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1 Deconvolution benchmark simulations3

We took the mouse brain scRNA-seq data from cell2location as the reference and picked K cell types at4

random. We used the spatial layout of the human melanoma sample as the template and partitioned the5

tissue template into 14 blocks. We drew the cell type proportions for each block from a Dirichlet distribution6

with concentration parameter α equal to 1/K. This concentration induces sparsity in the subset of cell types7

in each spot, which replicates real tissues where cell types are often present only in a subset of the tissue.8

We sampled the blockwise mean total cell count per spot λi from Pois(30), and drew the total cell number9

for each spot from Pois(λi). With the total cell count and the cell type proportion, we sampled the cell10

count for each cell type from a multinomial distribution. Given the cell count for each cell type, we sampled11

the cells from the scRNA-seq data and filled the spots, which results in the semi-synthetic data. We show12

BayesTME gives accurate inference on cell type probability, cell number, and expression signature (Figure 113

a) and visualization of BayesTME’s cell type deconvolution and cellular community segmentation results14

(Figure 1 b-c) in comparison with the benchmark methods.15

2 Spatial transcriptional program benchmark simulations16

For the spatial differential expression experiments, we first generated the non-spatially-varying-expression17

data as above, but using the zebrafish A layout as it has an order of magnitude more spots. We then generated18

6 hand-designed spatial patterns. For each cell type, we randomly assigned 2 spatial patterns and randomly19

selected 5 genes for each spatial pattern. We ranked the selected genes and permuted these genes by matching20

the ranking to the signal strength in the designed spatial patterns. This approach ensures that each gene21

has the same marginal distribution as the scRNA-seq clusters. Thus, a spatially invariant cell type inference22

would detect the same spatial signature as in the non-varying data. BayesTME detects STPs with high23

accuracy, outperforms the differential expression results from DestVI (Figure 2).24

3 Integrating human-annotated H&E cell counts25

We conducted a preliminary analysis on the benefits of including a handful of human-annotated approximate26

cell counts for spots, using the H&E. Such annotations are inherently noisy as the H&E does not perfectly27

align with the spot locations, leading to potential differences between the H&E location of a spot predicted by28

the ST platform software and the true location sequenced. To simulate human H&E annotations, we generated29

a semi-synthetic dataset using the procedure described in Section 1 with 3 cell types. To investigate the help30

of annotations in cell count inference, we added noisy cell count annotations at n = 1, 3, 10 randomly selected31

spots and compared the performance with the base model without any cell count annotation (Figure 3).32

Simulating the noisiness of either manual counting or some machine learning algorithm prediction, we made33

each annotation a random draw from Pois(D∗
i ), where D∗

i denotes the ground truth cell count in the chosen34

spot i. With only 1 noisy annotation, BayesTME is able to obtain a significant improvement in cell count35

accuracy, while the cell count accuracy also improves to nearly perfect with only 10 annotations.36
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Figure 1: BayesTME performs favorably to existing methods in semi-synthetic benchmarks. a.
BayesTME accurately recovers the ground truth cell type distributions (r2 = 0.95), discrete cell counts (r2 = 0.95),
and expression signatures (r2 = 0.98) of each cell type in the simulation. b. Visualization of cell type deconvolution
results of BayesTME, compared with reference-based methods cell2location, DestVI, and reference-free methods
STdeconvolve. c. BayesTME outperforms all existing methods in celluar community segmentation.
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Figure 2: Comparison of cell type deconvolution and spatial transcriptional programs detection accuracy between
BayesTME and DestVI in simulation dataset with spatial transcriptional programs. BayesTME recovers the ground
truth cell number proportion and identifies within-phenotype spatial transcriptional programs with high correlation.
DestVI found spatial expression detection results to be uncorrelated with the ground truth.
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Figure 3: Accuracy of discrete cell count inference with 0, 1, 3, and 10 noisy cell count annotations. The performance
of the model quickly improves to nearly perfectly capturing the true number of cells.

4 Cross-validation selects the correct number of cell types37

We constructed 4 semi-synthetic ST data with the same tissue template but different number of cell types38

(K∗ = 3, 4, 6, 8). For each semi-synthetic data, we ran cross-validation with number of cell types from 239

to 15 and picked the one with maximum likelihood as our predicted cell type number. The predicted cell40

type number matches the ground truth K∗ in all trials. Such Observation suggest, with cross-validation,41

BayesTME is able to select the optimal number of cell types from the ST data without scRNA-seq reference.42

Figure 4 shows the average cross-validation log-likelihood for each of the four simulations. Each simulation43

used a different true number of cell types and BayesTME correctly identified the true number for each44

simulation. As the number of cell types increased, variance in the held out likelihood also increased. Thus,45

if the number selected is beyond ≈ 10 cell types, we recommend increasing the number of folds m to46

compensate.47

5 Bleed correction benchmark simulations48

The benchmark bleeding simulations use a 70× 70 simulated ST tissue block, roughly the size of a common49

real ST tissue. We ensure that the tissue region has a 10-spot margin on all sides, capturing the idea that50

tissue segments should be inscribed well inside of the fiducial markers. To further mimic real tissue, we51

randomly insert a tissue gap inside the tissue region, since most tissues are not perfectly contiguous.52

We set the baseline expression of each gene to be a constant drawn from a gamma distribution with53

shape 2 and rate 100. We then sample reads for each in-tissue spot from a Poisson distribution with the54

corresponding rate. We then apply a stochastic bleeding process to corrupt the true UMIs.55

We benchmark the decontaminating ability of BayesTME and SpotClean under three different bleeding56

patterns:57

1. Gaussian bleeding. Original UMI locations are corrupted by adding noise drawn from a 2d Gaussian
with covariance matrix

ΣGauss =

[
5 1
1 5

]
.

This induces thin-tailed, symmetric bleeding.58

2. Student’s-t bleeding. Original UMI locations are corrupted by adding noise drawn from a 2d
Student’s-t distribution with scale matrix,

ΣGosset =

[
20 3
3 30

]
and 10 degrees of freedom. This induces heavy-tailed, symmetric bleeding.59

3. Anisotropic bleeding. Original UMI locations are corrupted by adding anisotropic noise that mimics60

bleeding seen in real tissues. A force 2d vector of (105, 52.5) (150% and 75% of the dimensions of the61
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Figure 4: The average cross-validation log-likelihood for true number of cell types K∗ = 3, 4, 6, 8

slide, respectively) is added to each UMI location. A tissue friction coefficient of 5 is used to slow down62

bleeding within the tissue. Bleeding likelihood then is proportional to this skewed distance via a Laplace63

kernel with bandwidth 40. See the supplemental code function distance_weights in the bleeding64

simulation script for exact computational details. This creates heavy-tailed, asymmetric bleeding that65

more closely resembles bleeding seen in ST data than the other two methods.66

6 Inferred bleeding patterns from zebrafish samples67

Following the BayesTME pipeline, we applied the BayesTME preprocessing pipeline to both zebrafish68

melanoma model samples. Figures 5 and 6 show the inferred directional bias of the bleeding inferred by69

BayesTME. The results align with the visual observation that in both samples UMIs tend to bleed to a70

specific direction and bleeding is less substantial inside the tissue than outside. For further insight into the71

debleeding results, Figures 7 and 8 show the inferred most likely direction of the uncorrupted spot for a UMI72

observed every spot in the samples.73

7 BayesTME scales efficiently to ultra-high resolution ST data.74

Next-generation ST technologies promise to deliver 2µm resolution, resulting in an increase of up to two75

orders of magnitude over the current number of spots. We have carefully designed BayesTME so that it scales76

to meet these new challenges. Specifically, the main computational step in posterior inference in BayesTME77
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Figure 5: Inferred bleeding basis functions for each of the four cardinal directions both inside and outside of the
tissue for zebrafish A.
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Figure 6: Inferred bleeding basis functions for each of the four cardinal directions both inside and outside of the
tissue for zebrafish B.
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BRAFhuman

Figure 7: Patterns mapping where a UMI of BRAFV 600E most likely came from in the zebrafish A sample.
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BRAFhuman

Figure 8: Patterns mapping where a UMI of BRAFV 600E most likely came from in the zebrafish B sample.
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Figure 9: BayesTME runtime scalessub-linearly with the number of spots.

is the discrete spot deconvolution which scales quadratically with the number of possible cells in a given78

spot. However, as the resolution increases, this number actually decreases. The result is that the quadratic79

increase in spots is offset by the decrease in deconvolution burden. Figure 9 shows the relative runtime of80

BayesTME as we increase the spatial resolution from the current resolution (1x) with a few thousand nodes to81

high-resolution (120x) with hundreds of thousands of nodes. Despite increasing by two orders of magnitude,82

BayesTME only requires a 10x increase in computation time, which is tractable for modern compute clusters.83

8 Posterior Sampling84

Sampling Rigk Since Rigk ∼ Pois(βkdikϕkg),85

Rig =
∑
k

Rigk ∼ Pois(
∑

βkdikϕkg) (1)

by the relationship between Poisson and Multinomial distribution, letting ξik =
βkdikϕkg∑
k βkdikϕkg

, we can sample86

Rig1, . . . , RigK adjointly by87

Rig1, . . . , RigK |− ∼Mult(Rig; ξi1, . . . , ξiK) (2)
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Sampling ϕϕϕk Since ϕϕϕk ∼ Dir(αk),
∑

g ϕkg = 1. One can show that88

Rik1, . . . , RikG ∼Mult(
∑
g

Rikg;
λikϕk1∑
g λikϕkg

, . . . ,
λikϕkG∑
g λikϕkg

)

=Mult(
∑
g

Rikg;ϕk1, . . . , ϕkG)
(3)

Thus,89

ϕϕϕk|− ∼ Dir(αk +
∑
i

Rik1, . . . , αk +
∑
i

RikG) (4)

Sampling βk The likelihood of reads Rik· = (Rik1, . . . , RikG) is90

P (Rik·|βk, dik, ϕkg) =
∏
g

P (Rigk|βk, dik, ϕkg)

=
∏
g

e−βkdidϕkg (βkdikϕkg)
Rigk

Rigk!

=
e−

∑
g βkdikϕkg

∏
g(βkdikϕkg)

Rikg∏
g Rikg!

=
e−βkdik

∑
g ϕkg (βkdik)

∑
g Rikg

∏
g(ϕ

Rikg

kg )∏
g Rikg!

=
e−βkdik(βkdik)

Rik
∏

g(ϕ
Rikg

kg )∏
g Rikg!

=

∏
g ϕ

Rikg

kg∏
g Rikg!

e−βkdik(βkdik)
Rik

(5)

and the posterior can be written as91

P (βk|Rikg, dik, ϕkg) =
∏
i

∏
g

P (Rigk|βk, dik, ϕkg)P (βk)

∝
∏
i

P (Rik·|βk, dik, ϕkg)P (βk)

=
∏
i

(∏
g ϕ

Rikg

kg∏
g Rikg!

e−βkdik(βkdik)
Rik

)
P (βk)

=

(∏
i

∏
g ϕ

Rikg

kg∏
g Rikg!

)
e−βk

∑
i dik

∏
i

(βkdik)
RikP (βk)

=

(∏
i

∏
g ϕ

Rikg

kg∏
g Rikg!

)
e−βk

∑
i dikβ

∑
i Rik

k

∏
i

dRik

ik P (βk)

=

(∏
i

dRik

ik

∏
g ϕ

Rikg

kg∏
g Rikg!

)
e−βk

∑
i dikβ

∑
i Rik

k

ba

Γ(a)
βa−1
k e−bβk

∝ e−βk

∑
i dkiβ

∑
i Rik

k βa−1
k e−bβk

= β
∑

i Rik+a−1
k e−βk(

∑
i dki+b)

(6)
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Thus,92

βk|− ∼ Gamma(a+
∑
i

Rik, b+
∑
i

dki) (7)

Sampling Di and dddi The posterior distribution of the cell number of each type can be formulated as93

P (dik|RRRi,ϕϕϕk, βk,ψψψi) = P (RRRi,k:K |dik, θθθi, rrr)P (dik, Ri,1:k−1) (8)

We can be model the cell number distribution by a HMM type model, where we have lk = (dk, nk) as the94

latent stats, and RRRik as the observation. With a forward-filtering backward-sampling style algorithm, we can

l1 l2 lK−1

nmax Di n1 n2 . . . nK−2 nK−1

di1 di2 di3 diK−1 diK

Ri1 Ri2 Ri3 Ri,K−1 RiK

Figure 10: HMM modeling of cell numbers

95

calculate96

α(lk) = P (lk,RRR1:k)

= P (Rk|lk)
∑
lk−1

P (lk|lk−1)α(lk−1)

= P (Rk|dk, nk)
∑
nk−1

∑
dk−1

P (lk|dk−1, nk−1)α(dk−1, nk−1)

= P (Rk|dk)
∑
nk−1

∑
dk−1

P (lk|nk−1)α(dk−1, nk−1) ∗

= P (Rk|dk)
∑
nk−1

P (lk|nk−1)
∑
dk−1

α(dk−1, nk−1)


= P (Rk|dk)P (lk|nk−1)

∑
dk−1

α(dk−1, nk−1) ⋆

(9)

and97

α(l1) = P (R1|l1)
∑
D

P (l1|D)P (D|nmax) ⋆ ⋆

= P (R1|d1)P (l1|D)P (D|nmax)

(10)

where step ∗ follows Rk is independent from nk and lk is independent from dk−1, and step ⋆ follows that98

a specific latent variable pair lk = (dk, nk) can only be sampled from corresponding nk−1 = dk + nk, and99

similar reasons holds for ⋆⋆.100
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Thus, we can sample from the cell number from the posterior101

P (dik|lk+1,RRR1:T ) = P (dik|nk, lk+1,RRR1:K)

=
P (dik, nk|lk+1,RRR1:K)

P (nk|lk+1,RRR1:K)

∝ P (lk|lk+1,RRR1:T ) †
∝ P (lk, lk+1|RRR1:T )

∝ α(lk)P (lk+1|lk) ‡
= α(lk)P (lk+1|nk)

(11)

and102

P (diK |RRR1:K) = P (nK−1|RRR1:K)

∝ P (nK−1,RRR1:K)

= P (RRRK |nK−1, R1:K−1)P (nK−1, R1:K−1)

= P (RRRK |nK−1)
∑

diK−1

α(lK−1)

P (diK−1|diK ,RRR1:K) = P (diK−1|nK−1,RRR1:K)

∝ P (diK−1, nK−1,RRR1:K)

= α(lK−1)

(12)

where † follow nk is deterministic given lk+1 = (dk+1, lk+1) and details for ‡ is shown in Equation (13)103

P (lk, lk+1|R1:K) = P (R1:k, Rk+1, Rk+2:K , lk+1, lk)

= P (Rk+2:K |R1:k, Rk+1, lk+1, lk)P (R1:k, Rk+1, lk+1, lk)

= P (Rk+2:K |lk+1)P (Rk+1|Rk+1, lk+1, lk)P (R1:k, lk+1, lk)

= P (Rk+2:K |lk+1)P (Rk+1|lk+1)P (lk+1|R1:k, lk)P (R1:k, lk)

= P (Rk+2:K |lk+1)P (Rk+1|lk+1)P (lk+1|lk)P (R1:k, lk)

= β(lk+1)P (Rk+1|lk+1)P (lk+1|lk)α(lk)
∝ α(lk)P (lk+1|lk)

(13)

Spatial Smoothing via GFBT. We proposed a graph fused binomial tree (GFBT) model to perform104

the spatial smoothing on cell assignment probabilities. Based on the result from HMM, we can construct a105

binomail tree model as in Figure 11. Let pki denote the probability that a cell from cell type k is observed in106

patch i. In the tree model, we break such cell assignment probability into a series of binomial decisions. The107

black nodes indicate the cell types and red nodes are the binomial decision nodes with φk probability going108

to the left and 1− φk probability going to the right, and rk =
∑K

j=k dji.109
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Figure 11: Example of the binomial tree with 4 type of cells

Let φk = σ(θki), we have dki ∼ Bin(rk, σ(θki)). Thus,110

dki ∼ Bin

(
rk,

eθki

1 + eθki

)
p(dki|θki) =

(
rk
dki

)(
epki

1 + epki

)dki
(

1

1 + epki

)rk−dki

∝ (epki)
dki

(1 + epki)
rk

= 2−rkeκkiθki

∫ ∞

0

eωkiθ
2
ki/2p(ω)dω

∝ eκkiθkiEω

[
eωp2

ki/2
]

p(θθθ|·) ∝ p(θθθ)p(d|θθθ, ·)

= p(θθθ)
∏
k,i

exp
[
κkiθki −

ωki

2
θ2ki

]
= p(θθθ) exp

[
−1

2
(vec(θθθ)− vec(z))TΩ(vec(θθθ)− vec(z))

]

(14)

where111

Ω = diag(ω11, . . . , ωKN )

ωki ∼ PG(rk, θki)

zki =
κki
ωki

κki = dki −
rk
2

(15)

The prior on ∆θki is N (0, λ2kiτ
2
ki), then with Ψ = ∆TT ∆⊗ IK , the exponent term in the pdf function is112

(θθθ − z)TΩ(θθθ − z) + (θθθ − z)TΨ(θθθ − z)

=θθθT (Ω + Ψ)θθθ − 2(zTΩ)θθθ + θθθTΩθθθ

∝θθθTΣp− 2µµµTθθθ

∝(θθθ − Σ−1m)Σ(θθθ − Σ−1m)

(16)
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where p and z refer to the vectorized p and z113

Σ = Ω+Ψ

m = Ωz

= ΩΩ−1κ

= κ

(17)

Thus, we have114

θθθ|· ∼ N (µ,Σ−1)

Σ = Ω +∆TT ∆⊗ IK

µ = Σ−1κ

(18)

we have the resampling scheme115

T = diag(
1

λ2τ2
)

ωki ∼ PG(rk, θki)

Ω = diag(ω11, . . . , ωKN )

Σ−1 = ∆TT ∆⊗ IK +Ω

vec(θθθ) ∼ N (Σ−1vec(κ),Σ−1)

(19)

With θ after spatial smoothing, we can recover the cell assignment probability116

pk =

{
σ(θki)

∏k−1
j=1 (1− σ(θji)) k < K∏K

j=1 (1− σ(θji)) k = K
(20)

where K is the total number of cell types.117
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