint of Mitsui-7 exposure in vitro and in vivo. Size of the bubble reflects 
the proportion of significantly enriched KEs in an AOP, while to colour denotes the FDR-
adjusted p-value in a negative logarithmic scale (i.e., the higher the number, the smaller the 
p-value). The AOPs are organised by the enrichment p-value from the in vivo data. 
 
Despite the distinct sizes of the AOP fingerprints, 10 of the 12 AOPs enriched in vitro were 
also included in the in vivo fingerprint. Moreover, the top enriched AOPs were shared and 
ranked similarly between in vivo and in vitro when ranked by the smallest adjusted p-value. 
The AOP enriched with the most significant p-value in both instances was Aop:173 titled 
“Substance interaction with the lung resident cell membrane components leading to lung 
fibrosis” (Figure 5). The in vivo data set was able to capture 7 of the 8 KEs of the AOP as 
significantly enriched, while 3 out of the 8 KEs were enriched in vitro. Interestingly, Aop:173 
has been specifically developed with robust evidence from MWCNT exposures, and multiple 
types of carbon nanotubes are listed as known stressors for the AOP 
(https://aopwiki.org/aops/173). The second AOP (Aop:171), on the other hand, describes the 
induction of pleural/peritoneal mesotheliomas by chronic cytotoxicity in rats. Like most AOPs 
used in this study, Aop:171 is still under development and lacks information on potential 
stressors. However, mesothelioma is a well-known adverse outcome of asbestos exposure, a 
fibrous silicate mineral whose adverse effects have often been used as a warning example for 
MWCNTs (68). Indeed, similarities in their mechanism of action have been extensively 
investigated (61,69,70).  

The in vitro AOP fingerprint captures effects such as frustrated phagocytosis, oxidative 
stress, cytotoxicity, and immune activation, which have all been reported as consequences of 
this type of exposure and contribute to the pathogenic nature of Mitsui-7 (61,62,64,71). 
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Beta−2 adrenergic agonist activity leading to mesovarian leiomyomas in the rat and mouse − Aop:164
Stimulation of TLR7/8 in dendric cells leading to Psoriatic skin disease − Aop:313

Disruption of VEGFR Signaling Leading to Developmental Defects − Aop:43
Helicobacter pylori to gastric ulcer − Aop:229

NSAID induced PTGS1 inactivation to gastric ulcer − Aop:227
Chronic reactive oxygen species leading to human treatment−resistant gastric cancer − Aop:298

Uncoupling of oxidative phosphotylation leading to reduced growth (1) − Aop:263
Anticoagulant rodenticide inhibition of vitamin K epoxide reductase resulting coagulopathy and hemorrhage − Aop:187

Inhibition of IL−1 binding to IL−1 receptor leading to increased susceptibility to infection − Aop:277
Cytotoxicity leading to bronchioloalveolar adenomas and carcinomas (in mouse) − Aop:109

L−type calcium channel blockade leading to heart failure via decrease in cardiac contractility − Aop:261
Early−life estrogen receptor activity leading to endometrial carcinoma in the mouse. − Aop:167

ACE2 inhibition leading to lung fibrosis − Aop:319
Cytotoxicity leading to renal tubular adenomas and carcinomas (in male rat)  − Aop:116

Toll−like receptor 4 activation and peroxisome proliferator−activated receptor gamma activation leading to pulmonary fibrosis − Aop:347
PPARgamma activation leading to sarcomas in rats, mice, and hamsters − Aop:163

Alpha2u−microglobulin cytotoxicity leading to renal tubular adenomas and carcinomas (in male rat) − Aop:105
Protein Alkylation leading to Liver Fibrosis − Aop:38

Trypsin inhibition leading to pancreatic acinar cell tumors − Aop:316
Inhibition of iodide pump activity leading to follicular cell adenomas and carcinomas (in rat and mouse) − Aop:110

Gastric ulcer formation − Aop:217
Increased reactive oxygen and nitrogen species (RONS) leading to increased risk of breast cancer − Aop:294

Increased DNA damage leading to increased risk of breast cancer − Aop:293
Binding of viral S−glycoprotein to ACE2 receptor  leading to acute respiratory distress associated mortality − Aop:320

Immune mediated hepatitis − Aop:362
Glucocorticoid Receptor Activation Leading to Increased Disease Susceptibility − Aop:14

Latent Transforming Growth Factor beta1 activation leads to pulmonary fibrosis − Aop:241
Angiotensin II type 1 receptor (AT1R) agonism leading to lung fibrosis − Aop:382

Estrogen receptor activation leading to breast cancer   − Aop:200
Frustrated phagocytosis−induced lung cancer − Aop:303

HPPD inhibition leading to corneal papillomas and carcinomas (in rat) − Aop:114
Epithelial cytotoxicity leading to forestomach tumors (in mouse and rat) − Aop:115

Peroxisome proliferator−activated receptors .. inactivation leading to lung fibrosis − Aop:206
Chronic cytotoxicity of the serous membrane leading to pleural/peritoneal mesotheliomas in the rat. − Aop:171

Substance interaction with the lung resident cell membrane components leading to lung fibrosis − Aop:173
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Similarly, the profibrotic effects are highlighted with the multiple PF AOPs enriched. These 
effects are also observed in the in vivo AOP fingerprint. However, the in vivo fingerprint 
further highlights various AOPs outside the respiratory system, which is less apparent in vitro. 
While adverse outcomes beyond the immediate exposure site are feasible, many of these 
could likely be accounted for by the different effects of similar transcriptomic signatures in 
different biological systems (e.g., multiple AOPs related to gastric ulcer formation could 
reflect similar mechanisms of surfactant disturbance in two distinct exposure sites). On the 
other hand, the AOPs unique to the in vitro fingerprint, Aop:277 and Aop:263 (Figure 5), 
reflect the specific effects of the Mitsui-7 exposure on the immune system. Such specific 
signals can be easily masked in the in vivo system, where a large array of cell types is affected 
by the exposure. 

It is worth noting that the exposures selected for the analysis had diverse set ups and 
a notable difference in the size of the combined mechanism of action (863 DEGs in vitro vs. 
3,540 in vivo). While data from multiple cell lines were selected to capture effects besides 
immune cell activation in vitro, we were not able to match the dose and time course set up 
present in the in vivo dataset. However, we wanted to include this long-term exposure to 
evaluate whether it would result in broader coverage over the KEs of AOPs. Furthermore, 
histopathological evaluation from the same in vivo exposure set up has shown fibrosis in the 
lung from the day 7 onwards (72), suggesting that a whole PF AOP could be covered with this 
data. Indeed, all but the MIE (Event:1495) of Aop:173 were enriched in vivo. The high 
proportion of enriched KEs in the in vivo data supports the modelling of KEs with relevant 
gene sets and the use of toxicogenomic evidence for the development of AOPs, as well as the 
evaluation of potential adverse outcomes of chemical exposures. Likewise, we show that the 
analysis of toxicogenomic data against robustly annotated AOP framework supports a high 
degree of in vitro to in vivo extrapolation and further supports the inclusion of 
toxicogenomics-based evidence for regulatory purposes. 
 
KE-associated gene sets guide the selection of biomarkers 
 
We showed that our KE-linked gene sets provide a robust way of evaluating potential 
outcomes of chemical exposures from transcriptomics data. This observation alone can help 
to guide chemical testing and grouping. However, to support the development of target 
assays and integrated approaches, specific reporter genes and markers need to be identified.  

Selection of transcriptional biomarkers and reporter genes only based on differential 
expression from experimental data gives little context or reference to the AO of interest. Even 
if a certain exposure is known to induce a specific endpoint, there is no indication whether 
the measured deregulation could be associated with the phenotype of interest. On the other 
hand, prioritising the features in the context of the KEs or whole AOPs could shed light on the 
importance and specificity of the feature regarding the phenotype. This, in turn, can guide 
the selection of potential biomarkers even in the absence of experimental data. Hence, we 
implemented a universal and customisable framework for the prioritisation of the KE-
associated genes to drive the identification of AOP-informed biomarkers and used it to 
identify AOP-driven biomarkers for PF. The shortlisted marker genes were then screened by 
RT-qPCR in an in vitro model of human macrophages exposed to bleomycin, a well-known 
profibrotic chemical (73). 

First, we defined characteristics for optimal biomarkers based on the Bradford Hill 
criteria, originally defined to evaluate causality in epidemiological research (74), but later 
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adopted to other research fields as well (75). Our newly defined characteristics, their Bradford 
Hill counterparts, and short descriptions of the consideration of each step in the selection 
process are summarised in Table 1. 
 
Table 1: We defined characteristics for optimal biomarkers based on the Bradford Hill criteria. 
The characteristics were then implemented into the prioritisation and selection protocol, and 
further to the evaluation of the prioritised genes. 

Bradford Hill Our characteristic Method/Assessment 
Consistency 
(reproducibility) Reproducibility Selection considers evidence from previous 

profibrotic exposures 

Strength (effect size) Amplitude Significant alteration of the expression as compared 
to control 

Experiment Measurable Transcriptional biomarkers measurable by qPCR; 
selected genes need to be expressed in the model 

Biological gradient (dose-
response relationship) Dose-responsive Benchmark-dose modelling to evaluate dose-

response 

Coherence In vitro to in vivo 
extrapolation Experimental evidence from in vitro and in vivo* 

Analogy Predictive (of the 
outcome of interest) 

Selection based on the KEs preceding the AO of 
interest 

Specificity Specificity Gene ranking based on the specificity score 

Plausibility (Biological) plausibility The AOP framework provides a plausible context; 
supporting evidence; selection of the organism 

Temporality Temporality Transcriptional alteration follows the exposure; 
selection of the model organism ** 

– GLP-method RT-qPCR 

– Influence Centrality measures from human protein-protein 
interaction and gene regulatory networks 

*The biomarkers selected here are targeted for the development of non-animal assays for 
toxicological assessment. Hence the coherence to in vivo set ups is not evaluated 
experimentally. However, in vivo data was used for the selection of the markers to provide 
context of the systemic response. **Temporality in the Bradford Hill criteria refers to a clear 
distinction of the exposure happening prior to the outcome. Here, we considered temporality 
by observing transcriptional changes post exposure as well as in the selection of the model 
organism. Macrophages have a crucial role in the initiation of the profibrotic response 
preceding the outcome, fibrosis. 
 
The prioritisation and selection of the candidate biomarkers considered three main aspects: 
1) the social life of genes, i.e., some genes (gene products) are more influential than others, 
2) specificity regarding the endpoint of interest, and 3) experimental evidence suggesting the 
genes respond to a relevant exposure. The ranking of the genes was based on the first two 
considerations, while the experimental evidence was included to guide the selection of 
candidate genes for RT-qPCR validation from the ranked list. This enabled a flexible selection 
process that would be applicable even in the absence of experimental data. At this stage, we 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.08.499301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.08.499301
http://creativecommons.org/licenses/by-nc-nd/4.0/


also considered the biological feasibility of the target genes given the selected macrophage 
model as well as a broad coverage over the PF KEs.  

As a result, we obtained a list of 25 candidates out of the original 2,075 genes related 
to PF (Table 2). Although we focused on the genes in the top 10%, we further included genes 
ranking lower to obtain a broader coverage over the PF KEs. Genes that are specific to 
individual KEs might rank low when the individual lists are combined. Hence, we considered 
the expression patterns from the experimental data as well as the specificity scores and ranks 
in the individual KEs. This also allowed us to evaluate whether genes ranked higher would 
perform better than others. 
 
Table 2: Genes selected for qPCR validation. Green = yes, white = no. 

Gene (rank)   Detected (Amplification) Deregulated (ANOVA) Dose-dependent 

SMAD7 (1) 
6h       

24h       

72h       

CXCL2 (3) 
6h       

24h       

72h       

SPP1 (18) 
6h       

24h       

72h       

CCL2 (19) 
6h       

24h       

72h       

TGFB1 (23) 
6h       
24h       
72h       

IL8 (33) 
6h       

24h       

72h       

LOX (48) 
6h       

24h       

72h       

PLOD2 (74) 
6h       

24h       

72h       

MMP7 (80) 
6h       

24h       

72h       

CXCL10 (91) 
6h       

24h       

72h       

CCL7 (93) 
6h       

24h       

72h       

MMP9 (105) 
6h       

24h       

72h       

LTBP4 (112) 
6h       

24h       

72h       

FN1 (116) 
6h       

24h       

72h       

GDF15 (153) 
6h       

24h       

72h       

MMP19 (179) 
6h       

24h       

72h       

PTX3 (220) 
6h       

24h       

72h       

TGFB3 (297) 
6h       

24h       

72h       

6h       
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LTBP3 (335) 24h       

72h       

TWIST1 (609) 
6h       

24h       

72h       

TGFBI (727) 
6h       

24h       

72h       

CTSK (759) 
6h       

24h       

72h       

RCN3 (1592) 
6h       

24h       

72h       

RSAD2 (1596) 
6h       

24h       

72h       

PLK3 (2027) 
6h       

24h       

72h       

 
We could detect the expression of 22 of the candidate genes at one or more of the evaluated 
time points, and six of the detected genes showed significant alteration as compared to the 
unexposed control samples (Table 2). Finally, five of these genes were altered in a dose-
dependent manner: CXCL2 and CCL7 at 24h, IL8 (CXCL8) at 24h and 72h, and MMP19 and 
TGFBI at 72h. All but TGFBI of these genes were among the top 10% in the global PF rank 
(Table 2). Although we were not able to fit a dose-dependent model on the highest ranked 
gene, SMAD7, a suggestive trend could be appreciated in its expression pattern (Figure S4 
panel 18/6H). The expression of each of these genes was upregulated as compared to the 
controls (Figure S4).  

The central role of TGF-beta signalling is well-established in PF (76), but neither of the 
TGFB genes tested (TGFB1 and TGFB3) showed significant change in expression in our setup. 
Indeed, TGF-beta is activated through a complex cascade of events, where the inactive form 
of the protein is activated by other effectors post-translationally (77), making members of the 
TGF-beta family a more attractive target for protein-based biomarker assessment over gene 
expression. At the same time, we did observe upregulation of SMAD7 and TGFBI which are 
both activated by TGF-beta (78,79), suggesting the induction of TGF-beta signalling. The 
protein encoded by TGFBI is involved in the extracellular matrix (ECM), and it has been shown 
to bind type I collagen, resulting in thicker fibres and further affecting macrophage 
polarisation towards the M2 type (80). Indeed, bleomycin has been suggested to polarise 
macrophages towards M2 (often referred to as the anti-inflammatory type), which have been 
shown to drive the development of PF through their ability to promote myofibroblast 
differentiation (81,82). Many of our suggested biomarkers are chemokines that mediate 
immune responses. IL8 and CXCL2 are best characterised as neutrophil attractants, while CCL7 
targets a wide variety of leukocytes (83–85). Indeed, prolonged inflammation, combined with 
persistent M2 macrophage activation, supports pathogenesis of fibrosis (86), and a mixed 
status of M1/M2 macrophage activation has been previously associated with carbon 
nanotube -induced PF in vivo (87). Similarly, multi-walled carbon nanotubes have been shown 
to induce the polarisation of macrophages towards such mixed status of M1/M2 polarisation 
(88,89). MMP19 is a member of the matrix metalloproteinase family involved in ECM 
remodelling (90). MMPs have been extensively characterised in the context of PF (91,92), and 
MMP19 specifically has been suggested as a key regulator of PF in mice and humans (93).  

Although macrophages alone cannot capture all the KEs of PF, our model is able to 
highlight the key steps of macrophage involvement in PF. The temporality of the expression 
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of our suggested biomarkers is supportive of the events leading to the development of 
fibrosis, where the initial inflammation is followed by type M2 macrophage activation that 
together contribute to the development of a profibrotic microenvironment and responses in 
other cells in the tissue (86).  

New approach methods (NAMs) are urgently needed to reduce animal testing while 
providing robust evidence to support chemical safety assessment. While alternative methods 
have been successfully developed to capture acute effects, modelling long-term outcomes of 
the exposures, such as fibrosis, in vitro is still a challenge. Here, we propose a panel of five 
genes CXCL2, CCL7, IL8, MMP19, and TGFBI as AOP-derived robust biomarkers of PF to be 
successfully measured in a model of human macrophages in vitro after short exposure time. 

Conclusions 
 
Mechanistic toxicology encompasses the means for faster, cheaper, and more ethical 
chemical safety assessment. However, to unleash the full potential of mechanistic evidence 
also in the regulatory framework, robust approaches to build confidence towards 
toxicogenomics are urgently needed. Here, we introduced an integrated approach that links 
toxicogenomics with the concept of AOPs and proved its applicability to chemical grouping 
and development of data-driven NAMs. We introduce the concept of AOP fingerprint of a 
chemical exposure to evaluate potential systemic outcomes through unbiased interpretation 
of toxicogenomics data. Our results point to a consistent AOP fingerprint of multi-walled 
carbon nanotubes extrapolated from both in vitro and in vivo experiments. Finally, we 
identified and experimentally validated a panel of robust AOP-derived in vitro biomarkers for 
pulmonary fibrosis.   
 

Materials and Methods 
 
Definition of a Knowledge Graph -based data structure 
We established a Knowledge Graph -based data structure by expanding our previously 
introduced framework, the Unified Knowledge Space (UKS) (94,95). A detailed description and 
a full list of integrated data sources are provided in the Supporting Methods. The so formed 
data structure was utilised throughout the study as described in the following sections. 
 
Annotation of key events 
 
We applied a multi-step strategy comprising natural language processing (NLP) and manual 
curation to annotate KEs to established gene sets through pathways, phenotypes, and gene 
ontologies. The annotation strategy is summarised in Figure S2. 
 
Computational prioritisation of KE annotations: To match the descriptions of key events and 
gene sets we developed an NLP pipeline (Figure S2). The pipeline performs several operations 
to extract the informative terms from both the descriptions of a key event and a gene set that 
are scored to assess the degree of matching between the two entities. In detail, first, the raw 
text was converted to lower case and all punctuation symbols were removed. Second, 
concepts that span multiple words in the text description were replaced by a single word 
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expressing the same concept to strengthen the matching quality (e.g., the concept “positive 
regulation” was replaced with the single word “upregulated”). Third, the text was split into 
tokens which are further processed one by one. Fourth, each token corresponding to a stop 
word in the English language was dropped. Stop words refer to the most common words in a 
language that do not bring additional meaning (e.g., for the English language common stop 
words include “in”, “the”, “of”, “from”). Fifth, different declinations of the same concept were 
mapped to their root term (e.g., plurals were converted to singulars, the terms “increased” 
and “increasing” were both mapped to “increase”). We also used this same procedure to 
standardise several styles to write the same symbol (e.g., “pparα” and “pparalpha” map both 
to “ppar-alpha”). After these preprocessing steps, each gene set and key event was 
represented by a set of token words, e.g. {upregulate, ppar-alpha}. However, the frequency 
of each token word across the descriptions of genes and key events is not the same, and 
hence, the informative value of rare terms is higher than the informative value of more 
common tokens. We took this into account by weighting each token by its inverse document 
frequency (IDF), i.e., the weight was inversely proportional to the number of gene sets and 
key events that contain that token. Finally, we employed a weighted version of the Jaccard 
Index (JIW) to match gene sets and the key events, using the IDF as weights (i.e., each token 
that was shared between a gene and a key event did not account 1 as in the standard Jaccard 
Index, but it contributed its IDF weight to the matching score) and sorted the matching gene 
sets for each key event in descending order. 
Manual curation and refinement of annotations: Next, the results of the computational 
prioritisation were manually evaluated for correct context and accuracy. Manual curation was 
used for gap filling and refinement of the annotations. In detail, the top five matches retained 
from the natural language processing -based approach were evaluated, and inaccurate or 
spurious matches were discarded. In case no matches from the computational prioritisation 
were deemed suitable, a manual search related to the name of the KE was performed on 
relevant databases (WikiPathways (96), HPO (97), KEGG (98),  Reactome (99) and GO (100)). 
For molecular level KEs, where the alteration of an individual gene was described, either the 
main functions of the gene were selected, or the gene was directly annotated to the ensemble 
identifier of the said gene. More generic annotations (i.e., annotation of a KE describing the 
alteration of a gene to a functional term tightly related to that gene) were prioritised to 
increase the size of the relevant gene sets. 
The matches for KEs expressing the increase/activation or decrease/repression of a biological 
progress were further organised based on the hierarchy of the terms by prioritising the most 
generic but suitable term followed by increasing specificity when multiple annotations of 
various specificities were available. For instance, Ke:1457 called “Induction, Epithelial 
Mesenchymal Transition” was annotated to the following terms: 1) Epithelial to mesenchymal 
transition (GO:0001837), 2) Regulation of epithelial to mesenchymal transition (GO:0010717) 
and 3) Positive regulation of epithelial to mesenchymal transition (GO:0010718). The curated 
KE – gene set links were added to the UKS so that for each key event entity its top five matches 
were added, while the matching level was stored as an edge attribute. This allows to either 
combine multiple mappings for a key event or to filter for specific mapping levels. Since the 
KE – gene set mappings are always the same for the same KE, these relationships were added 
to the Key Event entities and not to the Specific Key Event entities, which reduces complexity 
of the knowledge graph as well as reduces needed storage space. The information, however, 
can still be retrieved from the UKS via its connecting paths.  
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Gene set retrieval: The genes corresponding to the matched terms were retrieved by 
matching the term names to their exact identifiers and querying the UKS for human genes 
associated with the terms. For phenotypes (HPO and KEGG disease), only genes with a link in 
the original database were included by filtering by the source for the connection. In cases 
where no human genes were linked to the annotated GO term, we obtained the mouse and 
rat genes associated and converted them to human orthologs using Ensembl (101), which 
were then used as the corresponding gene sets. When no genes of human, mouse, or rat were 
associated with the original term, the annotation match was discarded and considered 
unsuccessful. Once gene sets to all original terms were defined, the gene sets were merged 
to obtain the final set of genes corresponding to each KE in this study. 
 
Enrichment analysis of reference chemical -associated gene sets 
To evaluate the ability of our framework to highlight relevant adverse outcomes from 
chemical associated gene signatures, we retrieved lists of reference chemicals from the EU 
Reference Laboratory for alternatives to animal testing (ECVAM) reference chemical library 
(102) and National Toxicology Program Interagency Center for the Evaluation of Alternative 
Toxicological Methods (NICEATM) website 
(https://ntp.niehs.nih.gov/whatwestudy/niceatm/resources-for-test-method-
developers/refchem/index.html). From the resources provided by ECVAM, we selected a 
hepatotoxic chemical list that had clear distinctions between positive and negative 
compounds. This list was based on the work from EPA’s Virtual Liver project 
(https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=166616&Lab=NCCT), and 
was provided as a downloadable Excel-file (./CHELIST/CheLIST__EPA_VLIVER.xlsx) by ECVAM. 
From NICEATM, we selected the list of chemicals with characterised thyroid activity (specified 
as “ACTIVE” in the listing produced based on a previous publication by Wegner et al. (103). 
Androgen receptor and estrogen receptor agonists were selected from the lists of in vitro 
reference chemicals provided on the website. These listings had been previously published in 
Kleinstreuer et al. (104) and Browne et al. (105), respectively. Finally, carcinogenic 
compounds were identified from the list containing chemicals that are either known 
carcinogens or reasonably anticipated to be human carcinogens (RAHC) based on the 14th 
report on Carcinogens (RoC Classifications) provided by NICEATM. The chemicals from each 
of the reference lists were then matched to the list of chemicals obtained from the 
Comparative Toxicogenomics Database (CTD) (29) though name-based matching or by the 
provided CAS identifiers, resulting in the final lists of reference chemicals for each endpoint 
used in this study. Chemical-gene links originating from the CTD were retrieved from the UKS 
and only chemicals with 50-1,000 associated genes were included in the enrichment analysis. 

Enrichment analysis was performed using the Fisher’s exact test as implemented in 
the function enrich from R package bc3net (106) for each chemical associated gene set against 
the list of AOP-related genes (i.e., the union of all the genes associated to all the KEs of the 
AOP). Enrichment p-values were adjusted using the false discovery rate (FDR) correction. AOP 
was considered significantly enriched with FDR-corrected p-value < 0.01. 
 
KE clustering and construction of the pulmonary fibrosis network 
Similarities between the gene sets associated to each KE were evaluated by calculating the 
Jaccard Index (JI) between all pairs of KEs (size of the intersection divided by the size of the 
union of the gene sets). The resulting similarity matrix was then used to group the KEs using 
hierarchical clustering as implemented in the function hclust in R package stats, specifying the 
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agglomeration method as “ward”. The number of clusters was defined so that only KEs with 
the same gene sets associated to them (JI = 1) were assigned to the same group. The grouping 
obtained in this manner was used to perform the enrichment against KEs to avoid multiple 
testing against the same gene set as well as to enhance the network presentation of the 
pulmonary fibrosis (PF) AOP network.  The unweighted PF AOP network was generated using 
gephi (107) by importing a graphml file generated with the function graph_from_edgelist 
from R package igraph (108). KE groups from the clustering were added as attributes to the 
nodes and used to merge redundant nodes in gephi. Similarly, AOPs each KE is associated to 
were added as attributes and used to colour the nodes. 
 
Characterisation of the AOP-fingerprints 
Transcriptomics data: In vivo and in vitro transcriptomics data from MWCNT (Mitsui-7) 
exposures were selected from a previously published collection by Saarimäki et al. (67). The 
original data sets are available under GEO accession number GSE29042 (in vivo) and 
ArrayExpress entry EMTAB6396 (in vitro), while the preprocessed data is available on Zenodo 
(https://doi.org/10.5281/zenodo.6425445). The in vivo data set comprises multiple doses and 
time points, while the in vitro data contains a single dose and time point exposure on four 
distinct cell lines representative different cell types of the lung. In each case, differentially 
expressed genes (filtered by an absolute fold change > 1.5 and Benjamini & Hochberg 
adjusted p-value < 0.05) obtained from Zenodo (https://doi.org/10.5281/zenodo.6425445) 
for each distinct comparison (i.e., combination of each dose and time point vs. control in vivo 
and separate cell lines in vitro) were pooled together to obtain a distinct mechanism of action 
of the exposure in vivo and in vitro, respectively. 
AOP fingerprints: To produce the AOP fingerprint for the MWCNT exposures, enrichment 
analysis was performed using the Fisher’s exact test as implemented in the function enrich 
from R package bc3net (106) separately against the AOP-associated gene lists and the KE-
associated gene lists (KEs linked to the same set of genes were grouped to avoid multiple tests 
against the same set). An AOP was considered significantly enriched when the AOP itself and 
at least 33% (or minimum of 2 KEs when the length of the AOP was less than 6) of its KEs were 
enriched with an FDR-corrected p-value < 0.05. 
 
Selection and testing of AOP-driven biomarkers 
 
Gene prioritisation: All human PPI edges were extracted from the UKS and used to create a 
robust gene – gene network. PPI/gene (product) interaction information can vary across data 
sources as well as the covered genes may differ. In addition, there is an innate bias in the 
data, where more data sources are available for “more investigated” genes and gene 
products. Because of this, we decided not to apply a global threshold on how many sources 
need to support an edge (109), but instead, we applied a local threshold. This ensures that 
also less investigated genes and gene products will be retained in the final robust gene – gene 
network, but their edges are less penalised by the number of supporting edges, than highly 
covered gene (product) nodes. For each node, the mean number of sources supporting all its 
connecting edges was estimated and only edges with at least the “mean number of sources” 
for a node were retained, which needed to be true for at least one of the nodes making up an 
edge. This was only done for GENE nodes, which were flagged as protein coding in 
Ensembl. The final robust human gene – gene network, consisted of 20 260 nodes, 806 
250 edges, a network density of 0.0039. Due to the significant lower number of available 
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sources for transcription factor – gene (product) data, all available sources were kept and 
scored equally. These edges were used to create a directed gene – gene network, consisting 
of 18 754 nodes, 363 649 edges and a network density of 0.001. On the so created gene – 
gene networks, for each node its degree, betweenness, eigenvector, and closeness centrality 
were estimated with NetworkX (110). These measures were then used to rank the genes 
linked to the KEs in the context of individual KEs. The gene list for each KE was ranked based 
on each of the centrality measures (degree, betweenness, closeness and eigenvector 
centrality) individually from most central to the least. The ranked lists were combined using 
the borda method as implemented in the function Borda in R package TopKLists (111). 
Biomarker selection: The gene centrality-based ranking was then supplemented by a 
specificity ranking for the KEs of AOPs related to pulmonary fibrosis (PF). We calculated a 
specificity score for the genes in the context of the KEs by dividing the occurrence of the gene 
in the KEs of PF AOPs by their occurrence in the KEs of other AOPs. Similar score was 
calculated at the level of AOPs (occurrence in PF AOPs/occurrence other AOPs), as we were 
looking for universal PF biomarkers (i.e., prioritising those that would be present in as many 
of the six PF AOPs as possible) while also being as specific as possible to PF. These ranks were 
again combined by the function Borda from R package TopKLists (111), and a final round of 
the borda method was applied to combine the lists of genes from each KE into one PF rank. 
We complemented the final rank with experimental evidence. We assessed whether the 
genes were differentially expressed in the Mitsui-7 exposures in vivo and in vitro. We also 
evaluated whether they were dose-dependently altered in the in vivo data as well as in an 
additional in vitro data set on Mitsui-7 exposure of PMA-differentiated macrophages 
(originally published in Saarimäki et al. (58) and the preprocessed data available as 
GSE146708 in the previously published collection (67) available in 
https://doi.org/10.5281/zenodo.6425445). The dose-response modelling of the in vivo 
(GSE29042) and in vitro (GSE146708) datasets was performed by following the strategy 
implemented in the BMDx tool (112). Particularly, for each gene present in the dataset, 
multiple models were fitted including linear, second order polynomial, hill, power, and 
exponential model. For each gene, the optimal model was selected as the one with the lowest 
Akaike Information Criterion (AIC). Genes with an optimal model with lack-of-fit p-values 
lower than 0.1 were removed from the analysis. The effective doses (BMD, BMDL, and BMDU) 
were estimated under the assumption of constant variance and by using a BMRF factor of 
1.349 (corresponding to a minimum of 10% of difference with respect to the controls). Genes 
were further filtered based on the predicted doses. Genes with BMD or BMDU values 
extrapolated higher than the highest exposure dose were filtered. Moreover, genes whose 
ratio between the predicted doses is higher than the suggested values (BMD/BMDL> 20, 
BMDU/BMD> 20, and BMDU/BMDL> 40) were removed from the analysis. Genes passing the 
filters were considered to be dose-dependently altered. At this stage, we also considered the 
measurability and feasibility of the gene in the selected macrophage model. For instance, 
numerous collagen-encoding genes were ranked high, but would not be a meaningful target 
in a macrophage model. Moreover, we aimed for a high coverage of PF KEs and aimed to 
select genes with high specificity scores. With these considerations, we selected a subset of 
the genes with the following priority: 1) genes that are deregulated both in vivo and in vitro, 
with most emphasis on dose-dependency, 2) genes that are deregulated in vitro, with most 
emphasis on dose-dependency and 3) genes that are not significantly differentially expressed 
but are dose-dependent. Finally, after this initial selection driven by the rank and 
experimental evidence, we included additional candidate biomarkers that had a lower rank 
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but were specific to KEs that would otherwise not have been covered by the selected 
candidates. 
Cell culture: THP-1 cells (DSMZ no.: ACC 16) were grown in RPMI 1640 (Gibco, #21875) + 10% 
inactivated FBS (Gibco, #10270). Cells were cultivated in 75cm2 culture flasks at 37°C with a 
humidified atmosphere of 5% CO2. For all experiments, cells were seeded at a density of 1x105 
cells/ml in 96 well plates and differentiated for 48 hours with 25 nm PMA (phorbol-12-
myristate-13-acetate, Sigma-Aldrich, #P1585). Cells were then left to rest for 24 hours in fresh 
media containing no PMA prior to bleomycin exposures. 
Cell Viability Assay: THP-1 cells were exposed to 0-10 µg/ml of bleomycin ready-made 
solution (Sigma-Aldrich, #B7216) and 0-100 mg/ml of Triclosan (Sigma-Aldrich, #72779), for 
6, 24 and 72 hours. A WST-1 assay was then used to measure cell viability. Briefly, 10 µl of cell 
proliferation reagent WST-1 (Roche, #11644807001) was added to each well. Cells were left 
to incubate with WST-1 for 3 hours in a 37°C, 5% CO2 incubator. Absorbance at 450 nm was 
then measured with a Spark microplate reader (Tecan). Results of the cell viability assay are 
available in Supplementary file 2 and Figure S3. 
RT-qPCR: For each time point of 6, 24 and 72 hours, THP-1 cells were exposed to 0, 2.5, 5, 10 
and 100µg/ml of bleomycin ready-made solution (Sigma-Aldrich, #B7216). Media was 
removed and cells were washed briefly with 50 µl of PBS. 100 µl of lysis buffer from the 
QIAGEN RNeasy mini kit (Qiagen, #74104) was added to each well to lyse the cells. 3 wells 
(300 µl) were pooled to create one sample, and there were 5 samples for each concentration 
at each time point. Total RNA was then extracted from these samples using the QIAGEN 
RNeasy mini kit (Qiagen, #74104). cDNA was synthesised from 100 ng of RNA, using the High-
capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, #4368813), according to 
manufacturer's instructions. Expression levels of target genes were determined by qRT-PCR 
using CFX96 Touch Real-Time PCR Detection System (BioRad) with 10 µl of iQ Multiplex 
Powermix (Bio-Rad, #1725849), 5 μl of cDNA diluted 5-fold, 2.5 µl of Nuclease-free (NF) water 
(not DEPC-Treated, ThermoFisher, #AM9930) in a 20 μl reaction, together with 2.5 µl of single 
(1 µl assay + 1.5 µl NF water) or multiplexed (0.5 µl of each assay) PrimePCR Probe Assays 
(Bio-Rad) as follows with single or multiplex reactions grouped in parentheses and formatted 
as Gene/UniqueAssayID: (ACTB/qHsaCEP0036280), (SMAD7/qHsaCEP0050142, 
MMP9/qHsaCIP0028098, GDF15/qHsaCEP0051579, CTSK/qHsaCIP0030907, 
PLOD2/qHsaCEP0052848), (CXCL2/qHsaCEP0058163, LTBP4/qHsaCEP0024931, 
TGFB3/qHsaCEP0058244, RCN3/qHsaCEP0057804, MMP7/qHsaCEP0052037), 
(SPP1/qHsaCEP0058179, FN1/qHsaCEP0050873, LTBP3/qHsaCEP0053782, 
RSAD2/qHsaCIP0031596, CCL7/qHsaCEP0058033), (IL8/qHsaCEP0053894, 
MMP19/qHsaCEP0051244, TWIST1/qHsaCEP0051221, PLK3/qHsaCIP0027687, 
CXCL10/qHsaCEP0053880), (LOX/qHsaCEP0050731, PTX3/qHsaCEP0033071, 
TGFBI/qHsaCEP0058394, CCL2/qHsaCIP0028103, TGFB1/qHsaCIP0030973).  
Fold change (FC) values from RT-qPCR data were calculated using the comparative CT(2−(ddCt)) 
method (113). The FC values were log2 transformed (log2(FC)). For each gene and for each 
concentration, an outlier detection was performed by removing all the samples with log2(FC) 
values above or below the 75th and 25th percentiles of the distribution. Ct values, dCt values, 
FC values and log2(FC) values are available in Supplementary file 2 along with ANOVA tables 
and tukey HSD posthoc test results. The log2FC expression of the genes as compared to the 
untreated controls are plotted in Figure S4. 
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Dose-dependent modelling: A dose-response analysis of the log2(FC) values derived from the 
PCR experiments was performed. For each gene, multiple models were fitted, including linear, 
hill, power, polynomial, exponential, log-logistic, Weibull, and Michaelis-Mentel models. The 
optimal model was selected as the one with the lowest AIC. The BMD estimation was 
performed under the assumption of constant variance. The BMR was identified by means of 
the standard deviation approach with a BMRF of 1.349. Only genes with lack-of-fit p-value 
>0.10 and with estimated BMD, BMDL and BMDU values were considered relevant. 
 

Data Availability 
The full list of KE annotation is available from the corresponding author upon request. 
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