
Stochastic modelling of cell differentiation networks
from partially-observed clonal tracking data
L. Del Core 1,∗, D. Pellin 2, M. A. Grzegorczyk 1,∗ and E. C. Wit 3,∗

1University of Groningen - Bernoulli Institute, 9747AG, Groningen, Netherlands, 2Harvard Medical School, MA 02115, Boston, Massachusetts, and
3Università della Svizzera italiana - Institute of Computing, 6962, Lugano, Switzerland

∗To whom correspondence should be addressed.

Abstract

Motivation: Clarifying how hematopoietic stem cells differentiate into mature cell types is important for understanding how
they attain specific functions and offers the potential for therapeutic manipulation. Over the past decades, clonal tracking
has proven to be capable of unveiling population dynamics and hierarchical relationships in vivo. For this reason, clonal
tracking studies are required for safety and long-term efficacy assessment in gene therapy. However, many standard clonal
tracking studies consider only a subset of cell-types and are subject to noise.
Results: In this work, we propose a stochastic framework that investigates the dynamics of cell differentiation from typical
clonal tracking data subject to measurement noise, false-negative errors, and systematically unobserved cell types. Our
framework is based on stochastic reaction networks combined with extended Kalman filtering and Rauch-Tung-Striebel
smoothing. Our tool can provide statistical support to biologists in gene therapy clonal tracking studies to better understand
clonal reconstitution dynamics.
Availability: The stochastic framework is implemented in the package Karen which is available for download
at https://github.com/delcore-luca/Karen. The code that supports the findings of this study is openly available at
https://github.com/delcore-luca/CellDifferentiationNetworks.
Contact: l.del.core@rug.nl

1 Introduction
Hematopoiesis is the process responsible for maintaining the number
of circulating blood cells that are undergoing continuous turnover. This
process has a tree-like structure with the root node constituted by
Hematopoietic Stem Cells (HSC) [1; 2]. Each cell division gives rise
to progeny cells that can retain the properties of their parent cell (self-
renewal) or differentiate, “moving down” the hematopoietic tree [3–7].
As the progeny move further away from HSCs, their pluripotent ability is
increasingly restricted. Clarifying how HSCs differentiate is essential for
understanding how they attain specific functions and offers the potential
for therapeutic manipulation [8]. Several mathematical models have been
proposed to describe hematopoiesis in-vivo. One of the first stochastic
models of hematopoiesis was introduced in the early ’60s [9] suggesting
that it is the population as a whole that is regulated rather than individual
cells that behave stochastically, and control mechanisms act by varying
the cell division and death rates.

More recently, [10–16] analyze data generated by using the most
advanced lineage tracing protocols using novel statistical models. Still, to
the best of our knowledge, none of the already existing tools considers the
presence of false-negative clonal tracking errors. In addition to completely
missing cell types, clonal tracking data are characterized by scattered
detection (recapture) of clones due to either threshold detection failure or
false-negative errors [17]. Usually, threshold detection failure is addressed
by assuming that all the missing clone observations correspond to minimal
clones and, therefore, set to zero. This hypothesis is too restrictive

because it does not take into account other technical sources of false-
negative errors, such as low-informative sample replicates [18]. It has also
been shown that false-negative errors strongly depend on calling pipeline
parameters, as well as read coverage [19]. The false-negative diagnosis
rate is poorly understood for many NGS applications and is challenging to
measure without the use of well-characterized reference standards [20].
The standardization of sequencing coverage depth has also been used
to minimize the probability of false-positive and false-negative results.
However, there is no consensus on the minimum coverage depth that clonal
tracking data have to comply with, creating heterogeneity in the quality of
data generated by the different laboratories [21].

We propose a stochastic framework to investigate haematopoiesis
while cautiously treating all the undetected values as latent states. More
precisely, we describe cell differentiation using stochastic quasi-reaction
networks (SqRNs), a framework that allows to (i) model a network
of stochastically interacting nodes using an Ito-type SDE formulation,
and (ii) describe the dynamics of transition between different states
(cell types) in terms of a set of reactions whose rates are unknown.
Then we combine SqRNs with extended Kalman filtering (EKF) and
Rauch-Tung-Striebel (RTS) smoothing. In particular, we (i) provide an
expectation-maximization algorithm to infer the unknown parameters; (ii)
extensively test the method on several simulation studies (iii) applied our
framework to four in-vivo high dimensional clonal tracking data sets, to
compare different biologically plausible models of cell differentiation. A
flowchart of the analysis performed in this work is shown in Figure 1.
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Fig. 1: Schematic representation of the analysis flow: A three-dimensional clonal tracking dataset with partially-observed cells (left panel) is received as
input from our proposed stochastic framework Karen (middle panel). It mainly consists in three parts, such as a filtering step, an optimization (maximum
likelihood) step, and a smoothing step which are executed iteratively until a convergence is reached on the unknown vector parameter ψ. Finally, a cell
differentiation network (CDN) is returned from Karen, where each arrow is directed and weighted according to the estimated parameters (right panel).

2 Methods

2.1 Karen: Kalman Reaction Networks

We consider a non-linear continuous-discrete state space model (CD-
SSM) whose dynamic component is represented by the local linear
approximation (LLA) of a stochastic quasi-reaction network [22] defined
by an×J net effect matrixV , ap×1 vector parameter θ and aJ×1 hazard
vector h(x; θ) for a n-dimensional counting process {x(t)|x(t) ∈ Nn}t
(see Section S.1 from Supplementary Information for details). For the
measurement function gk(x(tk), rk) we use a time-dependent selection
matrix Gk ∈ 010101d×n (the set of all d× n binary matrices) which selects
only the measurable particles of x(tk) with an additive noise rk whose
covariance matrix is time-dependent and defined as

Rk = ρ0Id + ρ1diag(Gkx(tk)) ∀k = 1, . . . ,K

where ρ0 and ρ1 are free parameters which we infer from the data, and
diag(·) is a diagonal matrix with diagonal equal to its argument. Therefore

gk(x(tk), rk) = Gkx(tk) + rk; rk ∼ Nd(0, Rk);

Rk = ρ0Id + ρ1diag(Gkx(tk)) ∀k = 1, . . . ,K
(1)

In the following xt is a shorthand notation for x(t). Under these
assumptions the CD-SSM of Eq. (1) from the Supplementary
Information reduces to

∆x = V h(xt; θ)∆t+

(
V

 h1(xt;θ)

. . .
hJ (xt;θ)

V ′
︸ ︷︷ ︸

β(xt;θ)

)1/2

dWt

∆x = xt+1 − xt; yk = Gkx(tk) + rk

(2)

where

dWt ∼ Nn(0,∆tIn)

rk ∼ Nd(0, Rk); Rk = ρ0Id + ρ1diag(Gkx(tk))
(3)

Assuming x(t0) ∼ Nn(x(t0)|m0, P0) as prior distribution for x(t)

at t = t0, the prediction step of Eq. (6) from the Supplementary
Information reduces to

1. Prediction step:


dm∗k(t)
dt

= Vθm
∗
k(t)

m∗k(tk−1) = mk−1

(4a)


dP∗k (t)

dt
= VθP

∗
k (t) + P ∗k (t)V ′θ + ∆tβ(m∗k(t), θ)

P ∗k (tk−1) = Pk−1

(4b)

where we used the fact that for a set of reactions involving only one particle
of x as reagent, which is the case for our cell differentiation networks, the
mean driftV h(xt; θ) reduces toVθxt, where the definition ofVθ depends
on V and h(xt; θ). The solutions of (4) are given by

m∗k(t) = eVθ(t−tk−1)mk−1 (5a)

P ∗k (t) = eVθ(t−tk−1)Pk−1e
V ′θ (t−tk−1)

+

∫ t

tk−1

eVθ(t−s)∆tβ(m∗k(s); θ)eV
′
θ (t−s)ds (5b)

The solution for m∗k(t) is obtained by applying the integrating factor
method [23] to the initial value problem (4a) using an integrating factor

I = e
−

∫ tk
tk−1

Vθds
= e−Vθ(t−tk−1). The solution for P ∗k (t) is

obtained by applying the well-known solution formula for a differential
Sylvester equation [24] to the system (4b). The corresponding update step
is defined as follows

2. Update step:

µk = Gkm
∗
k

Sk = GkP
∗
kG
′
k +Rk

Kk = P ∗kG
′
kS
−1
k

mk = m∗k +Kk(yk − µk)

Pk = P ∗k −KkSkK
′
k

(6)

where mk , Pk , m∗k , P ∗k , µk and Sk depend on both θ, ρ0 and ρ1.
Finally, following Eq. (8) - (10) of the Supplementary Information, the
optimization and smoothing steps are defined as
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3. Optimization step:

ψ ← argmin
ψ≥0

− `(ψ|y1, . . . , yK)

yk ∼ N (µk(ψ), Sk(ψ)) ∀k = 1, . . . ,K

(7)

4. Smoothing step: We use the Rauch-Tung-Striebel Smoothing
algorithm (RTS) [25] and we estimate the first two-order moments of
p(xk|y1:K , θ, ρ0, ρ1) as


Bk+1 = Pk(ψ)eV

′
ψ (P ∗k+1(ψ))−1

ms
k|K = mk(ψ) +Bk+1(ms

k+1|K −m
∗
k+1(ψ))

P s
k|K = Pk(ψ) +Bk+1(P s

k+1|K − P
∗
k+1(ψ))B′k+1

(8)

where e(·) is the matrix exponential operator, ψ = (θ, ρ0, ρ1), and
the values of mk , Pk , m∗k , P ∗k are the ones obtained from the filtering
(prediction and update) steps. In order to run the optimization step using
a gradient-based method (e.g. Newton-Raphson) we need to compute the
gradient∇θ,ρ0,ρ1ϕ(θ, ρ0, ρ1) of the energy functionϕ(θ, ρ0, ρ1) which
is defined by

∂ϕ(ψ)

∂ψj
= tr

(
S−1 ∂S

∂ψj

)
−
(
∂µ

∂ψj

)′
S−1(y − µ)

−(y − µ)′S−1 ∂S

∂ψj
S−1(y − µ)− (y − µ)′S−1 ∂µ

∂ψj

(9)

where

S =

 S1

. . .
SK

 y =

[ y1
...
yK

]
µ =

[ µ1

...
µK

]
(10)

This requires, at every time point k, p + 2 more prediction and update
steps in order to compute the terms ∂Sk

∂θj
’s, ∂µk

∂θj
’s, ∂Sk

∂ρ0
, ∂µk
∂ρ0

, ∂Sk
∂ρ1

and ∂µk
∂ρ1

, where p is the dimension of θ. These are obtained by deriving
the equations in (4) and (6) w.r.t. θ, ρ0 and ρ1, as shown in Section
S.2.1 of Supplementary Information. All the results obtained from every
prediction/update step at each time point tk , along with the corresponding
derivatives, are then used to compute the energy functionϕ(θ, ρ0, ρ1) and
its gradient which, in turn, are used for the optimization step. The proposed
extended Kalman filter is summarised in Algorithm 1 from Section
S.4 of Supplementary Information. The whole procedure returns the
estimated parameters θ̂ekf , ρ̂20ekf , ρ̂21ekf and the first two-order moments
ms
k|K and P s

k|K of the smoothing distribution p(xk|y1:K , θ, ρ0, ρ1) at
every time point tk , k = 1, . . . ,K. All the integrals involved for the
computation of P ∗k , ∂

∂θj
m∗k , ∂

∂θj
P ∗k , ∂

∂ρ0
P ∗k and ∂

∂ρ1
P ∗k are estimated

using a 3rd-order Gauss-Legendre method [26].

2.2 Stochastic formulation of clonal dynamics

We assume that the time counting process

Xt = (X1t, . . . , XNt) (11)

ofN distinct cell types for a single clone evolves in a time interval (t, t+

∆t) according to a set of reactions and hazard functions defined as

vk =


(. . . 1i . . . )

′

(· · · − 1i . . . )
′

(· · · − 1i . . . 2j . . . )
′

hk(Xt, θi) =


Xitαi

Xitδi

Xitλij

(12)

The hazard functions contain linear terms for duplication and death of
cell i with positive rates αi and δi, and a linear term to describe cell

differentiation from lineage i to lineage j with positive rate λij for each
i 6= j = 1, . . . , N . Finally, we use the compact matrix formulations

V =
[
v1 · · · vK

]
h(Xt; θ) =

[
h1(Xt; θ) · · · hK(Xt; θ)

]′ (13)

where θ is the vector of all the unknown parameters describing the
dynamics. Since for our applications both the HSCs and the progenitors
Pis are missing states, to help parameter inference of the state space model
(2)-(3) combined with net-effect matrix and hazard vector (12) we assume
the following conservation laws

λHSC→Pi =
∑
j

λPi→Xj (14)

where Xjs are all the offspring cell types generated by Pi.

2.3 Transition probabilities

Once the vector parameter θ is estimated for a particular modelM, we
define the transition probability pij from cell type i to cell type j as

pij =
λij + αi∑
k∈Si(M) λik

(15)

where Si(M) is the set of all the possible target cell types associated to
cell type i in the modelM.

2.4 Computational implementation

The stochastic framework is implemented in the package Karen
available at https://github.com/delcore-luca/Karen. Working examples
showing the usage of the package are provided in Section S.7 of
Supplementary Information.

3 Results
We use our stochastic framework to compare four different biologically-
sustained models of hematopoiesis. The graphical representation of the
candidate models is shown in Figure 2. For each candidate model, the
stochastic differential equation formulation can be obtained from equations
(12) - (13). Biological interpretation of the proposed models can be found
in Section S.6 of the Supplementary Information.

Application to simulated data

We performed several simulations designed to test the proposed inferential
procedure under different scenarios. The performance have been
investigated by: (i) reducing the number of time points, (ii) reducing the
fraction of clones recaptured across lineages and time, which is equivalent
to increasing the rate of false-negative errors, (iii) increasing measurement
noise, and (iv) selecting a cell differentiation structure among a set of
candidates. Additional details on the simulation studies can be found in
Section S.3 of the Supplementary Information. The results show the
accurate recovery by the method of the true parameters, the first two-order
smoothing moments, and the true generative model.

Application to Rhesus Macaques study

We analyzed an in-vivo clonal tracking dataset previously used to
investigate the hematopoietic reconstitution in Rhesus Macaques [27]. A
pool of autologous CD34+ HSPCs barcoded by using lentiviral vectors
have been transplanted in three myeloablated animals [28; 29]. Following
engraftment, Granulocytes (G), Monocytes (M), T, B and NK cells were
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Fig. 2: Graphical representation of the candidate models (a-d): Latent and observed cell types are indicated with grey and white nodes respectively. Red
arrows denote a death move, green arrows indicate a duplication move, and blue arrows a differentiation move.
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Fig. 3: Clonal tracking data: Logarithmic clonal abundance (y-axis) over time (x-axis) in each cell lineage (colors) for the rhesus macaque study (a) and
the clinical trials (b-d).

flow-sorted from peripheral blood (purity median 98.8%), and the majority
of transduced cells contained only one barcode. Barcode retrieval by PCR
was performed on purified hematopoietic lineage samples monthly for
4.5 months (ZG66), 6.5 months (ZH17), and 9.5 months (ZH33) [30].
Further details on transductions protocol and culture conditions can be
found in the original paper study [27]. Although the sample DNA amount
was maintained constant during the whole experiment (200 ng for ZH33
and ZG66 or 500 ng for ZH17), the sample collected resulted in different
magnitudes of the total number of reads (see Table S.1 in Supplementary
Information). This discrepancy makes samples not directly comparable
across time and cell types. Therefore we rescaled the barcode counts as
described in Section S.5 of the Supplementary Information. We report
the rescaled cell counts, at the clonal level, in Figure 3. The total numbers
of clones collected are 1165 (ZH33), 1280 (ZH17), and 1291(ZG66). We
only focused on the top 1000 most recaptured clones across lineages and
time to further remove bias.

We fit the four candidate models on the clonal tracking data using
Algorithm 1 from Section S.4 of Supplementary Information. We
report the results in Figure 4 which shows, for each candidate model,
the estimated cell differentiation network and the corresponding Akaike
Information Criterion (AIC) [31] which we use as a measure of model
selection. According to the AIC, model (c) is the one that best fits the clonal
tracking data collected from the rhesus macaque study. This result suggests
that the classical/dichotomic model (a) fails to describe adequately clonal
dynamics in rhesus macaque, whereas the myeloid-based developmental
model (c) better explains hematopoietic reconstitution. Therefore our
proposed framework Karen clearly indicates that in primate hematopoiesis
myeloid progenitors represent a prototype of hematopoietic cells capable
to produce both myeloid G/M cells and NK cells.

Application to gene therapy clinical trials

Clonal tracking data derived from the analysis of samples isolated from
six patients treated using HSPC-based gene therapy have been used to

investigate human hematopoiesis dynamics. Five cell lineages (G, M, T,
B, and NK) were collected longitudinally from the peripheral blood of
four patients affected by Wiskott-Aldrich syndrome (WAS) [32], 2 patients
withβ hemoglobinopathy (1 withβS/βS sickle cell disease [33] and 1 with
β0/βE β thalassemia [34]).

Details on procedures, gene therapy protocols, and normalization
methods can be found in [32–35]. We report the clonal level logarithmic
cell counts in Figure 3. Since data was already normalized to compensate
for unbalanced sampling in VCN and DNA [32–35], we did not apply
any further transformation. The total clones collected are 156654, 17273,
and 230408, respectively, for WAS, βS/βS and β0/βE clinical trials. The
following results derive from the analysis of the 1000 most recaptured
clones in each clinical trial (top 250 clones per WAS patient).

The same four biologically motivated hematopoietic models (Figure 2)
have been scored separately in each clinical trial using our stochastic
framework Karen. We report the results in Figure 4 showing the estimated
cell differentiation networks for each clinical trial. As a result, according
to the AIC, model (d) is the one that always best fits clonal tracking data
collected from each clinical trial, thus suggesting that a three-branches
developmental model better explains hematopoietic reconstitution in
humans after a gene therapy treatment. In particular, while lymphoid
T/B and myeloid G/M develop in parallel trough separate branches
from different progenitors, there is a third developmental branch for the
lymphoid NK cells which is independent from the first two branches.

4 Discussion
We have proposed a novel stochastic framework for modeling cell
differentiation networks from partially-observed high-dimensional clonal
tracking data. Our model is able to deal with experimental clonal tracking
data that suffers from measurement noise and low levels of clonal recapture
due to either threshold detection failures or false-negative errors. Our
framework extends stochastic quasi-reaction networks by introducing

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.08.499353doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.08.499353
http://creativecommons.org/licenses/by/4.0/


Stochastic modelling of cell differentiation networks 5

R
he

su
s

M
ac

aq
ue

a MODEL A

HSC

P1

T B NK G M

AIC = 106254.536
MODEL B

HSC

P1 P2

T B NK G M

AIC = 106078.599

MODEL C

HSC

P1 P2

T B NK G M

AIC = 106016.43
MODEL D

HSC

P1 P2P3

T B NK G M

AIC = 106383.425
W

A
S

b

HSC

P1

T B NK G M

AIC = 103973.322
HSC

P1 P2

T B NK G M

AIC = 103983.578

HSC

P1 P2

T B NK G M

AIC = 104197.99

HSC

P1 P2P3

T B NK G M

AIC = 102709.613

ββ β
0/
ββ β

E

c

HSC

P1

T B NK G M

AIC = 43481.425
HSC

P1 P2

T B NK G M

AIC = 41104.19

HSC

P1 P2

T B NK G M

AIC = 42516.475

HSC

P1 P2P3

T B NK G M

AIC = 40828.057

ββ β
S/
ββ β

S

d

HSC

P1

T B NK G M

AIC = 46791.675
HSC

P1 P2

T B NK G M

AIC = 45845.913

HSC

P1 P2

T B NK G M

AIC = 45860.598

HSC

P1 P2P3

T B NK G M

AIC = 45664.498

0 0.25 0.5 0.75 1
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Each arrow is weighted and coloured according to the corresponding transition probability estimated with (15). For each model the AIC is reported and
the best model is squared with a red box.

EKF and RTS components. We developed a tailor-made Expectation-
Maximization (EM) algorithm to infer the corresponding parameters.
Simulation studies have shown the method’s accuracy regarding inference
of the true parameters, estimation of the first two-order smoothing
moments of all the process states, and model selection. Simulation results
indicated the method’s robustness in situations characterized by: the
availability of a limited number of time points, limited clonal recapture,
and high levels of measurement noise.

Although the gaussian assumption makes the analytical formulations
of the likelihoods explicitly available, this approximation may become
poor when the data contains outliers or shows non-gaussian behaviors.
This limitation can be overcome by using a distribution-free approach,
such as the Kernel Kalman Rule [36; 37]. Another limitation is that our
framework considers reaction rates constant for the whole study period.
Extensions that allow for modeling reaction rates as spline functions of

time or depending on clinically relevant variables are within reach and
will be the goal of future research.

The application of Karen on a rhesus macaque clonal tracking study
unveiled for the lymphoid NK cells a different developmental pathway
from the one detected for lymphoid T and B cells. That is, NK cells
are produced by both myeloid and lymphoid progenitors P1 and P2.
Results are consistent with the ones previously reported in [27] where
the authors demonstrated the presence of distinct subpopulations within
the NK lineage, potentially deriving from alternative maturation processes.
Subsequently, we analyzed in-vivo clonal tracking data from three different
clinical trials, showing consistency in the selected hematopoietic model
structure across the clinical trials. Our stochastic framework can support
biologists in understanding hematopoietic reconstitution and in designing
tailor-made therapies to treat genetic disorders. Our model can be applied
to different types of clonal tracking data, such as vector integration sites,
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clonal barcodes, and single cells methods. Applications in alternative
contexts, such as the modeling of population dynamics, where similar
issues about partial sampling and varying levels of measurement noise are
present, could also be explored.

Acknowledgements and Funding
This publication is based on work from COST Action CA15109
(COSTNET), supported by COST (European Cooperation in Science
and Technology). E.C.W. acknowledges support from the Fondazione
Leonardo (514.7.010.098-4) and funding from the Swiss National Science
Foundation (SNSF 188534).

Author Contributions
All authors contributed to analysing the data and writing the manuscript.
L.D.C. designed and implemented the stochastic framework.

References
[1]E. McCulloch and J. Till, “Proliferation of hemopoietic colony-forming cells

transplanted into irradiated mice,” Radiation Research, vol. 22, no. 2, pp. 383–
397, 1964.

[2]E. A. McCulloch and J. E. Till, “Perspectives on the properties of stem cells,”
Nature Medicine, vol. 11, no. 10, pp. 1026–1028, 2005.

[3]M. C. Mackey, “Cell kinetic status of haematopoietic stem cells,” Cell
Proliferation, vol. 34, no. 2, pp. 71–83, 2001.

[4]C. Haurie, D. C. Dale, and M. C. Mackey, “Cyclical neutropenia and other
periodic hematological disorders: a review of mechanisms and mathematical
models,” Blood, The Journal of the American Society of Hematology, vol. 92,
no. 8, pp. 2629–2640, 1998.

[5]C. Haurie, D. C. Dale, and M. C. Mackey, “Occurrence of periodic oscillations in
the differential blood counts of congenital, idiopathic, and cyclical neutropenic
patients before and during treatment with g-csf,” Experimental Hematology,
vol. 27, no. 3, pp. 401–409, 1999.

[6]C. Haurie, D. C. Dale, R. Rudnicki, and M. C. Mackey, “Modeling complex
neutrophil dynamics in the grey collie,” Journal of Theoretical Biology, vol. 204,
no. 4, pp. 505–519, 2000.

[7]C. Haurie, R. Person, D. C. Dale, and M. C. Mackey, “Hematopoietic dynamics
in grey collies,” Experimental Hematology, vol. 27, no. 7, pp. 1139–1148, 1999.

[8]H. Kawamoto, H. Wada, and Y. Katsura, “A revised scheme for developmental
pathways of hematopoietic cells: the myeloid-based model,” International
Immunology, vol. 22, no. 2, pp. 65–70, 2010.

[9]J. E. Till, E. A. McCulloch, and L. Siminovitch, “A stochastic model of stem cell
proliferation, based on the growth of spleen colony-forming cells,” Proceedings
of the National Academy of Sciences of the United States of America, vol. 51,
no. 1, p. 29, 1964.

[10]D. Pellin, L. Biasco, A. Aiuti, M. C. Di Serio, and E. C. Wit, “Penalized inference
of the hematopoietic cell differentiation network via high-dimensional clonal
tracking,” Applied Network Science, vol. 4, no. 1, pp. 1–26, 2019.

[11]J. Xu, S. Koelle, P. Guttorp, C. Wu, C. Dunbar, J. L. Abkowitz, and V. N.
Minin, “Statistical inference for partially observed branching processes with
application to cell lineage tracking of in vivo hematopoiesis,” The Annals of
Applied Statistics, vol. 13, no. 4, pp. 2091–2119, 2019.

[12]M. A. Newton, P. Guttorp, S. Catlin, R. Assunção, and J. L. Abkowitz,
“Stochastic modeling of early hematopoiesis,” Journal of the American
Statistical Association, vol. 90, no. 432, pp. 1146–1155, 1995.

[13]I. Roeder and M. Loeffler, “A novel dynamic model of hematopoietic stem
cell organization based on the concept of within-tissue plasticity,” Experimental
Hematology, vol. 30, no. 8, pp. 853–861, 2002.

[14]I. Roeder, L. M. Kamminga, K. Braesel, B. Dontje, G. de Haan, and M. Loeffler,
“Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic
model of stem cell organization,” Blood, vol. 105, pp. 609–616, 01 2005.

[15]D. Dingli and J. M. Pacheco, “Modeling the architecture and dynamics
of hematopoiesis,” WIREs Systems Biology and Medicine, vol. 2, no. 2,
pp. 235–244, 2010.

[16]S. N. Catlin, J. L. Abkowitz, and P. Guttorp, “Statistical inference in a two-
compartment model for hematopoiesis,” Biometrics, vol. 57, no. 2, pp. 546–553,
2001.

[17]Y.-H. Kim, Y. Song, J.-K. Kim, T.-M. Kim, H. W. Sim, H.-L. Kim, H. Jang, Y.-
W. Kim, and K.-M. Hong, “False-negative errors in next-generation sequencing
contribute substantially to inconsistency of mutation databases,” PLOS ONE,
vol. 14, no. 9, p. e0222535, 2019.

[18]K. Robasky, N. E. Lewis, and G. M. Church, “The role of replicates for error
mitigation in next-generation sequencing,” Nature Reviews Genetics, vol. 15,
no. 1, pp. 56–62, 2014.

[19]D. Bobo, M. Lipatov, J. Rodriguez-Flores, A. Auton, and B. Henn, “False
negatives are a significant feature of next generation sequencing callsets,” 2016.

[20]S. A. Hardwick, I. W. Deveson, and T. R. Mercer, “Reference standards for next-
generation sequencing,” Nature Reviews Genetics, vol. 18, no. 8, pp. 473–484,
2017.

[21]A. Petrackova, M. Vasinek, L. Sedlarikova, T. Dyskova, P. Schneiderova,
T. Novosad, T. Papajik, and E. Kriegova, “Standardization of sequencing
coverage depth in ngs: recommendation for detection of clonal and subclonal
mutations in cancer diagnostics,” Frontiers in Oncology, p. 851, 2019.

[22]E. Allen, Modeling with Itô stochastic differential equations, vol. 22. Springer
Science & Business Media, 2007.

[23]A. D. Polyanin and V. F. Zaitsev, Handbook of ordinary differential equations:
exact solutions, methods, and problems. CRC Press, 2017.

[24]M. Behr, P. Benner, and J. Heiland, “Solution formulas for differential sylvester
and lyapunov equations,” Calcolo, vol. 56, no. 4, pp. 1–33, 2019.

[25]H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of
linear dynamic systems,” AIAA journal, vol. 3, no. 8, pp. 1445–1450, 1965.

[26]P. J. Davis and P. Rabinowitz, Methods of numerical integration. Courier
Corporation, 2007.

[27]C. Wu, B. Li, R. Lu, S. J. Koelle, Y. Yang, A. Jares, A. E. Krouse, M. Metzger,
F. Liang, K. Loré, et al., “Clonal tracking of rhesus macaque hematopoiesis
highlights a distinct lineage origin for natural killer cells,” Cell Stem Cell, vol. 14,
no. 4, pp. 486–499, 2014.

[28]H. J. Kim, J. F. Tisdale, T. Wu, M. Takatoku, S. E. Sellers, P. Zickler, M. E.
Metzger, B. A. Agricola, J. D. Malley, I. Kato, et al., “Many multipotential gene-
marked progenitor or stem cell clones contribute to hematopoiesis in nonhuman
primates,” Blood, The Journal of the American Society of Hematology, vol. 96,
no. 1, pp. 1–8, 2000.

[29]B. E. Shepherd, H.-P. Kiem, P. M. Lansdorp, C. E. Dunbar, G. Aubert,
A. LaRochelle, R. Seggewiss, P. Guttorp, and J. L. Abkowitz, “Hematopoietic
stem-cell behavior in nonhuman primates,” Blood, The Journal of the American
Society of Hematology, vol. 110, no. 6, pp. 1806–1813, 2007.

[30]R. Lu, N. F. Neff, S. R. Quake, and I. L. Weissman, “Tracking single
hematopoietic stem cells in vivo using high-throughput sequencing in
conjunction with viral genetic barcoding,” Nature biotechnology, vol. 29, no. 10,
pp. 928–933, 2011.

[31]K. P. Burnham, D. R. Anderson, and K. P. Huyvaert, “AIC model selection and
multimodel inference in behavioral ecology: some background, observations,
and comparisons,” Behavioral Ecology and Sociobiology, vol. 65, no. 1, pp. 23–
35, 2011.

[32]S. H.-B. Abina, H. B. Gaspar, J. Blondeau, L. Caccavelli, S. Charrier,
K. Buckland, C. Picard, E. Six, N. Himoudi, K. Gilmour, et al., “Outcomes
following gene therapy in patients with severe wiskott-aldrich syndrome,” Jama,
vol. 313, no. 15, pp. 1550–1563, 2015.

[33]J.-A. Ribeil, S. Hacein-Bey-Abina, E. Payen, A. Magnani, M. Semeraro,
E. Magrin, L. Caccavelli, B. Neven, P. Bourget, W. El Nemer, et al., “Gene
therapy in a patient with sickle cell disease,” New England Journal of Medicine,
vol. 376, no. 9, pp. 848–855, 2017.

[34]A. A. Thompson, M. C. Walters, J. Kwiatkowski, J. E. Rasko, J.-A. Ribeil,
S. Hongeng, E. Magrin, G. J. Schiller, E. Payen, M. Semeraro, et al., “Gene
therapy in patients with transfusion-dependent β-thalassemia,” New England
Journal of Medicine, vol. 378, no. 16, pp. 1479–1493, 2018.

[35]E. Sherman, C. Nobles, C. C. Berry, E. Six, Y. Wu, A. Dryga, N. Malani, F. Male,
S. Reddy, A. Bailey, et al., “Inspiired: a pipeline for quantitative analysis of
sites of new dna integration in cellular genomes,” Molecular Therapy-Methods
& Clinical Development, vol. 4, pp. 39–49, 2017.

[36]G. H. Gebhardt, A. Kupcsik, and G. Neumann, “The kernel kalman
rule—efficient nonparametric inference with recursive least squares,” in Thirty-
First AAAI Conference on Artificial Intelligence, 2017.

[37]G. H. W. Gebhardt, A. Kupcsik, and G. Neumann, “The kernel kalman rule,”
Machine Learning, vol. 108, pp. 2113–2157, Dec 2019.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.08.499353doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.08.499353
http://creativecommons.org/licenses/by/4.0/

