
1 
 

Phylogenetic resolution of the Cannabis genus reveals extensive 
admixture 
 
Anna Halpin-McCormick1, Karolina Heyduk3, Michael B. Kantar1, Nick Batora2, Rishi R. 
Masalia2, Kerin Law2, Eleanor J. Kuntz2 
1Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI 
96822 
2LeafWorks Inc, 130 S. High St, Sebastopol, CA 95472 
3School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822 
 
Abstract  
 
Cannabis sativa L. (Cannabaceae) is an annual flowering herb of Eurasian origin that has been 
associated with humans for over 26,000 years. Multiple independent domestications occurred with 
different events leading to use as food, fiber, and medicine, with human intervention likely 
accelerating a division in the genus with varietals broadly known today as either hemp-type or 
drug-type. Using publicly available sequence data, we assessed genome wide diversity and 
population relationships across seven independently developed datasets. Phylogenetic analysis 
was conducted, with data sources providing a unique sampling of Cannabis varieties, with landrace 
and modern cultivars represented. Comparing nucleotide diversity over chromosomal length in 
landrace and domesticated modern drug-type varieties, genomic regions with decreased diversity 
where humans may have selected for specific traits were identified. Population structure was 
evident based on use type. Evidence of hybridization was extensive across the datasets. In a subset 
of landrace individuals where geographic origin was known, population separation was observed 
between varieties collected from Northern India in the Hindu Kush Mountains and Myanmar. The 
use of publicly available data provides an initial impression of the complexity within the Cannabis 
genus and adds to our understanding of the genetics underlying evolutionary history and 
population stratification, which will be critical for future crop improvement for any potential 
human use.   
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Introduction 
 
Cannabis sativa L. (Cannabaceae) is an annual flowering herb that has been domesticated multiple 
times independently in Central Eurasia [1] over its 26,000 year association with humans, providing 
agronomic value as a source of food, fiber and medicine [2] [3]. Cannabis is typically a dioecious 
plant [4] with female inflorescences being the site of concentrated production of secondary 
metabolites in particular cannabinoids and terpenes. There are several outstanding questions in the 
field of Cannabis taxonomy, with publications supporting different regions of origin, with 
ethnographic data favoring a Central Eurasian origin [3] and fossil pollen dating favoring the 
Northeastern Tibetan Plateau origin [5]. Additionally, a variable number of species have been 
described (C. indica, C. sativa, C. ruderalis) [6] [1] [3], with no widely accepted consensus in the 
relationships of ecotypes of Cannabis. Further, unhybridized landraces, defined as locally adapted 
distinctive populations which have undergone long periods of selection [7] have become difficult 
to obtain and identify [8]. Wild and feral populations of Cannabis which have not been influenced 
by hybridization have become increasingly rare [8] and it has been suggested that unaltered wild 
populations may no longer exist [6]. Human cultivation coupled with climate fluctuations and 
habitat fragmentation have likely impacted current phenotypes and may have increased isolation 
among wild/feral Cannabis populations and domesticated cultivars [3] [9]. Today, Cannabis is 
broadly divided into fiber-type, grain-type and drug-type cultivars [3]. 
 
While Cannabis is popularly known for its recreational uses, its medicinal capacity is increasingly 
being explored. Secondary metabolites such as tetrahydrocannabinol (THC) and cannabidiol 
(CBD) have received much attention for their potential in pain management [10], as a multiple 
sclerosis treatment [11], for epilepsy (Charlotte’s Web (CW2A) US Plant Patent No. PP30,639 
P2) [12], for reduction in nausea and vomiting in chemotherapy patients [13] as well as an appetite 
stimulant for patients with HIV/AIDS [14]. While medicinal uses are well documented, due to the 
prohibition and classification of Cannabis as a Schedule I narcotic, research on the genus has been 
restricted [15] by limiting licenses for who can grow and conduct research. The reduction of 
restrictions in the 2018 United States Farm Bill coupled with a loosening of state level regulatory 
restrictions and the expansion of scientific and medical research licenses by the Drug Enforcement 
Administration in 2020 have led to a steady increase in the number of research groups focusing 
their attention on Cannabis. This is reflected in the Web of Science - Plant Science database, which 
saw an increase of publications from 50 articles in 2018 to 119 in 2021.  
 
The taxonomy of Cannabis is a currently evolving field, with recent debate moving towards a 
monotypic description of the genus [16] with secondary metabolite profiles being used as a basis 
for population stratification [17] [18]. While the secondary chemistry of the plant may give a 
perspective on the diversity within the genus, Cannabis has been bred for many different purposes 
and uses for humans. Secondary chemistry therefore reflects only a small aspect of the complexity 
of the Cannabis genome.  Through the use of comparative genomics, we can gain insight into the 
breadth of diversity of Cannabis that could be of use for breeding for industrial and medical 
purposes. Unfortunately, due to prohibition, lack of permitted cultivation, restrictions on trade 
across borders and lack of plant passport infrastructure, breeding of Cannabis has not benefited 
from the tools and advances of the last century. For example, to date there have been limited efforts 
to create an inbred hybrid system which is typical of species with this type of mating system. 
However, there have been some successes (e.g. Oregon CBD Inc., Aurora Cannabis Inc.).  
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Advances in sequencing technology have resulted in the release of several genomic datasets in the 
public domain (Table 1). Broad phylogenetic comparisons of the ecotypes and heterotic groups 
within the Cannabis genus is still lacking with previous approaches limited to gene family 
phylogenies [19] [20] [21] [22] [23] or  limited, regional specific sampling [24] [25]. Drug control 
laws and prohibition have constrained formal documentation often resulting in unverifiable, 
anecdotal origins of a given cultivar or plant [7], further constraining genetic diversity analysis. 
Phylogenies provide insight into evolutionary relationships and facilitate the identification and 
selection of genetically distinct cultivars for breeding practices. Additionally, understanding 
genetic relationships can provide greater transparency surrounding cultivar name fidelity in the 
industry, which represents an ongoing issue (i.e.. the naming problem).  Prohibition and the lack 
of cultivar name fidelity, specifically the inconsistency in genotype or plant line paired with 
inconsistent naming on the label, places Cannabis in the conundrum of having to identify 
evolutionary relationships among modern lines based on ethnohistorical information and anecdotal 
oral histories. Molecular analyses would provide a more robust characterization of population 
structure and reveal relationships within the genus that could facilitate crop improvement. 
Describing Cannabis cultivars through genetic fingerprinting will complement phenotypic 
observations and label claims offering a path to establishing varietal consistency and therapeutic 
reliability, as well as aid in the transition towards decriminalization and legalization.  
 
Past publications over the last decade have utilized the Purple Kush (drug-type, female) [26] and 
Finola (hemp-type, male) [26] reference genome assemblies in their analyses (e.g., [24]). Recently, 
the International Cannabis Genomics Research Consortium (ICGRC) has proposed that the most 
complete and contagious chromosome-level assembly, cs10 (CBD-dominant cultivar) be used as 
the reference for all cannabis genomics [27] [15] [28]. In this study we used seven independent 
datasets – six available in the public domain and one new dataset. We conducted a comparative 
genomic analysis of 2,496 samples to understand the population structure present in the different 
collections and identify potential samples that can be explored as the basis for heterotic groups for 
breeding potential for the cannabis industry as well as to explore the overall genetic diversity and 
the genetic landscape surrounding genes of agronomic importance.  
 
Results  
Homogenizing Multiple Public Datasets 
We approach the subject of Cannabis taxonomy by examining genetic diversity and population 
structure, bringing together genomic data from seven different sources (Table 1).  Currently there 
are ten publicly available datasets (Table 1) with seven of these utilized in this study.  Due to large 
sample size (e.g., Phylos Biosciences (n=845) and LeafWorks (n=498)) and high SNP count post 
filtering (e.g., Soorni et al. dataset), some datasets were able to be analyzed in more depth. Data 
from the University of Colorado Boulder [18] (PRJNA 310948) and Dalhousie University [29] 
(PRJNA285813) were not used in this study. PRJNA 310948 appears to be a duplicate of samples 
from PRJNA317659 both released in 2016. Therefore, only one of these (PRJNA317659) was 
used.  The genomic data made available by Medicinal Genomics’ Kannapedia site contains 
samples that have been sequenced across a variety of platforms (CannSNP90, StrainSEEK v1, v2, 
v3 and Whole-Genome Sequencing). When aligned to the cs10 reference genome, no common 
SNPs were found across these 753 samples and they were therefore excluded from nuclear SNP 
analyses. These 753 samples were however included in the haplogroup assessments. Data from 
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Dalhousie University was unable to be used as the program Trimmomatic [30] could not remove 
adapter sequences from the reads despite all adapter references being tested (TruSeq-2 and TruSeq-
3) and the Illumina Universal Adapter sequence being identified by FastQC.  
 
Homogenization of the sequence data was possible by aligning all datasets to one reference 
genome, the CBDRx cultivar, recently renamed cs10 [15] [28]. Previous analyses performed in 
published datasets have utilized different reference genomes (e.g. [31]) making cross comparison 
of analyses difficult. Reference genomes for varieties such as Jamaican Lion (female) 
(GCA_012923425.1) and Jamaican Lion male (GCA_013030025.1) [32], Purple Kush (drug-type, 
female) [26], Finola (hemp-type, male) [26], Pineapple Banana Bubba Kush (drug-type, male) 
(GCA_002090435.1), LA Confidential (drug-type, female) (GCA_001510005.1), Chemdog91 
(drug-type, female) (GCA_001509995.1), Cannatonic (female) (GCA_001865755.1) and JL (feral 
variety, female) (GCA_013030365.1) [33] have been released, however with variable assembly 
quality and completeness (contig versus chromosomal level assembly). Additionally, some 
releases have yet to be peer reviewed and remain BioRxiv releases (McKernan et al., 2020).  
 
Prior to cs10 no chromosomal level high-quality reference sequence was available. In this study, 
SNP sets derived from cs10 alignment were used to assess genetic diversity between datasets as 
well as across chromosomes and domesticated and landrace samples. Analysis of nuclear SNPs 
post cs10 alignment was possible for the Soorni et al., Phylos Biosciences, LeafWorks, Sunrise 
Genetics, Lynch et al., Medicinal Genomics (n=61) and Courtagen Life Sciences datasets. Due to 
the variety of different sequencing strategies taken across these datasets, it was not possible to 
identify common SNPs across all datasets. Therefore, each dataset was analyzed independently, 
with a range of SNPs from 279, (Phylos Biosciences) to 33, 346 (Soorni et al., (2017)) (see Table 
2 and Table 3).  
 
Genetic Diversity Across Datasets 
Exploring genetic diversity patterns between datasets (Supplemental Figure 1A) and per 
chromosome (Supplemental Figure 1A & B), there is no chromosomal specific depression in 
genetic diversity observed that may indicate selection patterns. However, when examining across 
individual datasets there are clear differences in diversity between the different samplings 
(Supplementary Figure 1A). As sample sizes are robust, this suggests that the type of sequencing 
approach taken (length of reads and platform) and, or the sequencing depth and coverage across 
chromosomes bias the genetic diversity observed. Library preparation and the regions that were 
targeted by individual groups for sequencing may have additionally contributed to this bias.  
 
We also investigated genetic diversity of the synthase gene regions of Chromosome 7 
(Supplementary Figure 1C).  This  region is of agronomic interest as prior reports had revealed 10 
cannabinoid synthase genes located here (25 – 61.3 Mb) [15]. Further genome annotations revealed 
14 cannabinoid synthase gene sequences found within this region in two distinct clusters 
(https://gdb.supercann.net/index.php/genomebrowser/cbdrx-18). Synthase gene Region 1 (~25-27 
Mb) contains seven synthase gene sequences with Region 2 (~30-31 Mb) also containing seven 
synthase gene sequences (Table 4). Region 1 is composed of fragmented tetrahydrocannabinolic 
acid synthase (THCAS) gene sequences, all of which are non-functional, while Region 2 contains 
cannabidiolic acid synthase (CBDAS) and CBDAS-like fragments predominantly with one 
functional CBDAS gene sequence. See Table 4 for precise start and end positions for these 
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synthase genes with the genes for THCAS (fragmented non-functional pseudogenes), CBDAS-
like and functional CBDAS indicated [28]. The presence of non-functional THCAS fragments in 
the cs10 cultivar is responsible for its high CBD content [28]. We see high values for pi in the 
areas flanking the synthase gene regions (Supplementary Figure 1C) while in contrast, within 
synthase gene Regions 1 and 2 there are low values for pi within certain datasets (e.g., Soorni et 
al. and University of Colorado Boulder). This suggests a trend towards selection in these regions, 
however due to mixed sampling and variable coverage within each dataset, any selection signals 
may be partially masked.  
 
Phylogenetic Analyses and Hybridization 
Branching pattern in a phylogenetic tree is a hypothesis and reflection of how species or groups 
may have evolved from a common ancestor. By examining such patterns we can begin to 
understand the evolutionary steps that have shaped the Cannabis genus. Maximum Likelihood 
(ML) phylogenies were assembled for the LeafWorks (n = 498) (Figure 1A), Phylos Biosciences 
(n = 845) (Figure 1C) and Soorni et al. (n = 98) (Figure 2A) datasets. The LeafWorks and Phylos 
Biosciences datasets contain global sampling whereas the Soorni et al. dataset provides a regional 
perspective, predominantly consisting of germplasm collected from Iran [24]. We performed 
phylogenetic analysis on these three datasets specifically due to their large sample number which 
may give broader insights into the phylogenetic structure of the genus. Hierarchical Clustering of 
Principal Components (HCPC) was performed on all datasets, with a median of five and a range 
of three to six clusters observed in each dataset (Supplemental Figures 2A, 3A, 4A, 5B, 6B, 7B, 
8B).  
 
In the LeafWorks (n = 498) dataset the ML phylogeny (Figure 1A) partitioned samples into ten 
clades. Clades 1 - 7 and Clade 9 have bootstrap support of over 90, with Clades 8 and 10 having 
low support (63 and 52 respectively). The LeafWorks phylogeny reveals four clades partitioning 
the majority of individuals (Clades 4, 6, 9 and 10) (454 of 498).  In the LeafWorks phylogeny, 
most landrace samples are seen in Clades 5 and 9 and 10, however landrace varieties are also 
observed in all clades to varying degrees (Figure 1A, blue highlighted tips). The LeafWorks 
fastSTRUCTURE [34] analysis reveals high levels of admixture in all populations and is a feature 
that is present across all clades (Figure 1C). At k=2 fastSTRUCTURE analysis reveals clustering 
by use-type, with samples from Clade 10 (THC-Dominant) showing clear separation (Figure 1C). 
Additionally, at k=3 and k=4 clustering of Landrace and Hemp-type samples is observed, with k=5 
resolving separation between these Landrace and Hemp type samples (Figure 1C). Hierarchical 
clustering also reveals clustering by use-type in Hemp and THC-Dominant samples (Supplemental 
Figure 3A) with PCA analysis additionally revealing separation of the four main clades, Clades 4, 
6, 9 and 10 (Supplemental Figure 3B). 
 
The phylogeny for the Phylos Biosciences dataset (n = 844), identified three main clades (Clades 
4, 8 and 9) (744/844) with support for six less populated subclades (Figure 1C), with bootstrap 
supports for some clades low (73). The Phylos Biosciences HCPC analysis supports clustering by 
use-type observed for THC-Dominant, CBD-Dominant, Landrace and Hemp-type samples 
(Supplemental Figure 4A). PCA analysis also reveals separation between the three main clade 
partitions (Clades 4, 8 and 9) (Supplemental Figure 4B). Of note, Clades 6 and 8 house a majority 
of landrace specific accessions (68/107), highlighted in blue at the branch tips (Figure 1C). The 
Phylos Biosciences fastSTRUCTURE analysis at k=5 reveals high levels of admixture between 
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the populations (Figure 1D), however no clear pattern is observed with use type in this analysis 
(k=2-5). 
 
The Soorni et al. dataset (n = 94) focusing on Iranian germplasm yielded seven clades in the ML 
phylogeny, with all nodes with the exception of two showing high bootstrap supports above 90 
(Figure 2A). Comparing the ML phylogeny (Figure 2A) to Principal Component Analysis (PCA) 
(Supplemental Figure 2B) and HCPC (Supplemental Figure 2A), we see complete congruence of 
clade partitions. The phylogeny from the Soorni et al. dataset shows landraces are found entirely 
in Clades 5, 6 and 7 (highlighted in blue) with high bootstrap support (100) (Figure 2A). For the 
Soorni et al. dataset, fastSTRUCTURE analysis at k=3 separates Clades 5, 6 and 7 from the basal 
clades and revealed low levels of admixture between these clade partitions (Figure 2C). 
Additionally at k=3-5 distinct clustering by use-type is observed with CBD-dominant samples 
clustering distinctly from THC-Dominant samples (Figure 2C).  
 
Within the Soorni et al. dataset, nucleotide diversity and Tajima’s D between the three largest 
clades, namely Clade 4 (n = 9), Clade 6 (n = 18) and Clade 7 (n = 56) revealed no difference in 
overall nucleotide diversity (Supplemental Figure 2C). However, there was a trend towards higher 
relative values of Tajima’s D moving from Clade 4 to Clades 6 and Clade 7 (Supplemental Figure 
2D), with high values for Tajima’s D indicative of balancing selection. More specifically 
nucleotide diversity at the 25–31 Mb region of Chromosome 7 was also examined between these 
three clade partitions (Figure 2B). Again, there were higher values for pi in the areas flanking the 
synthase gene regions on chromosome 7. While in contrast, within synthase gene regions 1 and 2 
there are low values for pi (Figure 2B).  
 
Due to low sample size and low representation of use-types in the remaining datasets, Maximum 
Likelihood phylogenies were not constructed for four of the seven datasets namely, Sunrise 
Genetics (n=25) (Supplementary Figure 5, Supplementary Table 11), University of Colorado 
Boulder (n=162) (Supplementary Figure 6, Supplementary Table 12), Courtagen Life Sciences 
(n=58) (Supplementary Figure 7, Supplementary Table 13) and Medicinal Genomics (n=61) 
(Supplementary Figure 8, Supplementary Table 14). Analysis of admixture using 
fastSTRUCTURE analysis for the University of Colorado Boulder dataset at k=5 (Supplemental 
Figure 6C) showed partial clustering by use-type with the majority of CBD-dominant samples 
grouped together. For the remaining datasets where nuclear SNP sets were subjected to 
fastSTRUCTURE analysis, no clear trends in clustering were observed across use-types 
(Supplemental Figures 5C, 7C and 8C).  
 
SplitsTree analysis showed high within clade hybridization in the LeafWorks dataset, as seen by 
the dense line network present particularly in samples from Clade 10 (Supplemental Figure 9). 
SplitsTree analysis provides unrooted trees, therefore clade associations for each sample were 
incorporated in the input (nexus) file to facilitate interpretations. Differential hybridization across 
clades was similarly visible in the Phylos Biosciences dataset though less pronounced, with the 
more recently emerged clades (Clades 8 and 9) also showing higher levels of hybridization 
(Supplemental Figure 10). The Soorni et al. dataset also revealed high levels of within clade 
hybridization, more specifically in the more recently expanded clade (Clade 7) and showed higher 
levels of hybridization then more basal clades (Supplemental Figure 11). Hybridization analysis 
together with fastSTRUCTURE analysis can aid in the identification of individuals with high and 
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low levels of admixture and provide insights into the degree of introgression that may have 
occurred between populations. Such an approach could aid in the identification of landrace 
accessions (yellow branch tips, Supplemental Figures 9, 10 & 11) which are less admixed and 
facilitate the conservation of regionally adapted populations. 
 
Comparison by Use-Type  
We evaluated sample clustering associated with use-type by partitioning cultivars into CBD-
dominant, THC-dominant, balanced CBD:THC, Hemp-type and Landrace. This was possible in 
the LeafWorks, Phylos Biosciences and Soorni et al. datasets as these datasets contained 
representatives in these categories (see Supplemental Tables 6, 7 and 8).  In the LeafWorks (Figure 
3A) and Soorni et al. datasets (Figure 3C), there is a clear separation of individuals by use-type 
for THC-dominant, CBD-dominant and Landrace samples by PCA. This is also seen in the Phylos 
Biosciences dataset (Figure 3B) though the separation is less clear. HCPC in the LeafWorks dataset 
(Supplemental Figure 3A) also supports the clustering of CBD-dominant and Hemp plants as 
indicated in green (n =23). Different datasets of varying SNP size were additionally capable of 
distinguishing use-type (namely CBD-dominant and THC-dominant plants) (Supplemental Figure 
6A, Supplemental Figure 7A and Supplemental Figure 8A) and may correspond with the 
domestication history of these types. The Sunrise Genetics dataset contained only THC-Dominant 
and unknown samples and therefore could not be used to distinguish use-type association 
(Supplemental Figure 5A). 
 
Comparison by Domestication Status  
The LeafWorks and Phylos Biosciences datasets both contained known landrace and modern 
cultivars. The LeafWorks dataset contained 101 landrace samples and 397 known modern 
accessions (Supplemental Table 6), whereas the Phylos Biosciences dataset contained 107 
landrace samples and 679 modern accessions (Supplemental Table 7). The Phylos Biosciences 
dataset revealed a correlation with landrace samples clustering together in the HCPC analysis 
(Supplemental Figure 4A), predominantly in Clade 8. Landraces consistently show a tighter 
clustering in the PCA compared to the other use-types in both the LeafWorks (Figure 3A) and 
Phylos Biosciences datasets (Figure 3B). Examining differential nucleotide diversity between 
landrace and domesticated samples in the LeafWorks (Figure 4A/B) and Phylos Biosciences 
datasets (Figure 4C/D) revealed many genomic regions which may revel insights into genes or 
traits differentially selected for between these partitions. SNP count per dataset pre and post 
filtering for landrace and domesticated samples for the LeafWorks and Phylos Biosciences datasets 
is detailed in Supplemental Table 10. 
 
Geographic information was included for 26 landraces in the LeafWorks dataset, providing 
insights into the present-day geographic structure of samples in Asia (Figure 5). The 26 samples 
from nine different locations included sampling from Pakistan (n = 3), (including North West 
Balochistan (n = 1)), the Hindu Kush Mountains (n= 6), Lolab Valley Kashmir (n = 4), Wailing 
Valley Malana (n= 1), Hunza (n= 2), India (n = 2), Chintal (n =2), Myanmar (n= 4) and Cambodia 
(n = 2) (Figure 5A).  
 
The PCA revealed separate clustering for the Lolab Valley and Hindu Kush samples from the 
Myanmar samples (Figure 5C) with the Hindu Kush samples nested within the Lolab Valley 
ellipse. There are low levels of admixture based on fastSTRUCTURE across the three regions at 
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k=3 with samples clustering by their geographic locations (Figure 5E). Despite being close in 
geography to each other it would appear the Hindu Kush, Lolab Valley and Myanmar samples 
have remained isolated. This challenges the notion that wild populations no longer exist in 
Cannabis (Small & Cronquist, 1976) and indicates that there may be areas of untapped genetic 
diversity for exploration. The SplitsTree hybridization network analysis also shows clustering by 
geography, with high levels of hybridization in Lolab Valley accessions (Figure 5F) but less 
hybridization in both the Myanmar and Hindu Kush samples. The individuals from these three 
geographical regions were further partitioned and examined specifically for their nucleotide 
diversity (Figure 5D). Nucleotide diversity analysis shows numerous regions with differential 
values for pi (e.g., proximal part 12.5 - 50 Mbp of Chromosome 5, center of Chromosome 6 18.75 
- 37.5 Mbp and proximal part 12.5 - 37.5 Mbp of Chromosome 7). HCPC analysis divided the 
samples into three clusters namely group 1 (n =10), group 2 (n= 6) and group 3 (n= 10). Examining 
the geographic sets that have more than two samples, the Myanmar samples exclusively cluster 
together in group 1, while two-thirds of Hindu Kush samples (#1, #3, #4, #5) cluster together in 
group 3 (Figure 5B). The remaining Hindu Kush samples (#2 and #6) were found in groups 1 and 
2, respectively. The Lolab Valley samples were observed in groups 1 and 3, with two samples split 
between these groups. The samples from Pakistan (n = 2), Hunza (n = 2), Chintal (n = 2) and 
Cambodia (n = 2) did not show any clustering associated with their geographical origins, and these 
samples were spread across these three groups.  
 
Haplogroup Assessment 
A maximum likelihood phylogeny was constructed on 126 whole chloroplast sequences which 
were provided by LeafWorks Inc. Alignment of these sequences revealed 97.6% pairwise identity 
and a maximum likelihood phylogeny revealed two distinct groups with bootstrap supports of 87 
for Clade1 (n= 2) and 67 for Clade 2 (n=124) (Figure 6). In the datasets other then LeafWorks 
there were no whole chloroplast sequences available. Instead we created organellar SNP sets by 
aligning to reference sequences for the 18S ribosome (JF317360.1) chloroplast (KY084475.1) and 
mitochondria (MT361980.1) [35] [36] [28]. Supplemental Table 5 shows the Phylogenetic Model 
fit for each dataset from the ModelTest software detailing total SNP count pre and post filtering 
for all datasets used in haplotype analysis.  
 
There was a variable number of haplogroups across the ribosomal alignments (Supplemental 
Figures 12 (A/B), 14 (A/B), 15 (A/B), 16 (A/B), 17 (A/B), 18 (A/B)). The Courtagen Life Sciences 
dataset (3 SNPs) (Supplemental Figure 17A) and Sunrise Genetics dataset (2 SNPs) (Supplemental 
Figure 15A) showed two groups and the Phylos Biosciences (3 SNPs) (Supplemental Figure 14A), 
Medicinal Genomics 61 (10 SNPs) (Supplemental Figure 18A) and Soorni et al. (Supplemental 
Figure 12A) supported three haplogroups. Alignments to the chloroplast reference sequence 
(Supplemental Figures 12 (C/D), 13 (A/B), 14 (C/D), 15 (C/D), 16 (C/D), 17 (C/D), 18 (C/D), 19 
(A/B) also revealed a variable number of haplogroups, with support for two groups in the 
University of Colorado dataset (61 SNPs) (Supplemental Figure 16E), Soorni et al. (8 SNPs) 
(Supplemental Figure 12C) and LeafWorks datasets (15 SNPs) (Supplemental Figure 13A). For 
the mitochondrial genome alignments (Supplemental Figures 12 (E/F), 13 (C/D), 14 (E/F), 16 
(E/F), 17 (E/F), 18 (E/F), 19 (C/D)), two groups are similarly observed in the Medicinal Genomics 
753 (42 SNPs) (Supplemental Figure 19C) and Soorni et al. dataset (25 SNPs) (Supplemental 
Figure 12E) datasets, whereas three groups are seen in the LeafWorks dataset (9 SNPs) 
(Supplemental Figure 13C). 
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Discussion  

Despite the expansion of the Cannabis industry and academic inquiry, there is still little known 
about the genetic history of Cannabis. While it is commonly understood that Cannabis can be 
divided into the putative species indica, sativa and ruderalis [3], to date no genetic studies have 
been able to distinguish these types [37] [29] [18]. These designations are often based on 
morphological characteristics (i.e., C. indica, shorter with a woody stalk and C. sativa, taller with 
a fibrous stalk) [9] or chemical compositions of the plants (Type I, II, III) based on two chemical 
compounds (THC & CBD) [38] as well as rare types which have high levels of CBGA (Type IV) 
or no detectable cannabinoids (Type V) [39]. Despite this, retail purchase is marketed based on 
these purported species delineations (indica or sativa) while researchers still debate the number of 
species, if indeed more than one exists [3]. In order to better understand extant germplasm, we 
evaluated genetic diversity and population structure in seven different collections of Cannabis 
where genomic data were available. These collections consisted of privately bred THC-dominant 
samples, public hemp samples, landrace and wild collections. While the datasets were sequenced 
at different times, we were able to make comparisons by aligning to a common reference, cs10 
[28]). Understanding genetic diversity within each collection can provide clues as to what variation 
is present and aides in the evaluation of the genetic basis of trait variation and speciation. Allelic 
variation conserved in landraces also can help us understand how domestication may have affected 
selection of traits associated with adaptation to local environments. We explored clade partitions 
within each dataset to distinguish clusters of varieties sharing common ancestry. Genome wide 
polymorphisms additionally provide a genetic basis for the characterization of populations and the 
preliminary partitioning of samples into heterotic groups which can inform strategic management 
of breeding programs to avoid the loss of genetic diversity and enhance the breeding gene pool 
and plant productivity. Establishing the number of clades present in different germplasm groups 
can aid in the selection of individuals for breeding, where individuals which share a more distant 
relationship are selected and crossed to maximize heterotic effects.  
 
Addressing the Naming Problem 
The naming problem in Cannabis refers to the unreliable naming of cultivars which often does not 
reflect any pedigree.  This leads to quality issues and causes problems for both the producer and 
consumer. Phylogenetic analysis and population stratification facilitates explorations of cultivar 
name fidelity which is an ongoing issue within the industry. A recent examination of 22 different 
hemp accessions expressing high cannabidiol (CBD) destined for the commercial market revealed 
little consistency either genetically or chemically across several varieties of the same name [40]. 
Investigating name fidelity in the Phylos Biosciences dataset was possible for the Sour Diesel 
cultivar with 14 samples (Supplemental Figure 20) associated with this name, making it the most 
represented cultivar in the dataset. Twelve Sour Diesel samples were observed in Clade 4 with the 
remaining 2 observed in clade 9 (Figure 2C, Table 7). The Phylos Biosciences dataset also 
contained 23 samples associated with the cookies lineage (Supplemental Figure 21), namely; 
Animal Cookies (n =5), Cookies (n = 2), Girl Scout Cookies (n = 5) (full name or GSC/G.S.C), 
GSC Mint (n = 1), Fortune Cookies (n = 1), Forum Cut Cookies (n = 1), Panda Cookies (n = 1), 
Phantom Cookies (n = 1), Platinum Cookies (n = 2), Platinum GSC (n = 1), Platinum OG Cookies 
(n = 1), Xmas Cookies (n = 1 )). Overall, we see 14/23 cookies lineage samples in Clade 9, 3 in 
Clade 8, 1 in Clade 7, 4 in Clade 6 and 1 in Clade 4. More specifically all 5 Animal Cookies are 
observed in Clade 9 indicating good consistency in name fidelity for this variety.  
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Name fidelity was also examined in the LeafWorks dataset where 12 Blue Dream samples were 
represented from ten different sources (Supplemental Figure 22). Of these, 7/12 placed in Clade 1 
(blue_dream samples #1, 3, 4, 6, 7, 9 & 10), 1 sample in Clade 6 (blue_dream_5), Clade 9 
(blue_dream_11) and Clade 10 (blue_dream_2). The remaining two samples (blue_dream # 8 & 
12) were unplaced in the phylogenetic tree. Examining differences in cultivar name location using 
phylogenetic approaches, where the degree of genetic similarity dictates sample placement, offers 
a means by which cultivar names can be interrogated and would allow inconsistencies in variety 
naming to be identified. 
 
Looking at these results collectively, it is possible to observe areas with consistent placement of a 
cultivar of interest to address naming fidelity and the likelihood of name accuracy using these 
evolutionary relationships of genetic relatedness. As such, we observed clustering of similarly 
named samples in the case of Sour Diesel (Supplemental Figure 20; Clade 4) and Blue Dream 
(Supplemental Figure 22; Clade 1), while not all samples with these cultivar names clustered 
together in these clades.  This demonstrates the naming problem well where similarly named 
samples can be quite dissimilar genetically.  Further work is needed to determine how pervasive 
the naming problem is. This work also highlights the importance of genetics to inform label claims, 
which will be particularly crucial upon legalization when the Federal Drug Administration would 
require accurate plant label claims as it does for all other natural products sold in the United States. 
 
Domestication and Use-Type 
The geographical range of Cannabis has been influenced and extended through its long-standing 
human association [41]. The movement of prehistoric peoples in Eurasia along historic trade routes 
(e.g. Silk Road) facilitated the distribution of the Cannabis plant, with use of the crop by these 
communities driving selection during domestication [9]. The psychoactivity of THC has played a 
role in the domestication of this species, with extensive work in the field of ethnobotany revealing 
long standing histories, cultural associations and knowledge of this trait [2] [42].  
 
Studies exploring genetic history of Cannabis have used ethnographic associations to delineate 
populations. Like the results presented here with nuclear SNPs (Supplementary Figure 2A, 3A, 
4A, 5B, 6B, 7B and 8B), Henry et al. (2020) reported k = 5 as the number of groups which best 
delineated samples [43] though this number is variable [44]. In plastid data, previous work 
representing a mix of wild and domesticated populations in China revealed three distinct groups 
[45], however this differs from published work from law enforcement agencies which suggested 
five to eight groups [46] [47]. The chloroplast phylogeny assembled here indicates support for two 
groups (Figure 6), with the second group representing global population diversity but only a small 
number of samples (n = 2) in the first group. The hierarchical clustering of principal components 
also supports this two-group structure that was present in independent datasets (Supplementary 
Figures 16E and 13B). This seems to indicate that maternal diversity does not appear to correlate 
with nuclear diversity levels or patterns of population structure, nor exhibit clear geographic 
patterns reflecting human movement. 
 
In the classic tradition of ethnobotany, we examined if clade partitions were related to human use-
type. Examining use-type associations (Figure 3) in tandem with phylogenetic analysis (Figure 1A 
and Figure 1C) offers a perspective on how Cannabis populations may have been influenced by 
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human mediated selection for traits such as high THC or CBD content as well as potential 
population delineations within the genus (Supplementary Figure 2A/B, 3A/B, 4A/B). The 
LeafWorks, Phylos Biosciences and Soorni et al. datasets exhibited use-type separation via PCA 
(Figure 3A, 3B and 3C) and demonstrate how SNP set number and quality can affect the degree 
of discrimination (see Supplementary Table 6, 7 and 8 for assignment of use-type for these 
datasets). A broader distribution of genetic variation in THC-dominant cultivars is observed versus 
a narrower range of genetic variation in landrace samples as seen in the LeafWorks (Figures 3A), 
and Phylos Biosciences datasets (Figures 3B). This may be indicative of the purported large-scale 
hybridization that is thought to have occurred in THC-dominant varietals in the US from the 1960s 
onwards [2]. Functionally, this means that numerous crosses were made for high THC content. 
Alternatively, this high genetic diversity in THC-dominant cultivars could represent convergent 
selection, with each lineage being bred in isolation and now released back to the market as 
regulations relax. However, due to prohibition, there is a lack of available pedigree records, making 
it difficult to reconcile these two hypotheses.  
 
Unlike Ren et al. (2021), our results suggest that landrace samples can be observed in all clade 
partitions, however the number of landrace samples in a particular clade may be affected by 
sampling biases. Further, we see differential nucleotide diversity when comparing landrace and 
domesticated samples across many genomic regions (Figure 4B and D) providing a significant 
number of loci to be investigated.  
 
Landrace Biogeography and Diversity 
The debate around the geography of Cannabis domestication is ongoing, with current published 
evidence suggesting different centers of origin [2] [5]. There is evidence that the species was 
distributed across Eurasia prior to human use, dispersing from Northeastern Tibetan Plateau west 
into Europe 6 mya and east into Eastern China by 1.2 mya [5]. This suggests that Cannabis could 
have been domesticated across a number of different sites across a diffuse geography. Here, a 
subset of georeferenced samples (n = 26) was analyzed separately (Figure 5). Hierarchical 
clustering revealed three landrace populations which appear to be quite distinct from one another 
(Figure 5B), with minimal admixture (Figure 5E). The largest amount of diversity was observed 
in the Lolab Valley samples as opposed to the Hindu Kush or Myanmar samples. Population 
separation was observed between varieties collected from Northern India in the Hindu Kush 
Mountains and Myanmar. While this subset of landraces clusters distinctly when analyzed 
separately (Figure 5B), landraces are broadly represented across most clade partitions (Figure 1A 
and 1B, blue highlighted tips). This suggests that these ancestral landraces have a shared ancestry 
with the modern cultivars in which they share clade positional location.  
 
Landrace data also allows the exploration of human mediated selection through the exploration of 
suppressed or low nucleotide diversity [48] [49] and facilitates the identification of genomic 
locations containing traits of interest that may have been fixed in modern lines  [50]. Examining 
the diversity and identifying regions which may contribute to gene regulation of the two dominant 
cannabinoids, CBD and THC, is likely to be significant as the Cannabis industry continues to 
develop, as these are the key quality phenotypes for the industry. Exploring the THCAS and 
CBDAS regions located on Chromosome 7 we generally see high nucleotide diversity in the 
regions between the two synthase containing regions when sufficient reads can be aligned, while 
low nucleotide diversity is observed in the synthase containing regions themselves (Figure 2C & 
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Supplemental Figure 1C). These differences in diversity suggest positive selection in the two 
synthase gene regions and this is consistently seen across clades. However, due to variable 
coverage of these important gene sequences within the datasets examined, a comprehensive survey 
across individuals for cannabinoid gene content and the assessment of functional variants was 
limited. This finding complements previous work where the focus has been on specific gene family 
phylogenies, such as the cannabinoid phylogeny for CBDAS and THCAS variants [51] [23] and 
terpene synthase phylogenies [21] [52] [53]. For breeders and growers seeking to maximize the 
concentration of various cannabinoids, working with breeding material of known genetic 
constitution is key to creating better products. Increasing number of genetic resources and 
information around varietals should help provide a way to breed cultivars more efficiently. 
 
Strategic Plant Breeding for Use-Type   
Cannabis varietals are typically classified as high THC (Type I), containing a ratio of THC to CBD 
(Type II) or high CBD (Type III) plants [38] as well as the rarer types, with high CBG (Type IV) 
and complete absence of cannabinoids (Type V) [39]. Hemp varietals are typically classified as 
Type III, often presenting with a CBD enriched phenotype largely the result of a non-functional 
copy of the synthase THCAS [54]. However, this is not the case for all hemp varietals, with 
functional and non-functional THCAS genes known to be present in germplasm presenting 
challenges for farmers who are required to have less than 0.3% THC at harvest based on current 
regulations. Breeding with a focus on a particular use-type could help to ensure consistency in 
secondary chemistry and incorporating an assessment of admixture or hybridization in this 
selection may expedite the time taken to reach population stability. Examining the levels of 
admixture (Figure 1B/D, Supplementary Figures 9, 10 and 11) between and within clades or 
populations can also aid in the identification of less admixed individuals that may offer greater 
heterotic effects when crossed with other more inbred individuals present in distinct clades [55]. 
Examining hybridization, it appears that more recently expanded clades present higher levels of 
hybridization than earlier clades (Supplementary Figures 9, 10 and 11) and may be reflective of 
the rapidly expanding legal Cannabis market with large amounts of related germplasm being 
crossbred. Cannabis focused research and hybrid breeding programs could offer solutions to the 
production of industrial hemp-type Cannabis, offering more sustainable alternatives for the paper 
and textile industries.  
 
Understanding population stratification and use-type could advance specialty crop development 
for specific traits in this emerging crop system. Using genomic approaches that improve resolution 
of the evolutionary processes occurring in the Cannabis genus will also provide information about 
the underlying genetic variation that can be used for improving breeding outcomes. The expression 
of typically low abundance cannabinoids has potential therapeutic translatability [56] and coupling 
plant phylogeny with metabolomics could facilitate the identification of such plants with unique 
genetic and secondary chemistries and would provide unique market classes. Further, 
understanding historic evolution and the distribution of insect/mammal herbivores may provide 
insight into where to collect rare cannabinoid profiles as it has been suggested that the expansion 
of cannabinoid as well as terpenoid gene families has been driven by predation [57]. Breeding for 
traits such as disease and pest resistance is essential for crop reliability, and it is likely that future 
breeding practices will focus on the selection and stabilization of cultivars with specific secondary 
chemistries which will help establish clear market classes.   
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Leveraging evolutionary history for better breeding programs 
Evolutionary plant breeding (EPB) is used to increase the diversity and stability of a crop in a 
specific environment using natural selection by increasing the frequency of favorable alleles in a 
heterogenous population [58]. Locally adapted samples such as Cannabis landraces have 
undergone many rounds of selection and are better adapted to their niche and may be a reservoir 
of genetic diversity containing genes conferring disease resistance among other desirable traits. 
Such an approach has been taken in barley [59] where bulbous barley Mildew Locus O (mlo) genes 
have been introgressed into other barley cultivars for winter cultivar development and powdery 
mildew resistance. Our sampling of landraces was limited (Supplementary Tables 6, 7, 8, 12 and 
15). If more efforts are made to conserve and characterize landrace Cannabis populations, then 
similar approaches could be taken to identify donor parents and populations which could offer an 
environmentally friendly source of genetic resistance to pests for introgression into other 
populations, reducing pesticide and herbicide use for more sustainable cultivation practices. The 
history of prohibition and local cultivars suggests that there is a large possibility of biopiracy with 
respect to the developing industry. It will be important to develop equitable distribution and ensure 
that local communities benefit from the work their communities have done in line the international 
plant genetic resources treaty [60].  
 
Modernizing the Cannabis industry by incorporating a genomic perspective would assist in the 
selection of promising germplasm for breeding purposes though the stratification of samples into 
heterotic groups [61]. Identifying clade partitions offers a basis for which heterotic groups can be 
established to maximize performance for a wide variety of traits and could aid the identification 
of varietals with rare genetic constitutions. Exploiting the genetic variation between heterotic 
groups has been found to be successful in maximizing hybrid performance in other crop systems 
such as wheat [62] and rice [63] and has depended crucially on the clustering of germplasm into 
such groups [64]. Hybrid breeding is known to boost yields and growth characteristics [65] and 
implementing such an approach could facilitate crop development, as well as address the 
characterization of existing Cannabis germplasm in the industry today. Analyses of population 
structure in the Cannabis genus could bridge the communication and knowledge gap post 
prohibition in the recreational market between what dispensaries are growing and selling, what the 
public are buying and consuming, and bring standardization and reliability in variety consistency 
to the marketplace. The current classification of Cannabis as a Schedule I drug presents barriers 
to open research which could support the production of safe medical and recreational Cannabis.  
 
Public Data Implications  
High throughput sequencing technologies have advanced at a rapid pace making it possible to 
affordably generate large collections of genomic sequences. This had led to the release of several 
Cannabis genomic datasets in the public domain by researchers in both academia and industry 
(Table 1) over the last decade. However, there is often limited alignment in research objectives 
and goals between the public and private sectors. From the perspective of academia, there is 
frequently a need to release and publish data as early as possible. In contrast for the private sector 
genomic data often has high commercial value and the sharing of data through public papers is 
therefore not a priority. Public-private partnerships offer a route to harness the diverse resources 
and expertise present in both sectors and could advance Cannabis science. Such collaborations can 
achieve results beyond the reach of a sector working alone and are increasingly being observed for 
the acceleration of agricultural productivity [66]. 
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Data handling and analysis presents new logistical challenges and there is often a gap between 
data generation and data analysis. Making data accessible as well as usable, for example through 
the release of annotations with assemblies, provides context and furthers interpretations. For 
genomic sequence data to be analyzed to their fullest it is important that standards are increasingly 
adopted and required around metadata inclusion and maintenance [67]. In this analysis, datasets 
varied in their ease of access and the availability of metadata. Data sources were not all archived 
at a central repository such as NCBI. Those that were not were in NCBI were not straightforward 
to access both in sequence data and paired metadata. Use-type was assigned from the varietal 
names supplied from the metadata associated with each dataset, however reliability and 
consistency in varietal naming is highly variable and thus these names and use-type associations 
should be treated with caution (the naming problem). While this problem is not unique to 
Cannabis, it is acutely problematic in any species that has high economic value and limited 
foundational genomic resources.  
 
Caveats   
Previous work has used various reference genomes [18] [24]  [31] [68] and this reflects the current 
predicament within the industry where standards are still in development. The cs10 reference 
genome is the most complete assembly to date, but it contains non-functional THCAS gene 
sequences. This high CBD expressing variety contains a functional CBDAS gene 
(CsCBD_09G0011030) and simultaneously eight non-functional fragmented THCAS sequences 
[28]. It therefore does not allow an examination of functional gene content for THCAS, limiting 
utility for examination of this locus, which is the most economically important locus in the 
genome. Using a single reference creates a bias impacting examination of other more minor 
cannabinoid synthases which may be represented across the various datasets. Reference limitations 
are being addressed through the utilization of pan genomes and are increasingly becoming 
available for many crop species [69] [70] [71], however, there is not currently a public pan genome 
for Cannabis, which would greatly facilitate analysis.   
 
An additional challenge when working with public data sources is that analysis of any dataset must 
often be performed in isolation due to the use of different platforms/approaches by academic and 
industry sources. Care must be taken in the cross comparison of specific datasets as the amount of 
shared germplasm as well as dataset quality can influence the breadth and inference potential of 
the analysis. Additionally, when expanding these observations to conclusions about the genus as 
whole, it is important to carefully consider germplasm sampling bias which limits the direct 
comparison of the delineated clades across datasets. This may result in limited or no shared SNPs 
across datasets and therefore obscures the cross comparison of datasets directly.  Higher yielding 
SNP sets such as the Soorni et al. dataset offer greater clarity and demonstrates how SNP set 
quality and quantity can impact interpretations. This and the variable amount of sequencing data 
across this study highlight how different datasets can be used for different purposes and how 
different sequencing approaches (amplicon, reduced representation, whole genome sequencing) 
can restrict interpretations or bias diversity assessments.   
 
Further, data quality and quantity influence the ability to clearly distinguish use-type. While we 
were able to explore use-type, across the datasets studied, use-types were not evenly represented 
(e.g., The Phylos Biosciences dataset contained 107 landrace, 17 hemp, 48 CBD enriched, 624 
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THC enriched and 49 unknown). This uneven distribution may influence conclusions related to 
the genus overall and will be subject to change as the amount of data increases. Additionally, these 
designations of type were assigned by sample name and due to the inconsistencies in naming (the 
naming problem) in the Cannabis industry, may also be subject to change. Currently, classification 
of use-type (Hemp/Drug-type) or secondary chemistry can be predicted by synthase gene content 
for cannabidiolic and tetrahydrocannabinolic acid synthases across varieties, but this tells us little 
about other traits or the rest of the genome. As costs continue to decrease, genomic approaches for 
examination of Cannabis naming will likely become the norm and could overcome the ongoing 
challenge in the industry of clone and cultivar misidentification.   
 
Future perspectives 
In this study, nuclear SNP sets for seven datasets were explored, with the datasets having the 
highest number of taxa chosen to gain insights into the phylogenetic structure of the Cannabis 
genus. Representation within each clade varies across the datasets and is reflective of the different 
germplasm present in each collection. Use-type associations and separations were observed via 
PCA in the Soorni et al., LeafWorks and to a lesser extent in the Phylos Biosciences datasets with 
this in line with prior publications [18]. With the legal status of Cannabis now shifting, researchers 
can begin to examine the effects prohibition on extant Cannabis varieties. In the United States, 
prohibition may have created closed gene pools through the breeding of limited germplasm by 
limiting germplasm movement. Closed gene pool breeding may have had a role to play in the 
increased potency of Cannabis varieties over time, with increases in THC content from ~4% in 
1995 to ~12% in 2014 reported [72].  Analogous to this in the wild, repeated range contractions 
during the Holocene are thought to have resulted in repeated genetic bottlenecks and likely initiated 
incomplete allopatric speciation which has led to differences between European (CBD-dominant) 
and Asian (THC-Dominant) Cannabis populations [9].  
 
Commonly known cultivars and cultivar families such as Kush derivatives may perhaps best be 
thought of and described by a population, rather than a singular plant variety. However, work 
remains to genetically define and distinguish such cultivars. Currently there is no industry wide 
system to verify cultivars [37]. Genetic approaches could therefore bring clarity and consistency 
to the recreational and medicinal markets and would broaden the perspective when ascribing 
Cannabis to factors other than the two typically dominant Cannabinoids, CBD and THC. The 
approaches taken here provide a basis for the further investigation of the population structure of 
the Cannabis genus. The conservation of wild relatives and naturalized populations of Cannabis 
and the development of germplasm resources may be critical for the preservation of diversity and 
act as a valuable source of allelic variation for introgression and trait improvement as the industry 
continues to develop worldwide.  
 
Materials and Methods 
Data Acquisition 
Data was retrieved for five of the seven datasets utilized here by direct download from the National 
Center for Biotechnology Information’s Sequence Read Archive (NCBI SRA) using the Bioproject 
IDs in Table 1. A sixth data source with paired fastq for 498 individuals was kindly shared through 
a public-private partnership in collaboration with LeafWorks Inc. The seventh and last public 
dataset utilized here was sourced from the Medicinal Genomics’ website, where 61 paired fastq 
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samples were provided for bulk download (Medicinal Genomics 61) and an additional 753 paired 
fastq (Medicinal Genomics 753) were separately and individually downloaded from each cultivar 
page. At the time of download (June 2021) the sequencing approach taken for each of these 753 
samples (Supplementary Table 15) could not be determined. The metadata associated with each 
sample has since been updated and assigned the sequencing approach (i.e., CannSNP90, 
StrainSEEK v1, v2, v3 and Whole-Genome Sequencing) used for each sample. In this publication, 
with all 753 samples pooled together, no shared nuclear SNPs post filtering were found across all 
753 samples for further analysis based on the approach to SNP analysis outlined below. Therefore, 
these samples were only included in the haplogroup analysis. In regards to type of sequence data 
available, single reads were provided in the Soorni et al., University of Colorado Boulder and 
Sawler et al. datasets. The remaining datasets (Sunrise Genetics, Courtagen Life Sciences, 
Medicinal Genomics, LeafWorks, Phylos Biosciences) contained paired reads. Only forward reads 
were aligned to cs10 for the Phylos Biosciences dataset in this study.   
 
Sample names were assigned to individual samples as supplied by authors in supplemental 
materials of publication or through the metadata supplied through NCBI. Use-type associations 
were assigned to the LeafWorks samples through searching sample names on leafly.com or 
wikileaf.com. For the Phylos Biosciences dataset, samples were assigned to use-type from the 
Genotype report page for each sample on the Phylos Biosciences website. Use-type association 
was possible for some samples in the Soorni et al. dataset due to a recent publication which focused 
on the chemistry of these wild population samplings in Iran [73]. The Soorni et al. dataset therefore 
represents regional sampling, while the remaining datasets represent global samplings 
(Supplementary Tables 6, 7, 8, 11, 12, 13, 14 &15). 
 
Data Processing 
Where demultiplexing was required (PRJNA285813) [29], barcodes were acquired from the 
supplemental materials and removed using the sabre (version 1.0) software. All dataset fastq files 
were checked for adapter sequence content using the fastqc (version 0.11.8) software [74]. Where 
adapters were present, Trimmomatic (version 0.39) [30] was implemented to remove these 
sequence elements. Reads were then aligned to the high CBD expressing varietal CBDRx (cs10) 
genome reference [28] using bwa-mem (version 0.7.17) [75]. Samtools (version 1.9) (H. Li et al., 
2009) was used to convert sam files to bam files and mapped reads were sorted for a mapping 
quality of 30 or above. BCFtools (version 1.9) [76] was used with the mpileup and call commands 
to generate VCF files. Using VCFtools (version 0.1.16) [77] samples were filtered for a minor 
allele frequency of 0.05, Hardy-Weinberg Equilibrium (0.05), and a maximum missingness of 10% 
(0.9). After filtering, data were analysed using the SNPRelate [78] FactoMineR (Lê et al., 2008) 
and factoextra [79] packages in R studio (version 1.4.1106) (R Core Team, 2013).  
 
Population Diversity 
VCF files for known domesticates and landraces were separately merged into their respective VCF 
files and strictly filtered in VCFtools with a minor allele frequency of 0.05, Hardy-Weinberg 
Equilibrium (0.05), and a maximum missingness of 10% (0.9). For nucleotide diversity and 
Tajima’s D, VCFtools was used with a 10,000 bp sliding window across the strictly filtered files 
for each dataset. Specific chromosomal regions of interest were focused upon by restricting the 
location range plotted in R studio using the ggplot package [80].   
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Population Structure and Phylogenetic Analysis 
VCFtools was used to generate MAP and PED files. These were then used to generate BED, BIM, 
and FAM files in the software PLINK (version 1.9) [81]. For each dataset fastSTRUCTURE 
(version 1.0) was then used to assign individuals into populations [34]. In addition, each dataset 
was examined for clustering by use-type using principal component analysis (PCA) in SNPRelate  
[78]. Only bi-allelic SNPs further filtered for linkage disequilibrium (0.2) were used for the 
Principal Component Analysis (PCA) and Hierarchical Clustering on Principal Components 
(HCPC) as represented in figures by hierarchical clustering dendograms (Supplementary Figures 
2A,3A, 4A, 5B, 6B, 7B and 8B). All SNPs were used to make the Maximum Likelihood 
phylogenetic trees (Figure 1A & B, Figure 2A). Maximum Likelihood (ML) phylogenetic trees 
were constructed for the Soorni et al. (Figure 2A), LeafWorks (Figure 1A) and Phylos Biosciences 
(Figure 1B) datasets due to large sample size and high SNP count post filtering. For the remaining 
datasets, ML phylogenetic trees were not constructed due to low sample size (between 25 – 162 
individuals) and low representation of Landrace, Hemp and CBD-Dominant samples, which may 
confound genus wide interpretations (Sunrise Genetics (Supplemental Figure 5), University of 
Colorado Boulder (Supplemental Figure 6), Courtagen Life Sciences (Supplemental Figure 7), and 
Medicinal Genomics (Supplemental Figure 8)).  
 
To look for potential hybridization a nexus file was used as input in the software SplitsTree4 [82] 
and a Splits Hybridization Network was generated using the RECOMB2007 method, with 
relationships displayed using the equal angle method.  
 
For phylogenies, VCF files were converted to nexus and fasta format using the software package 
vcf2phylip (version 2.6 (https://github.com/edgardomortiz/vcf2phylip). Multiple sequence 
alignment was performed using MAFFT (version 7.475) [83] and this was submitted to the 
software Modeltest-ng (version 0.1.6) [84] to best evaluate the substitution model to be used. The 
results for which can be seen in Table 5. The appropriate model selection was then submitted to 
IQ-TREE (version 2.0.7) to estimate the phylogeny with the -B 1000 flag for bootstrap support. 
Trees were visualized in FigTree (Version1.4.4) (Figure 1A & B) 
 
To explore haplo-group assignment, samples were aligned to reference sequences for the 18S 
ribosomal subunit (JF317360.1, 1,701 bp), the chloroplast (KY084475.1, 153,945 bp a Chinese 
Hemp variety) and the mitochondria (MT361980.1, 415,806 bp Cultivar: Kompolti). Additionally, 
a maximum likelihood phylogeny was constructed on 126 whole chloroplast sequences which 
were provided by LeafWorks Inc. Using the ModelTest software the GTR+G4 model was selected 
as the best substitution model. A phylogenetic tree was generated using IQ-TREE (version 2.0.7) 
to estimate the phylogeny with the -B 1000 flag for bootstrap support. Trees were visualized in 
FigTree (Version1.4.4) (Figure 6). 
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Main Figure Legends 
 
Figure 1. Examining Maximum Likelihood phylogenetic structure and admixture in the LeafWorks 
and Phylos Biosciences datasets (A) Maximum Likelihood tree for the LeafWorks dataset constructed 
from 1,405 nuclear SNPs from 498 samples. Landrace samples are highlighted in blue at the branch tips 
(B) Maximum Likelihood phylogenetic tree for the Phylos Biosciences dataset constructed from 279 
nuclear SNPs from 844 samples (C) Visualization of population structure and admixture for the LeafWorks 
dataset using the fastSTRUCTURE software (k=2-5) (D) Visualization of population structure and 
admixture for the Phylos Biosciences dataset using the fastSTRUCTURE software (k=2-5). 
  
Figure 2. Results for the Soorni et al. dataset (A) Maximum Likelihood (ML) phylogenetic tree 
constructed from 33,629 nuclear single nucleotide polymorphisms (SNPs) from 94 samples consisting of 
16 from CGN Genebank, 10 from IPK Genebank and 68 landraces (highlighted in blue) sampled across 
Iran. Colour codes correspond to the main supported clades (B) Comparison of clade partitions for 
nucleotide diversity at the 25-31 Mb regions of Chromosome 7 (NC_044378.1), with Clade 4 (n=9) from 
66,260 SNPs, Clade 6 (n=18) from 60,618 SNPs and Clade 7 (n=56) from 48,795 SNPs (C) Visualization 
of population structure and admixture with fastSTRUCTURE software (k=2-5).  
 
Figure 3. Examination of use-type association across three datasets (A) Principal component analysis 
(PCA) from 520 nuclear SNPs for the LeafWorks dataset (B) PCA from 213 SNPs Phylos Biosciences 
dataset (C) PCA from 6,865 nuclear SNPs for the Soorni et al. dataset where cannabinoid content could be 
determined due to recent publication for 31/94 samples.  
 
Figure 4. Nucleotide diversity for landrace and domesticated partitions for the LeafWorks and Phylos 
Biosciences datasets (A) Nucleotide diversity by chromosome and (B) across chromosome length for 
Domesticated (n=397, 2,096 SNPs) and Landrace (n=101, 2,131 SNPs) samples for the LeafWorks dataset 
(C) Nucleotide diversity by chromosome and (D) across chromosome length for Domesticated (n=679, 704 
SNPs) and Landrace (n=107, 266 SNPs) samples for the Phylos Biosciences dataset. 
 
Figure 5. Landrace accessions from the LeafWorks dataset show separation between Indian and Myanmar      
populations (A) Map detailing the locations of landrace accessions, highlighted are the Hindu Kush 
Mountains, Lolab Valley and Myanmar (B) Hierarchical cluster dendrogram based on 304 SNPs (LD 0.2) 
across 26 samples of known and trusted origin (C) PCA based on 304 SNPs with geographical locations of 
samples as indicated (D) Nucleotide diversity comparison between Hindu Kush Mountains (n=6) 4,304 
SNPs, Lobal Valley (n=4) 853 SNPs and Myanmar (n=4) 2,204 SNPs (E) Visualization of population 
structure and admixture using the fastSTRUCTURE software (k=3) (F) Network tree visualized using the 
Splits-Tree software with sample source indicated. 
 
Figure 6. Maximum Likelihood phylogenetic tree for 126 whole chloroplast assemblies. Individuals were 
aligned using MAFFT. Modeltest-ng revealed the GTR+G4 as the best fit substitution model and IQ-Tree 
software was used for phylogenetic inference. The resultant tree was visualized using FigTree (Version 
1.4.4). 
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Supplemental Figure Legends 
 
Supplementary Figure 1. Dataset overview (A) Nucleotide diversity by chromosome for all 7 genomic 
datasets for Cannabis sativa L.  (B)  Nucleotide diversity across the length of the 10 chromosomes for all 
7 genomic datasets (C) Nucleotide diversity across datasets for the 25-31Mb region which contains the 
Cannabinoid synthase genes. Positions of full length and truncated genes are listed in Table 4. Due to low 
numbers of reads aligning to this partitioned region, not all datasets could be represented in Figure 1C. 
 
Supplemental Figure 2. Soorni et al. supplemental nuclear SNP analysis (A) Hierarchical cluster 
dendrogram from 6,865 nuclear SNPs with clade association indicated below (B) Principal component 
analysis (PCA) from 6,865 nuclear SNPs (LD 0.2) indicates complete congruence with clade partitioning 
(C) Nucleotide diversity and (D) Tajima’s D by clade partitions for the Soorni dataset across the ten 
chromosomes. Nucleotide diversity and Tajima’s D calculated for Clade 4 (n=9) from 66,260 SNPs, Clade 
6 (n=18) from 60,618 SNPs and Clade 7 (n=56) from 48,795 SNPs.  
 
Supplemental Figure 3. LeafWorks supplemental nuclear SNP analysis (A) Hierarchal cluster dendrogram 
from 520 nuclear SNPs with use-type and clade association indicated below (B) PCA with samples 
associated with Clade number from Figure 1A as indicated. 
 
Supplemental Figure 4. Phylos Biosciences supplemental nuclear SNP analysis (A) Hierarchal cluster 
dendrogram from 213 nuclear SNPs with use-type and clade association indicated below (B) PCA with 
samples associated with Clade number from Figure 1B as indicated. 
 
Supplemental Figure 5. Nuclear SNP analysis for the Sunrise Genetics dataset for 25 samples (A) PCA 
by use-type based on 1,604 nuclear SNPs. Use-type associations include THC-Dominant (Type I) (n=38) 
and Unknown (n=12). (B) Hierarchal cluster dendrogram with use-type indicated below (C) Visualization 
of population structure and admixture using the fastSTRUCTURE software (k=2-5). 
 
Supplemental Figure 6. Nuclear SNP analysis for the University of Colorado Boulder dataset for 162 
samples (A) PCA by use-type for 162 samples from 2,223 SNPs. Type associations include Hemp (n=1), 
Landrace (n=1), THC-Dominant (Type I) (n=162), CBD-Dominant (Type III) (n=11), THC:CBD (Type II) 
(n=2) and Unknown (n=21). (B) Hierarchal cluster dendrogram with use-type indicated below (C) 
Visualization of population structure and admixture using the fastSTRUCTURE software (k=2-5). 
 
Supplemental Figure 7. Nuclear SNP analysis for the Courtagen Life Sciences dataset for 58 samples (A) 
PCA by use-type based on 119 nuclear SNPs. Use-type associations include Hemp (n=1), THC-Dominant 
(Type I) (n=41), CBD-Dominant (Type III) (n=11) and Unknown (n=5). (B) Hierarchal cluster dendrogram 
with use-type indicated below (C) Visualization of population structure and admixture using the 
fastSTRUCTURE software (k=2-5). 
 
Supplemental Figure 8. Nuclear SNP analysis for the Medicinal Genomics 61 dataset for 61 samples (A) 
PCA by use-type based on 2,267 nuclear SNPs. Use-type associations include Hemp (n=1), THC-Dominant 
(Type I) (n=47), CBD-Dominant (Type III) (n=5) and Unknown (n=9). (B) Hierarchal cluster dendrogram 
with use-type indicated below (C) Visualization of population structure and admixture using the 
fastSTRUCTURE software (k=2-5). 
 
Supplemental Figure 9. Network tree visualized using the Splits-Tree software with clade partitions 
indicated for the LeafWorks dataset (n=498). Landrace samples highlighted in yellow. 
 
Supplemental Figure 10. Network tree visualized using the Splits-Tree software with clade partitions 
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indicated for the Phylos Biosciences dataset (n=845). Landrace samples highlighted in yellow.  
 
Supplementary Figure 11. Network tree visualized using the SplitsTree software (version 4) reveals high 
levels of hybridization, particularly within Clade 7 for the Soorni et al. dataset (n=94).  
 
Supplemental Figure 12. Haplogroup analysis for the Soorni et al. dataset for 94 samples with alignments 
to reference sequences for the (A-B) 18S Ribosomal subunit (Reference JF317360.1), (C-D) Chloroplast 
(Reference KY084475.1) and (E-F) Mitochondria (Reference MT361980.1). (A) PCA from 3 SNPs (LD 
0.2) with samples associated by clade number as indicated (B) Hierarchical cluster dendrogram based on 3 
SNPs (LD 0.2) with use-type and clade association indicated below (C) PCA from 8 SNPs (LD 0.2) with 
samples associated by clade number as indicated (D) Hierarchical cluster dendrogram based on 8 SNPs 
(LD 0.2) with use-type and clade association indicated below (E) PCA from 25 SNPs (LD 0.2) with samples 
associated by clade number as indicated (F) Hierarchical cluster dendrogram based on 25 SNPs (LD 0.2) 
with use-type and clade association indicated below. 
 
Supplemental Figure 13. Haplogroup analysis for the LeafWorks dataset for 498 samples with alignments 
to reference sequences for the (A-B) Chloroplast (Reference KY084475.1) and (C-D) Mitochondria 
(Reference MT361980.1). (A) PCA by use-type from 8 SNPs (LD 0.2) with samples associated by clade 
number as indicated (B) Hierarchical cluster dendrogram based on 15 SNPs (LD 0.2) with use-type and 
clade association indicated below (C) PCA by use-type from 9 SNPs (LD 0.2) with samples associated by 
clade number as indicated (D) Hierarchical cluster dendrogram based on 9 SNPs (LD 0.2) with use-type 
and clade association indicated below. 
 
Supplemental Figure 14. Haplogroup analysis for the Phylos Biosciences dataset for 844 samples with 
alignments to reference sequences for the 18S Ribosomal subunit (Reference JF317360.1) (A-B), 
Chloroplast (Reference KY084475.1) (C-D) and Mitochondria (Reference MT361980.1) (E-F). (A) PCA 
from 8 SNPs (LD 0.2) with samples associated by clade number as indicated  (n=87) (B) Hierarchical 
cluster dendrogram based on 3 SNPs (LD 0.2) with use-type and clade association indicated below (n=87) 
(C) PCA from 2 SNPs (LD 0.2) with samples associated by clade number as indicated (n=383) (D) 
Hierarchical cluster dendrogram based on 2 SNPs (LD 0.2) with use-type and clade association indicated 
below (n=383)  (E) PCA from 24 SNPs (LD 0.2) with samples associated by clade number as indicated 
(n=845) (F) Hierarchical cluster dendrogram based on 24 SNPs (LD 0.2) with use-type and clade 
association indicated below (n=845). 
 
Supplemental Figure 15. Haplogroup analysis for the Sunrise Genetics dataset for 25 samples with 
alignments to reference sequences for the 18S Ribosomal subunit (Reference JF317360.1) (A-B) and  
Chloroplast (Reference KY084475.1) (C-D) (A) PCA by use-type from 2 SNPs (LD 0.2) (B) Hierarchical 
cluster dendrogram based on 2 SNPs (LD 0.2) with use type indicated below (C) PCA by use-type from 7 
SNPs (LD 0.2) (D) Hierarchical cluster dendrogram based on 7 SNPs (LD 0.2) with use-type indicated 
below.  
 
Supplemental Figure 16. Haplogroup analysis for the University of Colorado Boulder dataset for 162 
samples with alignments to reference sequences for the 18S Ribosomal subunit (Reference JF317360.1) 
(A-B), Chloroplast (Reference KY084475.1) (C-D) and Mitochondria (Reference MT361980.1) (E-F). (A) 
PCA by use-type from 8 SNPs (LD 0.2) (B) Hierarchical cluster dendrogram based on 8 SNPs (LD 0.2) 
(C) PCA by use-type from 61 SNPs (LD 0.2) (D) Hierarchical cluster dendrogram based on 61 SNPs (LD 
0.2) (E) PCA by use-type from 28 SNPs (LD 0.2) (F) Hierarchical cluster dendrogram based on 28 SNPs 
(LD 0.2). 
 
Supplemental Figure 17. Haplogroup analysis for the Courtagen Life Sciences dataset for 58 samples with 
alignments to reference sequences for the 18S Ribosomal subunit (Reference JF317360.1) (A-B), 
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Chloroplast (Reference KY084475.1) (C-D) and Mitochondria (Reference MT361980.1) (E-F). (A) PCA 
by use-type from 3 SNPs (LD 0.2) (n=40)  (B) Hierarchical cluster dendrogram based on 3 SNPs (LD 0.2) 
(n=40)  (C) PCA by use-type from 22 SNPs (LD 0.2) (n=49)  (D) Hierarchical cluster dendrogram based 
on 22 SNPs (LD 0.2) (n=49) (E) PCA by use-type from 14 SNPs (LD 0.2) (n=52)   (F) Hierarchical cluster 
dendrogram based on 14 SNPs (LD 0.2) (n=52). 
 
Supplemental Figure 18. Haplogroup analysis for the Medicinal Genomics 61 dataset for 61 samples with 
alignments to reference sequences for the 18S Ribosomal subunit (Reference JF317360.1) (A-B), 
Chloroplast (Reference KY084475.1) (C-D) and Mitochondria (Reference MT361980.1) (E-F). (A) PCA 
by use-type from 10 SNPs (LD 0.2) (n=47) (B) Hierarchical cluster dendrogram based on 10 SNPs (LD 
0.2) (n=47) (C) PCA by use-type from 17 SNPs (LD 0.2) (n=60) (D) Hierarchical cluster dendrogram based 
on 17 SNPs (LD 0.2) (n=60)  (E) PCA by use-type from 22 SNPs (LD 0.2) (n=61) (F) Hierarchical cluster 
dendrogram based on 22 SNPs (LD 0.2) (n=61). 
 
Supplemental Figure 19. Haplogroup analysis for the Medicinal Genomics 753 dataset for 753 samples 
with alignments to reference sequences for the Chloroplast (Reference KY084475.1) (A-B) and 
Mitochondria (Reference MT361980.1) (C-D). (A) PCA by use-type from 18 SNPs (LD 0.2) (n=679) (B) 
Hierarchical cluster dendrogram based on 18 SNPs (LD 0.2) (n=679) (C) PCA by use-type from 42 SNPs 
(LD 0.2) (n=744) (D) Hierarchical cluster dendrogram based on 42 SNPs (LD 0.2) (n=744). 
 
Supplemental Figure 20. Maximum Likelihood phylogenetic tree for the Phylos Biosciences dataset 
constructed from 279 nuclear SNPs from 844 samples. Sour Diesel samples (n=12) are highlighted in blue 
at the branch tips. 
 
Supplemental Figure 21. Maximum Likelihood phylogenetic tree for the Phylos Biosciences dataset 
constructed from 279 nuclear SNPs from 844 samples. Cookies lineage samples (n =23) are highlighted in 
blue at the branch tips. 
 
Supplemental Figure 22. Maximum Likelihood tree for the LeafWorks dataset constructed from 1,405 
nuclear SNPs from 498 samples. Blue Dream samples (n=12) are highlighted in blue at the branch tips. 
 
 
Table Legends 
Table 1. Data sources used for this project.  
Table 2. SNP count per dataset pre and post filtering. 
Table 3. SNP counts for each dataset by chromosome following biallelic sorting and Linkage 
Disequilibrium prune at 0.2 and mapped to CBDRx (cs10) genome.  
Table 4. Start/Stop Positions of Cannabinoid Synthase Genes (THCAS, CBDAS) 
Table 5. Phylogenetic Model fit for each dataset from ModelTest. 
Supplemental Table 6. Cultivar name, use-type, clade association and domestication classifications for 
the LeafWorks data set.  
Supplemental Table 7. SSR ID, Cultivar name, use-type, clade association and domestication 
classifications for the Phylos Biosciences data set.  
Supplemental Table 8. SSR ID, Cultivar name, use-type, clade association and domestication 
classifications for the Soorni et al. data set.  
Supplemental Table 9. Sample number, total SNP count pre and post filtering for all datasets used for 
Haplotype analysis. 
Supplemental Table 10. Partition specific (Landrace and Domesticates) SNP count per dataset pre and 
post filtering  
Supplemental Table 11. SSR ID, Cultivar name and use-type association for the Sunrise Genetics data set. 
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Supplemental Table 12. SSR ID, Cultivar name and use-type association for the University of Colorado 
Boulder data set. 
Supplemental Table 13. SSR ID, Cultivar name and use-type association for the Courtagen Life Sciences 
data set. 
Supplemental Table 14. Sample ID, Cultivar name and use-type association for the Medicinal Genomics 
(n=61) data set. 
Supplemental Table 15. Sample ID, RSP ID, Cultivar name and use-type association for the Medicinal 
Genomics (n=753) data set. 
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Table 1. Data sources used for this project. Light grey indicates other public datasets which were 
not utilized in this study. *†‡ refers to the number of individual samples used in this study out of 
the total that are publicly available. 
 

Data source Dataset reference in this text Bioproject Number of 
individuals 

Citation 

University 
of Tehran 

Soorni et al.  PRJNA41902
0 

94 Soorni et al., 2017 

LeafWorks 
Inc 

LeafWorks See attached 498 This manuscript 

Phylos 
Biosciences 

Phylos Biosciences PRJNA34756
6 

845 https://phylos.bio 

Sunrise 
Genetics 

Sunrise Genetics PRJNA35053
9 

25 NA 

University 
of 

Colorado 
Boulder 

University of Colorado 
Boulder 

PRJNA31765
9 

162 Lynch et al., 2016 

University 
of 

Colorado 
Boulder 

  PRJNA31094
8 

57 Lynch et al., 2016 

Courtagen 
Life 

Sciences 

Courtagen Life Sciences PRJNA29771
0 

58 NA 

Medicinal 
Genomics 

Medicinal Genomics (n=61) NA 61/70 www.medicinalgenomics.c
om/kannapedia-fastq/ 

Medicinal 
Genomics 

Medicinal Genomics (n=753) NA 753 www.kannapedia.net 

Dalhouse 
University 

Sawler et al.  PRJNA28581
3 

143 Sawler et al., 2015 

Total     2,496/2698*†‡   
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Table 2. SNP count per dataset pre and post filtering  

Dataset 
Sample 

(n)  
Total # 
SNPs 

# SNPs post 
filter 

# Bi-allelic 
SNPs 

LD 
(0.2) 

Soorni et al.  94 38,195,216 33,629 33,346 6,865 
Phylos Biosciences 845 3,735,351 279 279 213 

LeafWorks 498 11,149,120 1,405 1400 520 
Sunrise Genetics 25 7,780,326 6,329 6,284 1,604 

Lynch et al.  162 
140,696,17

5 5,999 5,946 2,223 
Medicinal Genomics 

61 61 
250,960,26

2 8,716 8,709 2,267 
Courtagen Life 

Sciences 58 
479,320,74

0 311 310 119 
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Table 3. SNP counts for each dataset by chromosome following biallelic sorting and Linkage 
Disequilibrium prune at 0.2 and mapped to CBDRx (cs10) genome.  
 

Dataset 
SNPs 
CHR

1 

SNPs 
CHR

2 

SNPs 
CHR

3 

SNPs 
CHR

4 

SNPs 
CHR

5 

SNPs 
CHR

6 

SNPs 
CHR

7 

SNPs 
CHR

8 

SNPs 
CHR

9 

SNPs 
CHR

X 

SNP
s 

Tot
al 

Soorni et al.  917 797 658 780 593 670 552 667 642 589 6,86
5 

LeafWorks 65 63 51 43 51 83 38 32 46 48 520 
Phylos 

Biosciences 
(0.99) 

30 32 16 32 15 22 15 26 7 18 213 

Sunrise 
Genetics 191 184 176 174 136 178 138 158 117 152 1,60

4 

Lynch et al.  336 338 327 304 249 291 264 114 0 0 2,22
3 

Courtagen 
Life 

Sciences 
13 15 18 5 25 15 7 12 2 7 119 

Kannapedia 
61 215 209 239 196 329 289 198 166 129 297 2,26

7 
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Table 4. Start/Stop Positions of Cannabinoid Synthase Genes (THCAS, CBDAS) as observed 
from the genome annotation provided by Supercann.net 
 

Chromos
ome 

Start 
position (bp) 

End 
position 
(bp) 

Size 
(bp) Gene description 

Supercann.net Gene 
annotation name 

NC_0443
78.1 25,821,957 25,823,594 1,638 

THCA synthase 
(Fragment)      CsCBD_09G0009540 

NC_0443
78.1 25,848,302 25,871,266 

22,96
5 THC synthase (Fragment)        CsCBD_09G0009550 

NC_0443
78.1 25,982,702 25,983,893 1,192 

Tetrahydrocannabinolic 
acid synthase  CsCBD_09G0009570 

NC_0443
78.1 26,045,537 26,046,424 888 

THCA synthase 
(Fragment) CsCBD_09G0009580 

NC_0443
78.1 26,085,884 26,086,459 576 Truncated THCA synthase CsCBD_09G0009590 
NC_0443
78.1 26,086,541 26,087,254 714 

THCA synthase 
(Fragment). CsCBD_09G0009600 

NC_0443
78.1 26,172,473 26,172,994 522 THCA synthase 

(Fragment) CsCBD_09G0009620 

NC_0443
78.1 29,576,301 29,577,125 825 CBDAS-like 2              CsCBD_09G0010520 
NC_0443
78.1 29,577,563 29,577,880 318 CBDAS-like 1.            CsCBD_09G0010530 
NC_0443
78.1 29,635,230 29,636,687 1,458 CDBAS-like 1.           CsCBD_09G0010550 
NC_0443
78.1 29,669,285 29,669,862 578 CBDAS-like 1              CsCBD_09G0010560 
NC_0443
78.1 29,670,027 29,670,575 549 THCAS (Fragment)     CsCBD_09G0010570 
NC_0443
78.1 29,699,660 29,701,184 525 CBDAS-like 2.          CsCBD_09G0010590 
NC_0443
78.1 30,980,797 30,982,759 1,963 

Cannabidiolic acid 
synthase CsCBD_09G0011030 
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Table 5. Phylogenetic Model fit for each dataset from ModelTest  
Dataset Model Fit 
Phylos Biosciences TPM2uf+G4 
University of Tehran TVM+G4 
LeafWorks Inc TIM2+G4 
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Figure 1. Examining Maximum Likelihood phylogenetic structure and admixture in the 
LeafWorks and Phylos Biosciences datasets (A) Maximum Likelihood tree for the LeafWorks 
dataset constructed from 1,405 nuclear SNPs from 498 samples. Landrace samples are 
highlighted in blue at the branch tips (B) Maximum Likelihood phylogenetic tree for the Phylos 
Biosciences dataset constructed from 279 nuclear SNPs from 844 samples (C) Visualization of 
population structure and admixture for the LeafWorks dataset using the fastSTRUCTURE 
software (k=2-5) (D) Visualization of population structure and admixture for the Phylos 
Biosciences dataset using the fastSTRUCTURE software (k=2-5). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2022. ; https://doi.org/10.1101/2022.07.09.499013doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.09.499013
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

 
 
Figure 2. Results for the Soorni et al. dataset (A) Maximum Likelihood (ML) phylogenetic 
tree constructed from 33,629 nuclear single nucleotide polymorphisms (SNPs) from 94 samples 
consisting of 16 from CGN Genebank, 10 from IPK Genebank and 68 landraces (highlighted in 
blue) sampled across Iran. Colour codes correspond to the main supported clades (B) 
Comparison of clade partitions for nucleotide diversity at the 25-31 Mb regions of Chromosome 
7 (NC_044378.1), with Clade 4 (n=9) from 66,260 SNPs, Clade 6 (n=18) from 60,618 SNPs and 
Clade 7 (n=56) from 48,795 SNPs (C) Visualization of population structure and admixture with 
fastSTRUCTURE software (k=2-5).  
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Figure 3. Examination of use-type association across three datasets (A) Principal component 
analysis (PCA) from 520 nuclear SNPs for the LeafWorks dataset (B) PCA from 213 SNPs 
Phylos Biosciences dataset (C) PCA from 6,865 nuclear SNPs for the Soorni et al. dataset where 
cannabinoid content could be determined due to recent publication for 31/94 samples.  
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Figure 4. Nucleotide diversity for landrace and domesticated partitions for the LeafWorks and 
Phylos Biosciences datasets (A) Nucleotide diversity by chromosome and (B) across 
chromosome length for Domesticated (n=397, 2,096 SNPs) and Landrace (n=101, 2,131 SNPs) 
samples for the LeafWorks dataset (C) Nucleotide diversity by chromosome and (D) across 
chromosome length for Domesticated (n=679, 704 SNPs) and Landrace (n=107, 266 SNPs) 
samples for the Phylos Biosciences dataset. 
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Figure 5. Landrace accessions from the LeafWorks dataset show separation between Indian and 
Myanmar populations (A) Map detailing the locations of landrace accessions, highlighted are the 
Hindu Kush Mountains, Lolab Valley and Myanmar (B) Hierarchical cluster dendrogram based 
on 304 SNPs (LD 0.2) across 26 samples of known and trusted origin (C) PCA based on 304 
SNPs with geographical locations of samples as indicated (D) Nucleotide diversity comparison 
between Hindu Kush Mountains (n=6) 4,304 SNPs, Lobal Valley (n=4) 853 SNPs and Myanmar 
(n=4) 2,204 SNPs (E) Visualization of population structure and admixture using the 
fastSTRUCTURE software (k=3) (F) Network tree visualized using the Splits-Tree software 
with sample source indicated. 
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Figure 6. Maximum Likelihood phylogenetic tree for 126 whole chloroplast assemblies. 
Individuals were aligned using MAFFT. Modeltest-ng revealed the GTR+G4 as the best fit 
substitution model and IQ-Tree software was used for phylogenetic inference. The resultant tree 
was visualized using FigTree (Version 1.4.4). 
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