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Abstract 

Ipsilateral breast tumor recurrence (IBTR) is a clinically important event, where an isolated in-

breast recurrence is a potentially curable event but also associated with an increased risk of distant 

metastases and breast cancer death. It currently remains unclear if IBTRs are associated with 

molecular changes that can be explored as a resource for precision medicine strategies targeting 

locally recurring breast cancer. Here, we employed a recently developed proteogenomics 

workflow to analyze a cohort of 27 primary breast cancers and their matched IBTRs by whole 

genome sequencing, RNA sequencing, and mass spectrometry-based proteomics to define 

proteogenomic features of tumor evolution. Analysis of mutational signatures, copy number 

changes, and cancer specific mutations revealed a relationship with estrogen and progesterone 

receptor statuses and increased levels of genetic change. This in turn altered the re-programming 

of the transcriptome and proteome towards a recurring molecular disease phenotype with high 

replicating capacity and a higher degree of genomic instability possibly enhanced by high 

expression of APOBEC3B. In conclusion, this study defines how primary breast tumors 

differentially evolve into different ipsilateral recurrent malignancies depending on their key 

biomarker status, suggesting that further enhancing the genomic instability in some tumors could 

serve as an alternative treatment option. 
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Introduction 

Continuous improvements in breast cancer (BC) care has reduced the risk of local recurrences1. 

Still, about 4-11% of BCs develop a ipsilateral breast tumor recurrence (IBTR) within 10 years2,3. 

IBTR is a clinically important event in BC, an isolated in-breast recurrence is a potentially curable 

event but associated with an increased risk of distant metastases (DM) and breast cancer death4–9. 

The time interval between IBTR and DM constitutes a therapeutic window to prevent further 

spread. Over the course of the disease, the primary tumor (PT) evolves by clonal expansion and 

changes in its mutational landscape. Adjuvant treatments are effective at preventing recurrent 

disease, but may influence the expansion of therapy resistant clones, such as ESR1 mutations after 

aromatase inhibitor treatment10,11. To date, limited effort has been put into characterization of 

IBTR molecular (e.g. DNA, RNA, protein) properties and their relation to tumor evolution and 

response to therapy. 

The repertoire of driver and passenger mutations and their effect on the transcriptome and 

proteome in primary BCs has been analyzed in numerous studies. These reports have connected 

key drivers and tumor subtype e.g. TP53 and PIK3CA mutations with estrogen receptor (ER) 

negative and positive tumors, respectively, as well as defined how specific mutations can impact 

gene expression and prognosis12–14, thus providing new opportunities for patient stratification and 

novel therapies. So far however, while investigation of DM is becoming more frequent, few studies 

have investigated the processes that lead to the development of IBTRs. Ultra-deep sequencing 

studies focusing on matched primary and distant recurrent tumors have shown the relevance of 

specific driver mutations such as JAK2 in promoting tumor progression and proliferation, which 

has in turn catalyzed new avenues for therapeutic intervention by JAK-STAT pathway 

inhibition15–17. Genomic alterations occurring between primary and recurrent cancers, such as 
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missense mutations and copy number (CN) changes, have further clarified mutational processes 

involved in the evolution to DM, such as APOBEC-mediated mutagenesis. Furthermore, recent 

studies have shown that both intrinsic and extrinsic factors, such as tumor subtype and treatment, 

specifically drive certain nucleotide changes, referred to as mutational signatures18,19, which 

impact the progression of primary BC into DM20. 

Here, we have employed a previously developed proteogenomics workflow21 to determine the 

evolution of IBTRs at the genomic, transcriptomic, and proteomic level from corresponding 

matched PTs, to investigate paths of tumor mutational evolution, identify biomarkers for 

therapeutic monitoring and alternative drug targets for therapy. Integrated proteogenomics 

analyses provide additional information regarding specific pathway activation e.g. ERBB2, and 

the consequent efficacy of inhibition therapy22, as well as an additional depth in tumor 

classification and biomarker selection23–25. Our analysis shows that the development of BC IBTRs 

is dependent on both hormonal receptor (ER and PgR) status of the PT, as well as changes in the 

DNA replication and transcription machinery in tandem with APOBEC proteins to increase 

genomic instability, resulting in an increased mutational load. 
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Methods 

Sample cohort 

Fresh frozen tumor samples (PTs and IBTRs) from 385 patients operated with BCS with and 

without radiotherapy in three health care regions (Southern Sweden, Uppsala-Örebro, and 

Stockholm) were previously collected in a multi-center cohort, previously analyzed by gene 

expression26. We selected samples based on availability for downstream DNA, RNA, and protein 

extraction, routine biomarkers (Estrogen Receptor, ER; Progesterone Receptor, PgR, Heregulin 2, 

Her2/ERBB2; proliferation marker Ki-67), follow-up information until formation of IBTR (IBTR-

free survival, IBTRFS), and availability of formalin-fixed and paraffin-embedded (FFPE) material 

for re-analysis. A total of 54 samples (27 PTs matched by 27 IBTRs) was selected (Table S1). 

Samples for germline DNA whole genome sequencing (WGS) were available for two patients (S12 

and S18). All specimens to be used for DNA, RNA, and protein extraction were stored as fresh 

frozen samples. Usage of specimens for research/ within this project are under approval from the 

Ethical Review Board (Etikprövningsnämnden) with number DNR 2010/127. 

 

Immunohistochemical routine biomarker analysis 

FFPE tissues were cut into 3-4 µm sections and put on TOMO slides (MG-TOM-11/90, Histolab). 

Evaluation of ER (immunohistochemistry, IHC; staining cutoff: 10% positive cells), PgR (IHC; 

staining cutoff: 10% positive cells), ERBB2/Her2 (IHC and in situ hybridization for equivocal 

cases) and Ki-67 (staining cutoff: 30% positive cells) were performed according to routine clinical 

practice in Sweden. Briefly, antibodies used for IHC stainings were: ER: clone SP1, 790-4324 

Ventana; PgR: clone 1E2, 790-2223 Ventana; Ki-67: clone MIB-1, M7240 DAKO (dilution 

1:100); HER2: clone 4B5, 790-2991. Slides for ER, PgR, and Ki-67 evaluation were stained on 
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the Discovery ULTRA (Ventana Medical System Inc., Tucson, AZ, USA). HER2 staining was 

performed on the Benchmark ULTRA (Ventana Medical System Inc., Tucson, AZ, USA). For all 

IHC, ULTRA cell conditioning (ULTRA CC1) pH 8-8.5, was used for heat-induced epitope 

retrieval. The primary antibodies were incubated for 32min and visualized with conventional 3,3'-

diaminobenzidine IHC detection kit. 

 

DNA, RNA, and protein extraction 

Breast tumor tissues (PTs and IBTRs) were processed using the AllPrep DNA/RNA/Protein 

(Qiagen) protocol. Tissue lysis was performed by re-suspending ~30mg of sliced frozen tissue in 

a solution containing 1% β-mercaptoethanol in RLT buffer (supplemented with antifoam agent; 

ID 19088, Qiagen). Next, steel beads (ID 79656, Qiagen) were added and samples were incubated 

in a Tissue Lyser LT (Qiagen) for 4min at 50Hz. Steel beads were then removed and 400µL of 1% 

β-mercaptoethanol in RLT buffer was added to samples, which were then centrifuged at 14,000xg 

for 5min. Supernatants were transferred to new tubes, and then frozen at -80ºC. DNA, RNA, and 

protein extraction were performed according to manufacturer instructions (AllPrep 

DNA/RNA/Protein minikit; Qiagen). Each spin column flowthrough (DNA, RNA, protein) was 

stored at -80ºC until analysis (sequencing or mass spectrometry; MS). 

 

Whole-genome sequencing 

Sample library was performed twice for every sample, using a PCR-free method for specimens 

with high DNA yield, and employing a PCR amplification step for low yield samples. PCR-free 

libraries were prepared from 1μg DNA using the TruSeq PCRfree DNA sample preparation kit 

(cat# FC-121-3001/3002, Illumina) targeting an insert size of 350bp. PCR-amplified sequencing 
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libraries were prepared from 100ng DNA using the TruSeq Nano DNA sample preparation kit 

(cat# FC-121-4001/4002, Illumina) targeting an insert size of 350bp. Both library preparations 

were performed according to manufacturers’ instructions. Paired-end DNA sequencing with 150bp 

read length was performed at the SNP&SEQ Technology Platform in Uppsala (Uppsala 

University, Uppsala, Sweden) using an Illumina HiSeqX sequencer (Illumina, San Diego, CA) 

with v2.5 sequencing chemistry. 

 

Variant calling 

Alignment to reference genome GRCh38 was performed using bwa’s (v0.7.13) BWA-MEM 

algorithm, and conversion to BAM format and coordinate sorting was performed using samtools 

(v1.3). Duplicates were marked using Picard (v2.0.1). To identify all possible active regions and 

ensure that all samples had their information represented comparably the tools 

RealignerTargetCreator and IndelRealigner from GATK (v3.7) were used. Samples were 

processed with a scatter-gather methodology, dividing each sample by chromosome to identify 

and realign any misaligned reads in active regions. Samples were then merged using Picard 

MergeSamFiles. GATK 3.7 BaseRecalibrator and PrintReads were used to identify potential 

systematic errors in the data and recalibrate the base quality scores. 

A panel of normal (PoN) variants was created and used as a blacklist during variant calling. First, 

variants were called using GATK (v3.8) MuTect2 with only a normal sample as input and then 

CombineVariants to aggregate the output for all normal samples. Only variants observed in at least 

two samples were included. For further variant calling, pairs of matched normal and tumor samples 

(2 out of 27 patients: S12 and S18) were called together if the patient had a matched normal sample, 

otherwise the tumor sample was called alone. In either case the PoN was used. A scatter-gather 
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methodology was used to optimize runtimes, and CatVariants was used to merge the variants. The 

variants were filtered using the built in Mutect2 filtering (cutoff: lack of PASS annotation). 

The variants were annotated using snpEff27 (v4.2) and annovar (v2017.07.16). Information on the 

allele frequency of variants in population databases SweGen, ExAC and gnomAD was also added 

together with COSMIC database annotation. For the SweGen and ExAC database annotation, a 

lift-over of the variant files was performed using Picard (v2.10.3) with the LiftoverVcf command 

to obtain GRCh38 coordinates. 

We applied the TPES28 (v1.0.0; https://cran.r-project.org/web/packages/TPES/index.html) 

package to estimate tumor purity values for all cancer samples using the single nucleotide variant 

(SNV) list as input. These estimates were used to filter the SNVs. 

The filters are applied in order as follows: 

1. Population allelic frequency (AF) filter: the observed AF in gnomAD and SweFreq needed 

to be 0 or NA (i.e. variant has never been observed in a sample from these datasets). 

2. Allelic Depth (Support) filter: the number of reads supporting the variant in the tumor 

needed to be larger or equal to 2. Additionally, if a matched normal was available, the 

number of reads supporting the variant in that sample needed to be 1 or 0. 

3. Coverage filter: the total number of reads overlapping the position needed to be 10 or more 

in the tumor sample. If a matched normal sample was available, that needed to have 10 or 

more reads coverage. 

4. PoN filter: variant not present in the PoN file (i.e. it cannot have been detected in any of 

the normal samples from this dataset). 

5. TPES filter: the Log2 ratio of the probability of a given variant being observed under the 

cancer vs. background model needed to be ≤ –1 (i.e. removal of variants where the 
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background model is twice as likely to produce the observed variant). Specifics on 

calculations are presented here: 

a. For each sample i with a TPES28 based tumor purity estimate (𝑡𝑖) we define 

𝑝𝑖
𝑐𝑎𝑛𝑐𝑒𝑟 = 0.5 ∗ 𝑡𝑖 and 𝑝𝑖

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
= 0.5 as the probabilities of a binomial 

distribution for the heterozygous SNV model, analogous with 1.0 instead of 0.5 for 

the homozygous SNV model. If no TPES based tumor purity estimate (𝑡𝑖) existed 

for a given sample i, this filtering step was skipped. 

b. We then calculate for each variant j the ratio 2
𝑃(𝑠𝑗;𝑐𝑗,𝑝𝑖

𝑐𝑎𝑛𝑐𝑒𝑟)

𝑃(𝑠𝑗;𝑐𝑗,𝑝𝑖
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

)
, where 𝑠𝑗 is the 

support of variant j in sample i and 𝑐𝑗 is the coverage of that variant. Here, P(k;n;p) 

is the probability of observing exactly k out of n hits (i.e. reads with alternative 

allele) under a binomial distribution with probability p. 

c. If the Log2 ratio is larger (>) than -1 for the heterozygous or the homozygous case, 

the variant is kept. If it is below or at -1 in (≤) both in the homo- and heterozygous 

cases, indicating a higher probability in the background model, the variant is 

filtered out. 

The SNV list was derived by extracting the mutations contained in the union of the COSMIC 

cancer gene census29, the FoundationOne® gene list30, genes part of the Memorial Sloan Kettering 

IMPACT platform31, and the list of reported BC driver genes12. Variants were filtered based on 

impact (moderate or high were included) and type of variant (downstream gene variant, upstream 

gene variant, 3´ UTR variant, 5’ UTR variant, and synonymous variant cases were excluded). 

Mutational signatures were determined using the MutationalPatterns package (v3.3.0)32 by fitting 

the SNV counts per 96 tri-nucleotide context to the 30 COSMIC signatures29. 
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We used sciClone (v1.1.0; https://github.com/genome/sciclone) to build the clustering of SNVs by 

their variant allele frequencies. Applying clonevol (v0.99.11; https://github.com/hdng/clonevol) 

to sciClone-derived clustering did not yield any valid model of tumor evolution. 

 

Copy Number call 

CN calls were obtained by determining total coverage across the genome in 10kb bins for each 

sample, then using the R locfit.robust function to fit the relationship between GC content and bin 

coverage, then adjusting for the differences in GC-coverage relationships across samples. 

The resulting adjusted coverage values were converted into Log2 ratios by employing either the 

matched normal sample (if available), or the median adjusted coverage of the sample itself as 

denominator. The Log2 ratios were then centered (median subtraction), adjusting for between-

sample coverage differences. 

CN segmentation was performed on the centered Log2 ratios using the circular binary 

segmentation algorithm implemented in the DNAcopy R/Bioconductor package. The resulting CN 

segments were then mapped to genes by finding overlaps with annotated exons of each gene. For 

genes overlapping multiple copy number segments the CN values were averaged. 

To determine CN gains and losses between paired PTs and IBTRs a CN delta was calculated with 

the following formula: 

𝐷𝑒𝑙𝑡𝑎𝐶𝑁 = 𝐶𝑁(𝐼𝐵𝑇𝑅) − 𝐶𝑁(𝑃𝑇). 

CN changes were taken into account only if they impacted genes that showed a minimum CN of 

0.5 in matched PT and IBTR samples and where DeltaCN was above 0.75 (gain) or below -0.75 

(loss). 
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RNA sequencing 

RNAseq was performed as previously reported21. Briefly, the amount, concentration and quality 

of the extracted RNA was tested using a Bioanalyzer 2100 instrument (Agilent Technologies), a 

NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific) or Caliper HT RNA LabChip 

(Perkin Elmer). All samples had a RNA integrity value of 6.0 or higher. 

RNAseq library preparation and analysis were conducted as previously described33. Briefly, 100 

ng of RNA input was used for cDNA library preparation using the TruSeq® Stranded mRNA 

NeoPrep kit (Illumina), according to manufacturer instructions. Concentration of cDNA was 

measured (QuantIT® dsDNA HS Assay Kit; Thermo-Fisher), and libraries were then denatured 

and diluted according to the NextSeq® 500 System Guide (Illumina). RNAseq was then performed 

on a NextSeq 500 (Illumina) sequencer generating paired-end reads of length 75bp. 

 

RNAseq data processing 

De-multiplexed RNA-Seq reads were aligned to the GRCh38 human reference genome using 

STAR aligner (v020201) with an overhang value of 75 to match the read-length. The standard 

GATK analysis pipeline was then applied (GATK; v3.7-0-gcfedb67). The resulting alignment files 

were processed by first generating per-gene read counts mapping to the GRCh38 GTF file from 

Ensembl (v95) using the summarizeOverlaps function in “Union” mode to count reads that 

uniquely mapping to exactly one exon of a gene (GenomicAligner, v1.18.1). Next, genes with no 

counts in any of the samples were discarded, and DESeq2 analyses using R/Bioconductor package 

(v1.22.2) were performed34. 

 

Protein digestion 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.13.499898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499898


 20 

Protein flow-throughs from the AllPrep protocol were precipitated in ice-cold (-20ºC) methanol, 

as previously described35. Briefly, protein pellets were then suspended in 100mM Tris (pH 8.0) 

buffer containing 100mM dithiothreitol and 4% w/V sodium-dodecyl-sulphate and incubated at 

95ºC for 30min under mild agitation. Samples were then cooled to room temperature, diluted in 8 

M urea in 100mM Tris (pH 8.0) buffer, loaded on 30KDa molecular filters (Millipore) and 

centrifuged at 14,000xg for 20min. Filters were washed with urea buffer and centrifuged at 

14,000xg for 10min. Proteins were alkylated with iodoacetamide in urea buffer (30min in the 

dark), washed with urea buffer and tri-ethyl-ammonium bicarbonate buffer (pH 8.0), and trypsin 

was added (enzyme-protein ratio 1:50; incubation at 37ºC for 16h, 600RPM). Filters were then 

centrifuged at 14,000xg for 20min to retrieve tryptic peptides, loaded onto C18 (3 stacked layers; 

66883-U, Sigma) stage tips (pretreated with methanol, 0.1% formic acid (FA) in 80% acetonitrile 

solution, and 0.1% FA in ultrapure water), washed with 0.1% FA in ultrapure water solution, and 

eluted with 0.1% FA in 80% acetonitrile. Eluates were then dried and subjected to SP3 peptide 

purification, as previously described36. Briefly, 2µL of SP3 beads (1:1 ratio of Sera Mag A and 

Sera Mag B re-suspended in ultrapure water; Sigma) were added to dried peptides and incubated 

for 2min under gentle agitation. A volume of 200µL of acetonitrile was then added and samples 

were incubated for 10min under agitation. Sample vials were then placed on a magnetic rack and 

washed again with acetonitrile for 10min. Elution was performed by adding 200µL of 2% dimethyl 

sulfoxide in ultrapure water to the bead-peptide mixtures and incubating them for 5min under 

agitation. Supernatants were then collected, dried, and stored at -80ºC until MS analysis. 

 

Mass spectrometry analysis 
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Tryptic peptide mixtures were subjected to data-independent acquisition (DIA) MS analysis. 

Samples were eluted in a 120min gradient (flow: 300 nl/min; mobile phase A: 0.1% FA in ultrapure 

water; mobile phase B: 80% acetonitrile and 0.1% FA) on a Q-Exactive HFX (Thermo-Fisher) 

instrument coupled online to an EASY-nLC 1200 system (Thermo-Fisher). Digested peptides were 

separated by reverse phase HPLC (ID 75µm × 50cm C18 2µm 100Å resin; Thermo-Fisher). 

Gradient was run as follows: 10-30% B in 90min; 30-45% B in 20min; 45-90% B in 30s, and 90% 

B for 9min. One high resolution MS scan (resolution: 60,000 at 200m/z) was performed and 

followed by a set of 32 DIA MS cycles with variable isolation windows (resolution: 30,000 at 

200m/z; isolation windows: 13, 14, 15, 16, 17, 18, 20, 22, 23, 25, 29, 37, 45, 51, 66, 132m/z; 

overlap between windows: 0.5m/z). Ions within each window were fragmented by HCD (collision 

energy: 30). Automatic gain control target was set to 1e6 for both MS and MS/MS scans, with ion 

accumulation time set to 100ms and 120ms for MS and MS/MS, respectively. Protein intensities 

were derived by employing our previously established computational workflow21. A total of 4,640 

proteins were identified after FDR filtering (cutoff: 0.01). Batch effect correction was performed 

using the limma37 (v3.46.0) package. Raw protein intensities were Log2 transformed and centered 

prior differential expression analysis by DEqMS38 (v1.8.0). 

 

Statistical and pathway analyses 

All statistical tests were performed in R (v4.0.5; correlations, hierarchical clustering, and 

differential expression tests) or GraphPAD (v.9; contingency tables for Fisher and chi-square 

tests). 

Gene Set Enrichment Analysis (GSEA; v4.1.0)39 was performed on scaled and Log2 transformed 

RNA and protein tables. Databases: Hallmarks (v5.2), ALL (v5.2); permutation type: gene set; 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.13.499898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499898


 22 

scoring: classic; metric: t test; other parameters were kept at default settings; significance cutoff: 

FDR < 0.25. 
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Results 

Proteogenomic validation of clinical and molecular characteristics 

In this study we analyzed a set of 54 samples from 27 patients who developed IBTR. The 27 tumor 

pairs (PTs and IBTRs) were selected from a previous large multi-center study that aimed to define 

radiosensitivity markers26. The paired analysis of PT and IBTR enabled a patient-centered view of 

tumor evolution, measured by the changes in the genomic, transcriptomic, and proteomic 

landscape. Both PT and IBTR were stratified based on ER-, PgR-, ERBB2-, and Ki-67-status, 

histological tumor grade, molecular subtype40 and treatments (Figure 1A-B). No statistical 

differences in clinical and histopathological parameters were observed between PTs and IBTRs 

(Table 1 and Table S1). IHC analysis of the ER and PgR revealed no significant differences for 

the tumor proliferation marker Ki-67 in the primary tumors, corroborated by transcriptomic and 

proteomic measurements (Figure 1C-D). In contrast, there was a significant difference of Ki-67 

in IBTRs (RNA p < 0.01, protein p = 0.019). This observation may stem from heterogeneous Ki-

67 expression in PT and IBTRs due to clonal selection. Interestingly, 10 tumor pairs switched 

tumor marker status in the transition from PT to IBTR (ER: n = 1; PgR: n = 6; Ki-67: n = 7), which 

were in most cases validated by proteogenomics (RNA level: ER n = 1/1, PgR n = 4/6, Ki-67 n = 

1/7; protein level: PgR n = 4/6, Ki-67 n = 1/7; Figure S1A-B). The weak correlation of Ki-67 

status switch to transcript and protein levels might be due to the discrepancy between transcript 

and protein Ki-67 measurements when compared to immunohistochemistry, which itself depends 

on both analytical and pre-analytical factors41,42. ERBB2/Her2 status was confirmed at the CN, 

RNA, and protein level (Figure 1E), with no status switch between PT-IBTR pairs. Overall, these 

results demonstrate concordance between biomarker status and the techniques employed in this 

study as well as pinpointing relevant changes in clinical tumor markers between PTs and IBTRs. 
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Changes in mutational signatures between primary and recurrent tumors 

Mutational processes involved in breast cancer recurrence are in many cases a result of 

homologous recombination deficiency, APOBEC-mediated mutagenesis, or age-related genome 

deterioration12,20,43. To quantify the magnitude of genomic changes between matched PTs and 

IBTRs, we first analyzed the frequency of base transitions and transversions. In this analysis, the 

contribution of 30 previously published mutational signatures18 were determined in our dataset 

(Figure S2A). Here, two signatures were detected at a high frequency across all samples (referred 

to as high contribution), with signature 3, enriched in cytosine transversions (possible cause: 

failure of DNA double-strand break repair by homologous recombination), and signature 5, 

enriched in cytosine and thymine substitutions (possible cause: unknown), as the most contributing 

signatures in both primary and recurrent tumors (Figure S2B). Apart from signature 3, a low 

contribution was observed for signatures previously associated to BC i.e. signature 8, 13, 17, 1819. 

Association analysis between mutational signatures 3 and 5 and the clinical and histopathological 

features revealed a significant relationship between loss of ER expression and signature 3. As 

signature 3 has been associated to deficient DNA repair during replication, these results suggest a 

link between the establishment of this mutational mechanism and absence of ER. In addition, there 

was a significantly higher contribution of signature 1 in tumors that express ER and wt TP53. This 

indicates that the mutational burden, and its changes during tumor progression and evolution, may 

be modulated by either TP53 independent factors or non-genomic mechanisms, such as 

proliferation rate (Figure S2C). 

In the next step, we compared changes in contribution of the molecular signatures between 

matched PTs and IBTRs (Figure 2A). This analysis showed that the contribution of signature 3 
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was increased in IBTRs, while the contribution of signature 5 was decreased (Figure 2B-C). 

Interestingly, the increased contribution of signature 3 was significantly associated with absence 

of hormonal receptor (Wilcoxon test, ER p = 0.010; PgR p = 0.003), high proliferation rates (Ki-

67 p = 0.025, tumor grade p = 0.007), and radiotherapy treatment (p = 0.029; Figure 2D). As 

signature 3 has been associated with failure of double strand break repair by homologous 

recombination, such a process might be exacerbated in tumors with high proliferation rates 

(hormonal receptor negative, high Ki-67, and high grade tumors). On top of this, the DNA damage 

caused by radiotherapy might have further enhanced this process. 

In contrast, the reduction in contribution of signature 5 was significantly associated with ERBB2 

status (p = 0.026; Figure S3), suggesting a relationship between the mutational processes 

underlying this signature and the enhanced kinase activity of ERBB2-amplified tumors. Signature 

9, which has previously been associated to POLH-mediated mutagenesis, showed a significant 

association with radiotherapy (p = 0.011) and a significant negative correlation with age (Rho = -

0.485; Figure S3). Signature 12, similarly to signature 3, significantly increased in contribution in 

ER negative PT-IBTR pairs (p = 0.047), while the APOBEC associated signature 13 showed 

increased in contribution in tumors treated with radiotherapy (p = 0.034; Figure S3), suggesting a 

possible role of APOBEC in radiotherapy resistance. Other signatures were found significantly 

associated with clinical biomarkers, but their contribution in the dataset was much lower (i.e. 

below 0.01) and were deemed as minor factors for changes in the mutational landscape in our 

samples. In conclusion, these results show that the spectrum of mutational signatures changes 

between PTs and IBTRs, and that key tumor features such as presence/absence of hormonal 

receptors or ERBB2 amplification influence the impact of mutational processes during tumor 

evolution. 
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Copy number and mutational changes in ipsilateral breast tumor recurrences 

As we observed a switch in tumor markers and a significant change in the contribution of two 

mutational signatures between matched PTs and IBTRs, we hypothesized that these events were 

accompanied by additional genomic changes. To address this, we analyzed the frequency of CN 

alterations and single nucleotide variants. We calculated genome-wide CN changes (DeltaCN, see 

Methods) between PT-IBTR pairs per chromosome and characterized as either gains or losses 

(cutoff DeltaCN: ±0.75; median gain/sample: 363, IQR: 48.5-1115.5.; median loss/sample: 95, 

IQR: 22-291; Figure S4A). Closer inspection of the top 10 CN gain and losses in each 

chromosome revealed that genomic regions in chromosomes 8 and 17 were frequently amplified 

or deleted in our sample set (Figure S4B-C). Overall, we did not detect any association between 

changes in CN in the PT-IBTR pairs and CN occurrence at specific chromosomes. Interestingly 

however, clustering of the CN changes showed a relationship between the frequency of gain/loss 

and hormonal receptor status (Figure 3A). Association analysis to clinical biomarkers confirmed 

that loss of ER and PgR as well as high Ki-67 expression were all associated with a significant 

increase in gene gains (Wilcoxon test, ER p = 0.059, PgR p = 0.017, Ki-67 p = 0.005; Figure 3B). 

These results suggest an association between CN gains and the absence of the ER-mediated 

transcriptional program as well as high proliferation rates. To search for molecular drivers of these 

relationships, we investigated whether the frequency of CN gain was linked to the expression of 

mutated TP53, which typically leads to genomic instability44. Despite the fact that TP53 mutations 

are frequent in ER negative BCs, as also observed in our dataset (Fisher p = 0.029; Figure 3A), 

no significant association between CN gains and TP53 mutational status was observed (p = 0.099; 
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Figure S5), suggesting other factors play a role in the establishment of CN changes in this sample 

set. 

We then tested whether there was a relationship between CN gains and adjuvant therapy 

(endocrine, chemotherapy, and radiotherapy), though no significant association was found. 

Furthermore, we observed no correlation between CN gains and age at diagnosis (of PT), and only 

a weak correlation with IBTRFS (Spearman Rho = 0.314; Figure S5). 

Next, we analyzed SNV changes in the for a set of previously defined key cancer genes (Nik-

Zainal et al12; Figure S6). Here we evaluated the SNV gain/loss occurring in PT-IBTR pairs. This 

analysis showed that the most common SNV changes with medium or high impact were missense 

and stop codon gains (Figure S7A), with a general trend towards an increasing SNV burden in 

IBTR (Figure S7B). Further analysis showed that ER negative tumors increase in SNV gains 

(Wilcoxon p = 0.078; Figure 3C-D), while no significant association was observed between SNV 

gains and other biomarkers or clinical features (Figure 3D and Figure S8) Upon assessing the 

most frequently mutated genes within ER positive and negative tumors, we confirmed that 

PIK3CA and TP53 were the most (commonly) mutated genes in these subgroups, respectively 

(Figure S7C). These mutations were largely maintained or expanded through clonal selection in 

IBTRs possibly due to a conferred selective advantage towards cancer growth and survival. 

Alongside CN and SNV gains, which in turn constitute a measure of tumor genomic evolution 

and/or clonal expansion from PTs to IBTRs, we detected several losses:  median SNV gain/sample 

= 3 (IQR: 1-4), median SNV loss/sample = 2 (IQR: 1.25-3). These likely indicate a reduction or 

loss of tumor sub-clones during from PT to IBTR, but did not associate with hormonal receptor 

status or other clinical variables with the exception of weak positive relationships with age at 

diagnosis of PT (Spearman Rho = 0.295) and IBTRFS (Spearman Rho = 0.372; Figure S9). Taken 
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together, the paired analysis conducted here shows that primary ER and PgR negative tumors were 

more genomically unstable (as also reviewed in 45), displaying a higher tendency to acquire 

genomic changes such as CN and SNV, resulting in highly mutated IBTRs. 

 

Multi-omic evolution of primary breast cancer 

Having established that the absence of ER is significantly associated with the accumulation of CN 

and SNV in locally recurrent tumors in comparison with their primary counterparts, we 

investigated to what degree the genomic changes translated into alterations at the transcriptome 

and proteome levels. 

With this in mind, we calculated Euclidean distances between each sample within our genomic 

(CN and SNV), transcriptomic, and proteomic datasets (Figure S10). Next, we extracted distances 

between PT-IBTR pairs. A higher distance indicated highly different IBTRs when compared to 

their matched PTs. As a major factor in determining accurate genomic (CN, SNV) and molecular 

(RNA, protein) measurements28, tumor purity was ruled out as a potential confounder of PT-IBTR 

distance across all omics levels (Figure S11). 

We observed that distances between PT-IBTR pairs in general were greater at the RNA and protein 

levels when compared to CN and SNV (Figure S12A), indicating that genomic changes during 

tumor evolution either have larger repercussion at the expression level, or that other non-genomic 

mechanisms contribute to modulate the transcriptome and proteome46. Upon assessing the 

distribution of PT-IBTR distances we noticed similarities between CN, SNV, and RNA distance 

metrics, but much less for protein-wise distances, suggesting that changes at the genomic level are 

have a greater impact at the transcript level, but to a much lesser degree at the protein level (Figure 

S12B). Correlation analysis between PT-IBTR distances showed a positive association between 
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all four omics levels (Figure S12C). Spearman correlations coefficients showed a strong 

correlation between CN- and RNA-distances (Spearman Rho = 0.700), while protein- and SNV- 

distances clustered separately. The co-clustering of CN and RNA-based distances is likely due to 

a closer relationship between gene CN and transcript levels, while SNV and protein distances 

clustered separately as they may impact activity rather than expression levels (SNV), or are under 

different regulatory mechanisms (protein; e.g. transcription rate vs translation rate), respectively. 

Next, we assessed whether each PT primarily associated with its matching IBTR by displaying if 

the minimum PT distance was linked to its matching IBTR or another sample. Hierarchical 

clustering analysis of sample-wise CN, SNV, RNA, and protein level distances (Figure 4A) 

showed that only 3 PTs had their respective IBTR as closest neighbor across all data layers, 

suggesting that changes in genomic features directly alter transcript and protein expression only in 

a small subset of tumors. As new PTs may be misdiagnosed as IBTRs of previous 

malignancies47,48, we compared the clonal evolution of PT-IBTR pairs. Here, sample pairs with a 

matched normal showed an overlap between variant allele frequencies (Figure S13), thus we 

concluded that IBTRs derived from their respective PTs in these patients. 

Overall, with the exception of the SNV layer where every PT matched with its correspondent IBTR 

sample, we observed that the matching of PT-IBTR pairs varied in relation to data layer indicating 

that the changes between each tumor pair are dependent on different mechanisms, such as promoter 

methylation, histone binding, kinase activation, microenvironment signaling could play a key role 

in defining tumor evolution. 

To determine factors associated with IBTR evolution, we assessed the relationship between 

distances and clinical and histo-pathological features of the cohort. Here, a strong inverse 

relationship was observed between distances and shared PT-IBTR SNVs (Spearman Rho range: -
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0.399 to -0.952; Figure S14A), indicating that a lower level of shared mutations between PT and 

IBTR is related to larger distances and more dissimilar PT-IBTR pairs, which is turn is reflected 

in more dissimilar gene expression and protein abundance patterns. Overall, these results indicate 

that mutational drift is established together with CN changes, and it is reflected by changes in gene 

and protein expression. 

As with our previous observations when assessing changes in mutational signatures (Figure 2), 

CN, and SNV (Figure 3), we argued that clinical and histopathological characteristics of each PT 

might be determinants of its evolution into an IBTR. Association testing revealed a higher 

mutational, CN, and transcript/protein expression distance between tumor pairs in hormonal 

receptor negative, Ki-67 high, and high grade cancers (Figure 4B-E). These results confirm our 

previous analyses (Figure 2-3), and indicate that more substantial changes at the genomic, 

transcriptomic, and proteomic levels between PT-IBTR pairs might directly stem from high 

proliferative activity and other features typical of ER/PgR negative cancers. With the exception of 

hormonal receptor status and Ki-67 levels, no significant association was observed for other 

clinical or histopathological variables (Figure S14-15). These results confirm that hormonal 

receptor negative and high proliferating PT tumors often result in IBTR with high frequency of 

CN and SNV changes which in turn promote transcriptome and proteome reprogramming. 

 

Differential transcriptome and proteome evolution of ER positive and ER negative tumors 

We observed that lack of hormonal receptor and elevated Ki-67 levels in primary tumors are 

associated to genomic instability that affect both the CN and mutational landscapes, we evaluated 

to what degree ER status impacted the transcriptome and the proteome in this sample cohort. 

Differential expression analysis between ER positive and ER negative PT-IBTR pairs showed a 
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set of overlapping transcripts and proteins (Figure 5A-B). These transcript and protein pairs were 

enriched for mTOR signaling (e.g. mTORC1 signaling) and immune response (e.g. allograft 

rejection) pathways enriched in IBTRs and PTs, respectively (Figure 5C-F). The evolution of PTs 

into IBTRs and the consequent expansion of the mutational landscape could explain the 

dysregulation of proliferation-related pathways such as mTOR. In contrast, the enrichment of 

inflammation and immune system-related signaling in PTs might indicate changes in the 

relationship between the cancer and its microenvironment, possibly geared towards immune 

evasion. Closer inspection of these pathways revealed enhanced expression of inflammatory 

cytokines such as IL6 and IL8 as well as matrix remodeling enzymes (MMP9; Figure S16A-B), 

indicating a tendency towards invasion of the surrounding tissue. 

Genes and pathways that showed different trends between ER positive and ER negative groups 

were related to pathways involved in splicing, cell cycle, and proliferation, indicating that ER 

negative tumors typically evolve into highly proliferative IBTRs when compared to recurrences 

derived from ER positive PTs. Closer inspection of these pathways at the RNA and protein level 

showed enrichment of CDKs (e.g. CDK4) and the DNA replication machinery (e.g. MCM3-5; 

Figure S16C-D). The evolution of ER negative PTs into highly proliferative IBTRs might be 

inducing replication stress, which in turn could explain the higher mutational load in ER negative 

IBTRs. As the replication machinery operates, DNA repair mechanisms are responsible to correct 

any error or damage that might occur. Analysis of transcript/protein pairs belonging to cell cycle 

and DNA repair terms (source: Gene Ontology Biological Process) showed a higher expression of 

these genes in IBTRs derived from ER negative PTs (Figure 6A-B). As our previous analysis 

showed that TP53 mutations was only sporadically associated to genomic, transcriptomic, or 

proteomic changes within our sample set (Figure 3, S5, S8, S9, S14 and S15), we argued that 
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additional factors are likely involved in the accumulation of mutational features and high 

proliferation rates as indicated by high Ki-67 levels. The higher expression of the MYC oncogene 

in IBTRs derived from ER negative PTs (RNA level: fold increase 2.26, p-value < 0.001) might 

have been a factor in establishing high proliferation rates. However, the accumulation of genomic 

features (CN and SNV) only sporadically associated with absence of ER or Ki-67, suggesting that 

other drivers were involved in the mutational changes in these IBTRs. Consequently, we 

investigated the APOBEC protein family, which was previously shown to be responsible for 

inducing the majority of mutations in BC49,50 (Figure 6C-E and Figure S17). Here we noted that 

APOBEC3B strongly correlated with Ki-67 levels (PT: Spearman Rho = 0.400, p-value = 0.072; 

IBTR: Spearman Rho = 0.674, p-value = 0.001; Figure 6C) and was highly expressed in ER 

negative PTs and IBTRs (PT: Log2Ratio = 1.728, p-value = 0.007; IBTR: Log2Ratio = 2.456, p-

value < 0.001; Figure 6D). As APOBEC proteins are Cytosine deaminases49, we expected an 

enrichment of C>X changes in ER negative tumors, which was confirmed by a borderline 

enrichment of C>T transitions in this group (p-value = 0.076; Figure 6E). These results suggest 

that several factors work in parallel to enact the mutational and expression level drift of recurrent 

BCs from their PTs, namely the enhanced replication capacity of ER negative tumors likely driven 

by mechanisms outside of the ER transcriptional program (e.g. MYC) as well as the expression of 

mutation-inducing APOBEC proteins.  
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Discussion 

IBTR is associated with an increased risk of distant metastases and breast cancer death. Molecular 

profiling has enabled better characterization of the mutational processes operating in BC as well 

as defining new therapeutic strategies and classifications schemes12,18,51. So far, most of these 

studies have focused on PT or DM exclusively, with limited consideration for locally recurrent 

BCs, which are still curable and an opportunity to define biomarkers and drug targets to prevent 

DM. 

In this study we employed a combination of WGS, RNAseq, and MS-based proteomic analyses to 

elucidate the evolution of IBTRs and to define key molecular changes between the recurrence and 

its original matched PT. Quantitative RNA and protein analyses matched well to clinically used 

biomarkers, although status switches (e.g. ER) were observed (Figure 1D). While gain/loss of key 

markers is likely dependent on sub-clonal selection within the primary tumor52,53, the sequencing 

capacity was too low to effectively reconstruct the composition and the selection of tumor sub-

clones in each sample. Analysis of previously published mutational signatures18,19 fitted onto our 

WGS data showed that the strongest contribution were from C>G and T>C enriched signatures in 

our samples, where signature 3 significantly associated to lack of ER expression and high 

proliferation in primary tumors. These results are consistent with previous observations in BC 

DMs20. In addition to this, signature 3 displayed the highest increase in IBTRs among all COSMIC 

signatures and was associated with hormonal receptor negative tumors, high proliferation, and 

radiotherapy treatment. ER negative BCs in general and triple negative BCs in particular are 

typically characterized by a higher degree of genomic instability than their ER positive 

counterparts54,55. Our findings indicated that mutagenesis dependent on homologous 

recombination deficiency was exacerbated by radiotherapy-induced DNA damage and promoted 
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further by high proliferation rates and subsequent activation of cell cycle checkpoints in ER 

negative tumors (Figure 2D). This relationship was confirmed in our CN and mutation evolution 

analyses, where a higher number of CN and mutational gains was detected in the PT-IBTR ER 

negative pairs (Figure 3). Although TP53 mutations were enriched in the ER negative subset as 

previously reported12, we did not observe any significant association with CN or mutational 

gain/loss, suggesting that other mechanisms might be driving the genomic evolution of this tumor 

subgroup. 

To assess whether the changes in genomic features impacted expression levels in a similar fashion, 

paired PT-IBTR distances were calculated based on CN, mutation, RNA expression, and protein 

abundance (Figure 4). Interestingly, we here found that changes at the CN and mutational level 

often impacted transcript and protein abundance, with positive correlations between genomic, 

transcriptomic, and proteomic distances. On top of this, our analyses revealed that lack of 

hormonal receptors and proliferation rates implied a drift not only within the space of genomic 

features, but also a reprogramming of both the transcriptome and the proteome. Given the fact that 

ER positive and negative PTs display different transcriptional programs56,57 and often feature 

different sets of driver mutations (e.g. PIK3CA vs TP53)12, it is reasonable to believe these features 

have an effect on cancer evolution. Differential gene/protein expression and pathway analyses 

within the ER positive and ER negative recurrence-forming PTs revealed two differential 

evolutionary routes, where ER negative IBTRs were enriched in cell cycle, DNA replication, and 

transcription, while ER positive tumors were geared toward metabolic pathways (ER positive; 

Figure 5). In addition to cell cycle-related genes, an enrichment of APOBEC3B was also detected 

in ER negative tumors (Figure 6). APOBEC3B is a known cancer mutagen often overexpressed 

in BC and seemingly responsible for ~80% of the mutational load in these tumors49,50. APOBEC3B 
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action in breast cancer has been shown to change in relation to the expression of ER, of which is 

an interactor recruited at binding sites, promoting DNA strand breaks58. This synergistic action is 

responsible for poor clinical outcomes in ER positive BCs58–60. While ER negative tumors have 

been reported to express high levels of APOBEC3B59, this has not been linked to clinical outcome 

nor have its effect on the mutational landscape of these tumor subset been characterized. ER 

negative tumors are generally indicative of poor prognosis due to the fact that multiple mechanisms 

are enacted to enable tumor cell proliferation outside of the ER transcriptional program12,14,57, 

conferring new features to cancer cells such tissue invasion61 or immune evasion62. In addition, 

several studies have shown that ER negative and triple-negative BC constitute a molecularly 

heterogeneous group63–66. In the light of this, the role and clinical association of APOBEC family 

members might be either concomitant to other factors, hence the non-significant contribution of 

APOBEC-related signatures (i.e. signature 2 and 13) in this subset, or confounded by the numerous 

processes at work in these tumors. 

Investigation of the role of APOBEC family members in ER negative BCs would entice the 

analysis of subtype-stratified cohorts to better define their relationship with clinical outcomes, 

mutational processes, and other key factors (e.g. immune system). Further mechanistic studies 

assessing the interaction of APOBEC enzymes with cancer drivers (e.g. MYC) or other factors 

active in ER negative cancers would allow to quantify the impact on these tumors´ mutational 

landscape and define new drug targets or alternative treatment regimens, such as in the case of 

PARP1-inhibitor mediated synthetic lethality67. 

 

While our study could not recapitulate IBTR features due to low power or resolve tumor clonal 

evolution at high resolution due to shallow sequencing, it shows how the mutational landscape of 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.13.499898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499898


 36 

recurrent breast cancers diversifies based on the expression of hormonal receptors, with 

repercussions at the transcriptome and proteome levels and repurposing the cell machinery towards 

DNA replication and proliferation, indicating these mechanisms should be targeted to prevent 

IBTR formation.  
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Data availability 

The sequencing data (WGS and RNAseq) presented in this study are available upon request from 

the corresponding authors, and after additional ethical approval. The data are not publicly available 

due to ethical considerations. 

DIA MS data, and their respective search result files have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository68 with the dataset identifier: PXD032266. 
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Figures and legends 

 

Figure 1. Cohort selection and metadata. We selected a set of PTs and matched IBTRs (n = 27 + 27) from a larger 

multi-center (Lund, Uppsala, Stockholm) study (Panel A). Clinical data and histopathological characteristics were 

registered upon sample collection or after analyses of paraffin-embedded material, if available. Panel B: Description 

of key clinical parameters (light gray boxes represent missing values). Frozen tumors were analyzed by WGS, 

RNAseq, and proteomics. Panel C: Estrogen and Progesterone receptor levels measured by RNA. Panel D: PgR and 

Ki-67 status levels validated at the protein level. Panel E: Comparison between pathological analysis and CN, 

transcript, and protein levels of ERBB2/Her2. 

 

Acronyms: CN, copy number; ER, estrogen receptor; ERBB2/Her2, receptor tyrosine-protein kinase erbB-2; Ki-67, 

antigen Ki-67; IBTR, ipsilateral breast tumor recurrence; IBTRFS, IBTR-free survival; PgR, progesterone receptor; 

PT, primary tumor.  
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Figure 2 – Mutational spectrum and shift of mutational signature contributions. We evaluated the contribution 

of the 30 COSMIC mutational signatures within our samples (PT and IBTR subsets). Contribution delta was then 

calculated as a measure of mutational process evolution for each PT-IBTR pair. Panel A displays hierarchical 

clustering of mutational contribution delta (IBTR-PT; light gray boxes represent missing values). Panel B shows the 

top 10 signatures with contribution changes between primary and locally recurrent tumor pairs. Bar charts displaying 

the evolution of (top 10, from panel A) mutational signatures between primary and locally recurrent tumors are shown 

in panel C. Significant associations between changes in mutational signature 3 contribution and clinical variables are 

depicted in panel D. 

 

Acronyms: ER, estrogen receptor; ERBB2/Her2, receptor tyrosine-protein kinase erbB-2; Ki-67, antigen Ki-67; IBTR, 

ipsilateral breast tumor recurrence; IBTRFS, IBTR-free survival; PgR, progesterone receptor; PT, primary tumor.  
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Figure 3 – Changes in copy number and key drivers. Copy number changes between paired tumors and mutational 

(SNV) status of COSMIC cancer genes was evaluated in our cohort. Panel A: Heatmap of copy number changes 

between primary and recurrent tumors. Bottom bar charts display sample-wise frequencies of IBTR CN gain and loss 

over the matched PT. Panel B: Association of copy number gain between primary and recurrent tumors to key 

biomarkers. Panel C: Heatmap of mutational status change (i.e. gain or loss in IBTR) of cancer genes from COSMIC. 
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Panels D: Association of mutational gain between primary and recurrent tumors to key biomarkers. Light gray boxes 

in heatmaps represent missing values. 

 

Acronyms: CN, copy number; ER, estrogen receptor; Ki-67, antigen Ki-67; IBTR, ipsilateral breast tumor recurrence; 

IBTRFS, IBTR-free survival; PgR, progesterone receptor; PT, primary tumor; SNV, single nucleotide variant. 
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Figure 4 – Multi-omic drift assessment of breast cancer recurrences. Euclidean distances were calculated between 

tumor pairs at the CN, SNV, transcript, and protein levels as a measure of evolutionary drift. Panel A: PT-IBTR 

distance-based clustering at the CN, SNV, transcriptome, and protein levels. Panels B-E: Association between clinical 

variables and PT-IBTR distances across data layers. 

 

Acronyms: CN, copy number; ER, estrogen receptor; Ki-67, antigen Ki-67; IBTR, ipsilateral breast tumor recurrence; 

PgR, progesterone receptor; PT, primary tumor; SNV, single nucleotide variant; TP53, tumor protein p53. 
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Figure 5 – Estrogen receptor expression-dependent evolution of recurrent breast cancers. Differential expression 

and pathway enrichment analyses were performed between paired IBTR and PT specimen within the ER positive and 

ER negative groups. Results were compared to measure the degree of deviation in the evolution of ER positive and 

ER negative tumors. Panel A-B: Differential transcript (A) and protein (B) levels between PT and IBTR samples in 

ER positive and negative tumors. Panel C-F: Pathway enrichment divergence in ER positive and negative patients at 

the RNA and protein levels. 

 

Acronyms: ER, estrogen receptor; IBTR, ipsilateral breast tumor recurrence; PT, primary tumor. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.13.499898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499898


 54 

 

Figure 6 – Proteogenomic factors impacting differential evolution of tumors. Multi-level analysis was performed 

to assess the contribution of DNA repair and APOBEC proteins to the different mutational evolution of ER positive 

and negative IBTRs. Panels A-B: Boxplots depicting enrichment of genes belonging to Cell Cycle and DNA repair 

pathways between ER positive (blue) and ER negative (red) tumors. Panel C: Correlation between APOBEC3B levels 

and proliferation marker Ki-67. Panel D: Differential expression of APOBEC3B genes between ER positive and ER 

negative tumors. Panel E: Assessment of nucleotide C-to-T transition frequency changes between ER positive and 

negative tumors. 

 

Acronyms: ER, estrogen receptor; Ki-67, antigen Ki-67; IBTR, ipsilateral breast tumor recurrence; PT, primary tumor. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.13.499898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499898


 55 

Tables 

Table 1 – Clinical variables 

  

ALL 

 

PRIMARY 

TUMOR 

 

IPSILATERAL 

BREAST 

TUMOR 

RECURRENCE 

  

  

N % 

 

N % 

 

N % 

 

p-

value 

  

54 100 

 

27 100 

 

27 100 

  

            
ER*,† positive 34 63.0 

 

18 66.7 

 

16 59.3 

 

1.000 

 

negative 17 31.5 

 

9 33.3 

 

8 29.6 

  

            
PgR*,† positive 24 44.4 

 

11 40.7 

 

13 48.1 

 

0.572 

 

negative 26 48.1 

 

15 55.5 

 

11 40.7 

  

            
Ki-67*,† low 18 33.3 

 

10 37.0 

 

8 29.6 

 

0.556 

 

high 29 53.7 

 

13 48.1 

 

16 59.3 

  

            
ERBB2*,† normal 34 63.0  18 66.7  16 59.3  1.000 

 

amplified 8 14.8  4 14.8  4 14.8 

  

            
Age† >55 29 53.7 

 

13 48.1 

 

16 59.3 

 

0.586 

 

<=55 25 46.3 

 

14 51.9 

 

11 40.7 

  

            
Lymph-node 

positivity* positive 10 18.5 

 

10 37 

 

- - 

 

n/a 

 

negative 17 31.5 

 

17 63 

 

- - 
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Grade*,‡ Low 1 1.8 

 

0 0 

 

1 3.7 

 

0.549 

 

Intermediate 27 50.0 

 

14 51.9 

 

13 48.1 

  

 

High 16 29.6 

 

9 33.3 

 

7 25.9 

  

            
Adjuvant radiotherapy no 8 14.8 

 

8 29.6 

 

- - 

  

 

yes 19 35.2 

 

19 70.4 

 

- - 

  

            
Adjuvant endocrine 

therapy no 18 33.3 

 

18 66.7 

 

- - 

  

 

yes 8 14.8 

 

8 29.6 

 

- - 

  

            
Adjuvant 

chemotherapy no 21 38.9 

 

21 77.8 

 

- - 

  

 

yes 6 11.1 

 

6 22.2 

 

- - 

  
*Missing data 

†Fisher exact test 

‡Chi-square test 

Acronyms: ER, estrogen receptor; ERBB2/Her2, receptor tyrosine-protein kinase erbB-2; Ki-67, antigen Ki-67; PgR, 

progesterone receptor; TP53, tumor protein p53. 
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