A stable, distributed code for cue value in mouse cortex during reward learning

David J. Ottenheimer¹,²,³,⁵, Madelyn M. Hjort¹,²,⁵, Anna J. Bowen³,⁵, Nicholas A. Steinmetz³,⁶, Garret D. Stuber¹,²,⁴,⁶

¹Center for the Neurobiology of Addiction, Pain, and Emotion, ²Anesthesiology and Pain Medicine, ³Biological Structure, ⁴Pharmacology, University of Washington, Seattle.

These authors contributed equally

⁶Corresponding authors: nick.steinmetz@gmail.com, gstuber@uw.edu

Abstract

The ability to associate reward-predicting stimuli with adaptive behavior is frequently attributed to the prefrontal cortex, but the stimulus-specificity, spatial distribution, and stability of neural cue-reward associations are unresolved. We trained headfixed mice on an olfactory Pavlovian conditioning task and measured the coding properties of individual neurons across space (prefrontal, olfactory, and motor cortices) and time (multiple days). Neurons encoding cues and licks were most common in olfactory and motor cortex, respectively. By classifying cue-encoding neurons according to their responses to the six odor cues, we unexpectedly found value coding, including coding of trial-by-trial reward history, in all regions we sampled. We further found that prefrontal cue and lick codes were preserved across days. Our results demonstrate that individual prefrontal neurons stably encode components of cue-reward learning within a larger spatial gradient of coding properties.
Introduction

Association of environmental stimuli with rewards and the subsequent orchestration of value-guided reward-seeking behavior are crucial functions of the nervous system linked to the prefrontal cortex (PFC) (Klein-Flügge et al., 2022; Miller and Cohen, 2001). PFC is heterogeneous, and many studies have noted that its subregions differ in both neural coding of (Hunt et al., 2018; Kennerley et al., 2009; Sul et al., 2010; Wang et al., 2020a) and functional impact on (Buckley et al., 2009; Dalley et al., 2004; Kesner and Churchwell, 2011; Rudebeck et al., 2008) value-based reward seeking in primates and rodents. Importantly, not all functional manipulations of PFC subregions have a discernible impact on rodent reward-guided behavior (Chudasama and Robbins, 2003; Dalton et al., 2016; St. Onge and Floresco, 2010; Verharen et al., 2020; Wang et al., 2020a). Further, multiple studies have observed drifting representations in PFC over time, calling into question the stability PFC signaling (Hyman et al., 2012; Malagon-Vina et al., 2018). A systematic comparison of coding properties across rodent PFC and related motor and sensory regions, as well as across days and stimulus sets, is necessary to provide a full context for the importance (or lack thereof) of PFC subregions in reward processing.

Rigorously identifying neural activity related to value signals requires isolating putative value signals from sensory and motor factors, employing a task with sufficiently complex value components, and assessing the stability of the signals. Separating stimulus- from action-related signaling can be challenging due to correlations between behavior and task events (Musall et al., 2019; Zagha et al., 2022). This is especially relevant given reports of widespread neural coding of movement (Musall et al., 2019; Steinmetz et al., 2019; Stringer et al., 2019). Identifying value signaling requires a rich value axis: one rewarded and one unrewarded stimulus is insufficient to rule out non-value coding schemes that prefer one cue over another. Finally, a true value code would be stable over changing conditions and time.
With these considerations in mind, we implemented an olfactory Pavlovian conditioning task containing two sets of three odors each associated with varying reward probabilities, permitting robust identification of value signaling. To assess coding heterogeneity within mouse PFC, we recorded single neuron activity in five PFC subregions, as well as portions of olfactory and motor cortices, permitting contextualization of odor cue and lick signals in PFC. We found intermediate amounts of cue and lick coding in PFC compared to olfactory and motor areas. Unexpectedly, there were neurons in all regions encoding cue value. These neurons were distinct from a sizable proportion of neurons that encoded cue meaning distinctly from the value axis. A subset of value coding neurons were sensitive to trial-by-trial fluctuations in value according to reward history. To assess coding stability, we performed 2-photon imaging of neurons in PFC for multiple days and determined that the cue and lick codes we identified were stable over time. Our data demonstrate universality and stability of cue-reward coding in mouse cortex.

Results

Distributed neural activity during an olfactory Pavlovian conditioning task.

We trained mice on an olfactory Pavlovian conditioning task with three cue types that predicted reward on 100% (‘CS+’), 50% (‘CS50’), or 0% (‘CS-’) of trials (Fig. 1A). Each mouse learned two odor sets, trained on separate days (Fig. 1B) and then presented in six alternating blocks of 51 trials during recording sessions (Fig. 1C). Mice developed anticipatory licking (Fig. 1D), and the rate of this licking correlated with reward probability (Fig. S1), indicating that subjects successfully learned the meaning of all six odors.
Figure 1: Distributed neural activity during an olfactory Pavlovian conditioning task.
Figure 1. Distributed neural activity during an olfactory Pavlovian conditioning task.

(A) Trial structure in Pavlovian conditioning task.

(B) Timeline for mouse training.

(C) Trial order from example recording session. Vertical ticks demarcate odor onsets, with color indicating trial type (colors as in A).

(D) Mean (+/- standard error of the mean (SEM)) lick rate on each trial type for each odor set during recording sessions (n = 5 mice). CS50(r) and CS50(u) are rewarded and unrewarded trials, respectively.

(F) Reconstructed recording sites from all tracked probe insertions (n = 44 insertions, n = 5 mice), colored by mouse.

(G) Location of each recorded neuron relative to bregma, projected onto 1 hemisphere. Each neuron is colored by CCF region. Numbers indicate total neurons passing quality control from each region.

(H) Heatmap of the normalized activity of each neuron (n = 51 trials per cue). All columns sorted by region and then by mean firing 0 - 1.5 s following odor onset for odor set 1 CS+ trials.

(I) Mean (+/- SEM) activity of neurons from 4 regions aligned to each cue type, grouped by whether peak cue activity (0 - 2.5 s) was above (top) or below (bottom) baseline in held out trials.
Using Neuropixels 1.0 and 2.0 probes (Jun et al., 2017; Steinmetz et al., 2021), we recorded the activity of individual neurons in PFC, including anterior cingulate area (ACA), frontal pole (FRP), prelimbic area (PL), infralimbic area (ILA), and orbital area (ORB) (Laubach et al., 2018; Wang et al., 2020b). We also recorded from: secondary motor cortex (MOs), including anterolateral motor cortex (ALM), which has a well-characterized role in licking (Chen et al., 2017); olfactory cortex (OLF), including dorsal peduncular area (DP), dorsal tecta (TTd), and anterior olfactory nucleus (AON), which receive input from the olfactory bulb (Igarashi et al., 2012; Mori and Sakano, 2021); and striatum, including caudoputamen (CP) and nucleus accumbens (ACB) (Fig. 1E-F), which are major outputs of PFC (Heilbronner et al., 2016). We isolated the spiking activity of 5332 individual neurons in regions of interest (Fig. 1G).

The activity of neurons in all regions exhibited varying degrees of modulation in response to the six trial types. Broadly, there was strong modulation on CS+ and CS50 trials that appeared to be common to both odor sets (Fig. 1H). Across regions, there was heterogeneity in both the magnitude and the timing of the neural modulation relative to odor onset (Fig. 1I).

Graded cue and lick coding across the recorded population.

To quantify the relative contribution of cues and conditioned responding (licking) to the activity of neurons in each region, we implemented reduced rank kernel regression (Steinmetz et al., 2019), using cues, licks, and rewards to predict neurons’ activity on held out trials (Fig. 2A-B). To determine the contribution of cues, licks, and rewards to each neuron’s activity, we calculated unique variance explained by individually removing each predictor from the model and calculating the reduction in model performance (Fig. 2C).
Figure 2: Graded cue and lick coding across the recorded population.
Figure 2. Graded cue and lick coding across the recorded population.

(A) Example kernel regression prediction of an individual neuron’s normalized activity on an example trial.

(B) Mean variance explained (fraction) by linear models in each region for each session (x) and the mean (+/- SEM) across those sessions.

(C) CS+ trial activity from an example neuron and predictions with full model and with cues, licks, and reward removed. Numbers in parentheses are model performance (fraction).

(D) Normalized activity of every neuron encoding cues, licks, or both, aligned to CS+ onset, sorted by mean firing 0 - 1.5 s following odor onset.

(E) Mean (+/- SEM) activity of neurons encoding cues, licks, both, or neither aligned to each cue type, grouped by whether peak cue activity (0 - 2.5 s) was above (top) or below (bottom) baseline in held out trials.

(F) Coordinates relative to bregma of every neuron encoding only cues or only licks, projected onto one hemisphere.

(G) Fraction of neurons in each region and region group classified as coding cues, licks, reward, or all combinations of the three.

(H) Additional cue (left) or lick (right) neurons in region on Y-axis compared to region on X-axis as a fraction of all neurons, for regions with non-overlapping 95% confidence intervals (see Methods).

We identified individual neurons encoding cues, licks, or rewards as those for which that predictor uniquely contributed to 2% or more of their variance (Steinmetz et al., 2019). Neurons
encoding cues (24% of all neurons), licks (11%), or both (16%) were most common. Neurons with any response to reward (independent of licking) were rare (5%) (Horst and Laubach, 2013). Cue neurons were characterized by sharp responses aligned to odor onset; in contrast, lick neurons’ responses were delayed and peaked around reward delivery (Fig. 2D-E), consistent with the timing of licks (Fig. 1D). The spatial distributions of cue and lick cells were noticeably different (Fig. 2F). The differences could be described as graded across regions, with the most lick neurons in ALM, and the most cue neurons in olfactory cortex and ORB, though each type of neuron was observed in every region (Fig. 2E, S2). Thus, our quantification of task encoding revealed varying prioritization of cue and lick signaling across all regions.

Cue value coding is present in all regions.

To expand upon our analysis identifying cue-responsive neurons, we next assessed the presence of cue value coding in this population. The three cue types (CS+, CS50, or CS-) in our behavioral task varied in relative value according to the predicted probability of reward (Eshel et al., 2016; Fiorillo et al., 2003; Winkelmeier et al., 2022). We reasoned that a neuron encoding cue value should have activity that scaled with the relative value of the cues (Fig. 3A). We modeled this relationship on a per-neuron basis with a modified kernel regression containing a single cue kernel that scaled with cue value (Fig. 3B). We also fit each neuron with 89 additional models containing all possible permutations of assigning the original six values to the six odors. These 90 models would be equally likely to fit each neuron best if cue responses were independent of cue meaning. We found, however, that the original value model was the best model for a large fraction of cue neurons (35%), far exceeding chance (1%) (Fig. 3C). We refer to these neurons as **value** cells (Fig. S3A). Interestingly, five additional models stood out as the best model for sizable fractions of cue neurons. These models corresponded to the five alternative rankings of cue types (CS+, CS50, and CS-) irrespective of odor set (Fig. 3D) and accounted for 30% of
cue neurons. This population of cells, which we refer to as meaning cells (Fig. S3B), encoded each cue’s reward probability independent of its particular odor, but not on a traditional ranked value scale.

Figure 3: Widespread cue value coding.
Figure 3. Widespread cue value coding.

(A) Normalized activity of an example value cell with increasing modulation for cues of higher value.

(B) For the same neuron, model-predicted activity with the original value model and with one of the 89 alternatively-configured value models.

(C) Distribution of best model fits across all cue neurons.

(D) First principal component (32-48% variance explained) of all neurons best fit by the original value model or other meaning models.

(E) Fraction of neurons in each region and region group classified as value cells (blue) and other cue neurons (gray), as well as fraction (+/- 95% CI) estimated from a linear mixed effects model with random effect of session (see Methods).

(F) Additional value cells in region on Y-axis compared to region on X-axis as a fraction of all neurons, for regions with non-overlapping 95% confidence intervals.

(G) Same as (E) for meaning cells.

(H) Same as (F) for meaning cells.

The frequency of value cells was similar across the recorded regions (Figs. 4E-F, S3E), surprising given the variability in number of cue cells broadly (Fig. 2G-H). Indeed, though there were fewest cue neurons in motor cortex, they were more likely than cue neurons in other regions to encode value, followed by PFC (Fig. S4). The frequency of meaning cells was more variable, peaking in DP (Fig. 4G-H) and decreasing from olfactory to PFC to motor cortex (Fig. S3E). The frequency of cue-responsive neurons encoding neither value nor meaning also decreased from olfactory to PFC to motor cortex, with particularly high representation in AON.
Taken together, these data illustrate increasingly task-centric cue coding progressing from olfactory to PFC to motor cortex, and a surprisingly widespread distribution of value cells. In fact, this observation extended to the striatal regions we sampled as well, indicating that such value coding is widespread even beyond cortex (Fig. S5).

We next considered whether the cue value signaling we detected was sensitive to the recent history of reinforcement (Nakahara et al., 2004; Ottenheimer et al., 2020). To estimate the subjects’ trial-by-trial cue valuation, we fit a linear model predicting the number of anticipatory licks on each trial from cue type, overall reward history, and cue type-specific reward history. We found a strong influence of cue type-specific reward history (see also Winkelmeier et al. (2022)) and a more modest influence of overall reward history (Fig. 4A), which could be read out in the mean lick rate on trials binned by model-estimated value (Fig. 4B). Thus our behavioral model revealed that subjects value more highly trials preceded by rewards. Accordingly, we hypothesized that cue value cells may track these changes in value from trial to trial.

We therefore investigated whether cue value cells showed similar trial-by-trial differences in their firing rates (Fig. 4C). We compared the fit of our original value model (Fig. 3B) with an alternative model where the kernel scaled with the per-trial value estimates from our lick regression (Fig. 4D). Overall, 28% of value cells were best fit by the history-dependent value model. To further evaluate the history component, we calculated these neurons’ activity on CS50 trials of varying value and projected it onto the population dimension maximizing the separation between CS+ and CS-. We expected that high value CS50 trials would be closer to CS+ activity while low value CS50 trials would be closer to CS- activity. Indeed, history value cells (and lick cells) demonstrated graded activity along this dimension, in contrast to non-history value cells and other cue cells (Fig. 4E-F). Finally, we examined the spatial distribution of history value cells and found similar, low numbers across all regions (Fig. 4G), though, as a fraction of all value cells, history cells were least common in olfactory cortex (Fig. 4H),

(Figs. S3C-E, S4A-B).
providing additional evidence for less task-centric cue signaling there.

Figure 4: A subset of value cells incorporate reward history.
Figure 4. A subset of value cells incorporate reward history.

(A) Coefficient weight (+/- standard error) for reward outcome on the previous 10 trials of any type (left) and on the previous 10 trials of the same cue type (right) for a linear model predicting the number of anticipatory licks on every trial of every session. Colored lines are models fit to each individual mouse.

(B) Mean (+/- SEM) lick rate on trials binned according to value estimated from the lick model, incorporating recent reward history ($n = 5$ mice).

(C) Normalized activity of an example history value cell with increasing modulation for cues of higher value.

(D) For the same neuron, model-predicted activity with the original value model (left) and with trial-by-trial value estimates from the lick model (right).

(E) The activity of all cells in each category projected onto the coding dimension maximally separating CS- and CS+ for CS50 trials binned by value estimated from the lick model.

(F) The mean (+/- std) activity (1-2.5s from odor onset) along the coding dimension maximally separating CS- and CS+ for CS50 trials binned by value estimated from the lick model. * $= p < 10^{-7}$ comparing highest and lowest value CS50 trials (other categories $p > 0.06$) (bootstrapped, 5000 repetitions).

(G) Fraction of neurons in each region and region group classified as history (light blue), non-history (blue), and other cue neurons (gray), as well as estimated fraction (+/-95% CI) with random effect of session (see methods).
(H) Fraction of value neurons in each region group with history effect and estimated fraction (+/- 95% CI) with random effect of session (see methods).

Cue coding emerges along with behavioral learning.

To determine the timescales over which these coding schemes emerge and persist, we performed longitudinal 2-photon imaging and tracked the activity of individual neurons across several days of behavioral training. We targeted our GRIN lenses to PL (Fig. S6A-B), a location with robust cue and lick coding (Fig. 2C-D) and where cue responses predominantly encode cue meaning and value (Fig. S4A). We trained a new group of mice on the same behavioral task (Fig. 5A); all 8 mice acquired conditioned licking to the CS+ on day 1 of training (Fig. 5B-C). Visualizing the normalized activity following CS+ presentation early and late on day 1 revealed a pronounced increase in modulation in this first session (Fig. 5E). Extracted single-cell activity (Fig. 5F) also displayed a notable increase in modulation in response to the CS+ after task learning (Fig. 5G).

To determine whether this increase in activity was best explained by a cue-evoked response, licking, or both, we again used kernel regression to fit and predict the activity of each neuron for early, middle, and late trials on day 1. The variance explained by the models increased across the session (Fig. 5H), indicating that neural activity was increasingly modulated by cues, licks, and reward. Interestingly, this was only attributable to increased cue unique variance across the session, in contrast to relatively stable lick unique variance (Fig. 5I). The number of individual neurons encoding cues more than doubled from early to late day 1 trials (Fig. 5J). This stark change in cue coding was also noticeable when plotting neurons encoding cues, licks, or both, as defined at the end of the session, on both early and late trials (Fig. 5K). These data indicated that PFC neural activity related to cues (but not licks) rapidly emerges during initial learning of the behavioral task.
Figure 5: Acquisition of conditioned behavior and cue encoding in PFC.
Figure 5. Acquisition of conditioned behavior and cue encoding in PFC.

(A) Training schedule for 5 of the mice in the imaging experiment. An additional 3 were trained only on odor set 1.

(B) Mean (+/- SEM) licking on early (first 60) and late (last 60) trials from day 1 of odor set 1 ($n = 8$ mice).

(C) Mean (+/- SEM) baseline-subtracted anticipatory licks for early and late trials from each day of odor set 1. Thin lines are individual mice ($n = 8$ mice).

(D) Standard deviation of fluorescence from example imaging plane.

(E) Normalized activity of each pixel following CS+ presentation in early and late day 1 trials.

(F) ROI masks for identified neurons in this imaging plane and fluorescence traces from 5 example neurons.

(G) Normalized deconvolved spike rate of all individual neurons for early and late trials on day 1.

(H) Mean (+/- SEM) variance explained by kernel regression models for neurons from each mouse for each third of day 1. Thin lines are individual mice. $F(2, 21) = 6.13$, $p = 0.008$, $n = 8$ mice, one-way ANOVA.

(I) Mean(+/- SEM) unique variance explained by cues, licks, and rewards for neurons from each mouse. Thin lines are individual mice. Unique variance was significantly different across session thirds for cues ($F(2, 21) = 3.71$, $p = 0.04$) but not licks ($F(2, 21) = 0.37$, $p = 0.69$) or reward ($F(2, 21) = 0.65$, $p = 0.53$, $n = 8$ mice, one-way ANOVA).
(J) Proportion of neurons classified as coding cues, licks, rewards, and all combinations for each third of day 1.

(K) Mean (+/- SEM) normalized deconvolved spike rate for cells coding cues, licks, both, or neither on early and late trials, sorted by whether peak cue activity (0-2.5s) was above (top) or below (bottom) baseline for late trials.

Cue and lick coding is stable across days

We next assessed whether cue and lick coding were stable across days. By revisiting the same imaging plane on each day of training, we were able to identify neurons that were present on all three days of odor set 1 training (Fig. 6A-B). There was remarkable conservation of task responding across days, both on an individual neuron level (Fig. 6C) and across all imaged neurons (Fig. 6D). To quantify coding stability, we fit our kernel regression to the activity of each neuron on day 3 (Fig. 6E) and then used these models to predict activity on early, middle, and late trials on days 1-3 (Fig. 6F). Day 3 model predictions were most highly correlated with true activity on day 3, but they performed above chance at all time points except early day 1, demonstrating preservation of a learned coding scheme. We then asked more specifically whether cells coding cues, licks, and both maintained their coding preferences across days. For each group of cells, we calculated their unique cue, lick, and reward variance at each time point. The preferred coding of each group, as defined on day 3, was preserved in earlier days (Fig. 6G). Thus, cue and lick coding are stable properties of PFC neurons across multiple days of behavioral training.
Figure 6: Cue and lick coding is stable across days.
Figure 6. Cue and lick coding is stable across days.

(A) Standard deviation fluorescence from example imaging plane.

(B) Masks for all tracked neurons from this imaging plane.

(C) Deconvolved spike rate on every CS+ trial from all three days of odor set 1 for an example neuron.

(D) Normalized deconvolved spike rate for all tracked neurons on all three days of odor set 1.

(E) Fraction of tracked neurons coding cues, licks, rewards, and their combinations on day 3.

(F) Model performance when using day 3 models to predict the activity of individual neurons across odor set 1 training, plotted as mean (+/− SEM) correlation between true and predicted activity across mice. Thin lines are individual mice. Performance was greater than shuffled data at all time points (p < 0.0001) except early day 1 (p = 0.21, Bonferroni-corrected, n = 8 mice).

(G) Mean (+/− SEM) unique cue, lick, and reward variance for cells classified as coding cues, licks, both, or neither on day 3. Day 3 cue cells had increased cue variance on day 2 (p < 10^{-7}) and 1 (p < 0.03), as well. Same pattern for lick cells on day 2 (p < 0.0001) and day 1 (p < 0.01).

A subset of mice also learned a second odor set, presented on separate days (Fig. 5A). As with the electrophysiology data, activity was very similar for both odor sets, evident across the entire imaging plane (Fig. S7B), for individual tracked neurons (Fig. S7C), and for kernel regression classification (Fig. S7D). Notably, odor set 1 models performed similarly well at
predicting both odor set 1 and odor set 2 activity (Fig. S7E). Moreover, cue, lick and both neurons maintained their unique variance preference across odor sets (Fig. S7F). Finally, to investigate whether the coding schemes of cue neurons were stable across days, we fit tracked cue neurons with the value model and its shuffles. Across the two odor sets on separate days, we again found that the value model was the best model for a sizable fraction (28%) of cue neurons, demonstrating that value coding is conserved across stimulus sets and days (Fig. S7G-H).

Discussion

Our experiments assessed how coding for reward-predicting cues and reward-seeking actions differed across brain regions and across multiple days of training. We found coding for cues and licks in all regions we sampled, but their proportions varied in a graded way across those regions. In contrast to graded differences in cue coding broadly, cue value coding more specifically was similarly represented in all regions. Coding for cue value was robust, occurring with far greater frequency than chance, and, in a subset of neurons, incorporating the recent reward history. Cue coding was established within the first day of training and neurons encoding cues or licks maintained their coding preference across multiple days of the task. These results demonstrate a lack of regional specialization in value coding and the stability of cue and lick codes in PFC.

Graded cue and lick coding across regions.

We found robust and separable coding for licks and cues (and combined coding of both) in all regions using electrophysiology and in PL using calcium imaging. The widespread presence of lick coding is consistent with recent reports of distributed movement and action coding (Musall et al., 2019; Steinmetz et al., 2019; Stringer et al., 2019); however, we saw sizable differences in the amount of lick coding across recorded regions. Notably, ALM had the greatest number
of lick neurons, as well as the fewest cue neurons, emphasizing its specialized role in the prepa-
ration and execution of licking behavior (Chen et al., 2017). Conversely, olfactory cortex had
the most cue neurons (especially non-value coding cue neurons), emphasizing its role in the
initial steps of odor identification and processing (Mori and Sakano, 2021). PFC subregions
balanced lick and cue coding, consistent with their proposed roles as association areas (Klein-
Flügge et al., 2022; Miller and Cohen, 2001), but there was variability within PFC as well. In
particular, ORB had a greater fraction of cue cells than any other subregions, consistent with its
known dense inputs from the olfactory system (Ekstrand et al., 2001; Price, 1985; Price et al.,
1991). Thus, our results establish that the neural correlates of this Pavlovian conditioned be-
havior consist of a gradient of cue and response coding rather than segmentation of sensory and
motor responses.

Widespread value signaling.

Value signals can take on many forms and occur throughout task epochs. In our experiments, we
focused on the predicted value associated with each conditioned stimulus, which is crucial for
understanding how predictive stimuli produce motivated behavior (Berridge, 2004). Most com-
parisons of single neuron stimulus-value signaling across PFC have been conducted in primates.
These studies have found neurons correlated with stimulus-predicted value in many subregions,
with the strongest representations typically in ORB (Hunt et al., 2018; Kennerley et al., 2009;
Roesch and Olson, 2004; Sallet et al., 2007). In rodents, there is also a rich history of studying
value signaling in ORB (Kuwabara et al., 2020; Namboodiri et al., 2019; Schoenbaum et al.,
2003; Stalnaker et al., 2014; Sul et al., 2010; van Duuren et al., 2009; Wang et al., 2020a), but
there have been many reports of value-like signals in frontal cortical regions beyond ORB, as
well (Allen et al., 2019; Kondo and Matsuzaki, 2021; Otis et al., 2017; Wang et al., 2020a).
In our present experiment, we sought to expand upon the results from the rodent literature by
separating cue activity from licking, which trivially tracks value and confounds interpretation of
the signal, including more than two cue types in order to provide a rich enough space to assess
value coding, and sampling from many frontal regions in the same experiment.

When considering the number of neurons responsive to cues rather than licks, our data
confirmed the importance of ORB, which has more cue-responsive neurons than motor and
other prefrontal regions. However, by analyzing the activity of cue-responsive neurons across all
6 odors, we were able to separate out neurons coding value from other neurons, which included
a population that had consistent responses for odors with the same associated reward probability
but activity that did not scale according to probability (suggesting the possibility of nonlinear
value coding). When only considering cue neurons with linear coding of value, the distribution
was much more even across regions. This finding is particularly interesting in light of results
from functional manipulations of PFC, which produce subtle and slightly different effects on
value-guided behavior depending on the subregion targeted (Chudasama and Robbins, 2003;
Dalton et al., 2016; St. Onge and Floresco, 2010; Verharen et al., 2020; Wang et al., 2020a).
One consequence of a widely distributed value signal is that manipulating only one subregion
would be less likely to fully disrupt value representations. Thus, rather than indicating the
presence of value signaling, the different subregional impacts on behavior may reveal biases
in how the value signal in each region contributes to reward-related behaviors. Another way
of stating this interpretation is that, in this task, there may be other properties that correlate
with cue value, and the homogeneous value representation we observed across regions masks
regional differences in tuning to these other correlated features, such as motivation (Roesch and
Olson, 2004), which could have slightly different contributions to behavior. This interpretation
is consistent with broader views that observations of ‘value’ signals are often misconstrued
(Zhou et al., 2021) and that pure abstract value may not be encoded in the brain at all (Hayden
and Niv, 2021). Although the identification of value in our task was robust to three value
conditions across two stimulus sets, the fact that this signal was still so widespread contributes to the case for revisiting the definition and interpretation of value to better understand regional specialization.

In our analysis, we uncovered a distinction between neurons encoding the overall value of cues and those with value representations that incorporated the recent reward history. Neurons with history effects were rarer but also widespread. These neurons may have a more direct impact on behavioral output in this task, because the lick rate also incorporated recent reward history. Notably, the impact of reward history on these neurons was noticeable even prior to cue onset, consistent with a previously proposed mechanism for persistent value representations encoded in the baseline firing rates of PFC neurons (Bari et al., 2019).

Given the presence of value coding in olfactory cortex, the question remains of where odor information is first transformed into a value signal. In fact, there have been multiple reports of some meaning-related modification of odor representations as early as the olfactory bulb (Chu et al., 2016; Doucette et al., 2011; Koldaeva et al., 2019; Li et al., 2015). Considering the prevalence of value and non-value meaning coding we observed in AON, DP, and TTd, perhaps these regions are a crucial first step in processing and amplifying task-related input from the olfactory bulb. Because they provide input to PFC (Bhattarai et al., 2021; Igarashi et al., 2012), they may be an important source of the odor coding we observed there. Our findings in AON, DP, and TTd differ from reports that piriform cortex lacks odor value representations (Blazing and Franks, 2020; Wang et al., 2020a; Winkelmeier et al., 2022) and suggest that these olfactory peduncular areas, as well as olfactory tubercle (Gadziola et al., 2015; Millman and Murthy, 2020; Winkelmeier et al., 2022), may provide more value-related processing of odor cues than better-studied odor processing routes through piriform cortex (Blazing and Franks, 2020; Mori and Sakano, 2021; Winkelmeier et al., 2022). Previous recordings in AON, DP, and TTd were in anesthetized rodents (Cousens, 2020; Kikuta et al., 2008; Lei et al., 2006; Tsuji et al., 2019);
as the first recordings in awake behaving animals, our results bring these regions into focus for future work on the transformation of odor information into task-relevant coding.

Stability of PFC codes.

Previous reports have observed drifting representations in PFC across time (Hyman et al., 2012; Malagon-Vina et al., 2018), and there is compelling evidence that odor representations in piriform drift over weeks when odors are experienced infrequently (Schoonover et al., 2021). On the other hand, it has been shown that coding for odor meaning is stable in ORB and PL, and that coding for odor identity is stable in piriform (Wang et al., 2020a), with similar findings for auditory Pavlovian cue encoding in PL (Grant et al., 2021; Otis et al., 2017) and ORB (Nambodiri et al., 2019). We were able to expand upon these data in PL by identifying both cue and lick coding and showing separable, stable coding of cues and licks across days and across sets of odors trained on separate days, as well as conserved cue value coding across days. This consistency in cue and lick representations indicates that PL serves as a reliable source of information about cue meaning and licking during reward seeking tasks, perhaps contrasting with other representations in PFC (Hyman et al., 2012; Malagon-Vina et al., 2018). Interestingly, the presence of lick, but not cue coding at the very beginning of day 1 of training suggests that lick cells in PL are not specific to the task but that cue cells are specific to the learned cue-reward associations.

Overall, our work emphasizes the importance of evaluating regional specialization of neural encoding with systematic recordings in many regions using the same task. Future work will clarify whether cue value is similarly widely represented in other reward-seeking settings and whether there are regional differences in the function of the value signal.
Acknowledgments

Thank you to Vijay Namboodiri and Charles Zhou for assistance with the imaging. Thank you to Noam Roth for the spike sorting quality control metrics. This work was supported by National Institutes of Health grants F32DA053714 (D.O.), F31DA053706 (M.H.), T32DK007247 (A.B.), R37DA032750 (G.S.), and P30DA048736 (G.S.), a UW Center for the Neurobiology of Addiction, Pain, and Emotion 2-photon pilot project grant (D.O.), a Klingenstein-Simons Fellowship in Neuroscience (N.S.), and the Pew Biomedical Scholars Program (N.S.).

Author contributions

Declaration of interests

The authors declare no competing interests.

Data and code availability

The data and code will be made publicly available by the time of publication at https://doi.org/10.5281/zenodo.6686927 (Ottenheimer et al., 2022).
Methods

Subjects.

Subjects ($n = 5$ for electrophysiology, $n = 8$ for imaging) were male and female mice single-housed on a 12hr light/dark cycle and aged 12-28 weeks at the time of recordings. Imaging experiments were performed during the dark cycle, electrophysiology during light cycle. Mice were given free access to food in their home cages for the duration of the experiment. Mice were water restricted for the duration of the experiments and maintained around 85% of their baseline weight. All experimental procedures were performed in strict accordance with protocols approved by the Animal Care and Use Committee at the University of Washington.

Behavioral training.

Mice were headfixed during training and recording sessions using either a headring (imaging experiments) or headbar (electrophysiology experiments). After initial habituation to head fixation, mice were first trained to lick for $2.5 \mu L$ rewards of 10% sucrose solution, delivered every 8-12 seconds through a miniature inert liquid valve (Parker 003-0257-900). After 4-5 days of lick training, mice experienced their first odor exposure (without reward delivery). Odors were delivered for a total of 1.5s using a 4-channel olfactometer (Aurora 206A) with 10% odor flow rate and 800 overall flow rate of medical air. Odors were randomly assigned to sets and cue identities, counterbalanced across mice. Odors were -carvone, -limonene, alpha-pinene, butanol, benzaldehyde, and geranyl acetate (Sigma Aldrich 124931, 218367, 147524, 281549, 418099, 173495, respectively), selected because of they are of neutral valence to naive mice (Devore et al., 2013; Saraiva et al., 2016). Odors were diluted 1:10 in mineral oil and 10 μL was pipetted onto filter paper within the odor delivery vials (Thermo Fisher SS246-0040) prior to each session. Airflow was constant onto the mouse’s nose throughout the session and switched from clean air to scented air for the duration of odor delivery on each trial.

On days 1-2 of Pavlovian conditioning, mice received 50-75 trials each of 3 odor cues, followed by reward on 100% (CS+), 50% (CS50), or 0% (CS-) of trials, 2.5 seconds following odor onset. Mice then received training days 1-2 with a second odor set with three new odors. For electrophysiology experiments, the odors were subsequently presented in the same sessions in 6 blocks of 51 trials. Odor set order alternated and was counterbalanced across days. For imaging experiments, mice received day 3 of odor set 1 and then day 3 of odor set 2. An additional 3 imaging mice were only trained on one odor set.

Surgical procedures.

Mice were anesthetized with isoflurane (5%) and maintained under anesthesia for the duration of the surgery (1-2%). Mice received injections of carprofen (5 mg/kg) prior to incision. Electrophysiology. A brief (1 h) initial surgery was performed, as described in (Guo et al., 2014; Steinmetz et al., 2017, 2019), to implant a steel headplate (approximately $15 \times 3 \times 0.5$ mm, 1 g) and a 3D-printed recording chamber that exposed the skull for subsequent craniotomies. Briefly, an incision was made around the circumference of the dorsal surface of the skull, from the interparietal bone to the frontonasal suture. The skin and periosteum were removed to expose the dorsal surface of the skull. Skull yaw, pitch, and roll were leveled, and exposed bone was texturized with a brief application of green activator (Super-Bond C&B, Sun Medical). The incised skin was secured around the circumference of exposed skull with application of cyanoacrylate (VetBond; World Precision Instruments), and the chamber was attached to the
A thin layer of cyanoacrylate was applied to the skull inside the chamber and allowed to dry. Multiple (2-4) thin layers of UV-curing optical glue (Norland Optical Adhesives #81, Norland Products) were applied inside the chamber to cover the entire exposed surface of the skull and cured with UV light. The headplate was attached to the skull over the interparietal bone posterior to the chamber with Super-Bond polymer, and more polymer was applied around the headplate and chamber. A second brief (15-30 min) surgery was conducted to perform craniotomies for probe insertion. Briefly, following induction of anesthesia a small (2 × 1.5 mm (w × h)) craniotomy was made over frontal cortex (+2.5-1 mm AP, ±2.5-0.3 mm ML) with a handheld dental drill. The craniotomy was covered with Duragel and the recording chamber was covered with a 3D-printed lid sealed with Kwik-Cast elastomer for protection. Imaging. A GRIN lens and metal headcap were implanted following previously described procedures (Namboodiri et al., 2019) with the following modifications. In most mice, once the dura was removed from the craniotomy, we injected, 0.5 µL of virus containing the GCaMP gene construct (AAV-DJ-CamKIIa-GCaMP6s, 5.3 × 10^{12} viral particles/mL from UNC Vector core lot AV6364) using a glass pipette microinjector (Nanoject II) targeted at Bregma +1.94 mm AP, 0.3 and 1.2 mm ML, -2 mm DV. Ten minutes elapsed before microinjector withdrawal to allow virus to diffuse away from the infusion site. Then, mice were implanted with a 1x4mm GRIN lens (Inscopix) aimed at +1.94 mm AP, 0.3 and 1.2 mm ML, -1.8 mm DV. A subset of mice did not receive viral injections; instead, a lens with the imaging face coated 1 µL of the GCaMP6s virus mixed with 5 percent aqueous silk fibroin solution (Jackman et al., 2018) was implanted at the same coordinate. GCaMP expression and transients were similar in both preparations. Mice were allowed to recover for at least 5 weeks before experiments began.

Electrophysiological recording and spike sorting.

During recording sessions, mice were headfixed. Recordings were made using either Neuropixels 1.0 or Neuropixels 2.0 electrode arrays (Jun et al., 2017; Steinmetz et al., 2021), which have 384 selectable recording sites. Recordings were made with either 1.0 (1 shank, 960 sites, 2.1 (1 shank, 1280 sites) or 2.4 (4 shanks, 5120 sites) probes, depending on the regions of interest. Probes were mounted to a dovetail and affixed to a steel rod held by a micromanipulator (uMP-4, Sensapex Inc.). To allow later track localization, probes were coated with a solution of DiI (ThermoFisher Vybrant V22888) by holding 2 µl in a droplet on the end of a micropipette and painting the probe shank. In each session, one or two probes were advanced through the Duragel covering the craniotomy over frontal cortex, then advanced to their final position at approximately 3 µm s⁻¹. Electrodes were allowed to settle for around 15 min before starting recording. Recordings were made in internal reference mode using the ‘tip’ reference site, with a 30 kHz sampling rate. Recordings were repeated at different locations on each of multiple subsequent days, performing an additional craniotomy over contralateral frontal cortex. The resulting data were automatically spike sorted with Kilosort2.5 and Kilosort3 (https://github.com/MouseLand/Kilosort). Extracellular voltage traces were preprocessed with common-average referencing by subtracting each channel’s median to remove baseline offsets, then subtracting the median across all channels at each time point to remove artifacts. Sorted units were curated using automated quality control (Banga et al., 2022): exclusions were based on spike floor violations (the estimated proportion of spikes that were missed because they fell below the noise level of the recording, i.e. estimated false negative rate), and refractory period violations (the estimated proportion of spikes which did not arise from the primary neuron, i.e. the estimate false positive rate due to contamination, with a 10% cutoff). Quality control accuracy was assessed by manually reviewing a subset of the data using the phy GUI.
For each session, we used units sorted with Kilosort2.5 or Kilosort3 depending on which yielded the greatest number of high quality units. Brain regions were only included for subsequent analysis if there were recordings from at least three subjects and in total over 100 neurons in the region. When we analyzed all of motor cortex together, we included ALM and MOs neurons. When we analyzed all of olfactory cortex, we included DP, TTd, AON, and other neurons in PIR, EDp, and OLF. We relabeled PIR and EDp as OLF because there were not enough neurons to analyze them as separate regions.

Imaging and ROI extraction.

During imaging sessions, mice were headfixed and positioned under the 2-photon microscope (Bruker Ultima2P Plus) using a 20x air objective (Olympus LCPLN20XIR). A Spectra-Physics InSight X3 tuned to 920nm was used to excite GCaMP6s through the GRIN lens. Synchronization of odor and 10 percent sucrose delivery, lick behavior recordings, and 2-photon recordings was achieved with custom Arduino code. After recording, raw TIF files were imported into suite2p (https://github.com/MouseLand/suite2p). We used their registration, region-of-interest (ROI) extraction, and spike deconvolution algorithms, inputting a decay factor of \(\tau = 1.3 \) to reflect the dynamics of GCaMP6s, and manually reviewed putative neuron ROIs for appropriate morphology and dynamics. To find changes in activity across the entire imaging plane, we found the mean pixel intensity for frames in the time of interest (2 to 2.5s from CS+), subtracted the mean intensity of each pixel prior to cue onset (-2 to 0s from all cues), and divided by the standard deviation for each pixel across those frames prior to cue onset.

Histology.

Animals were anesthetized with pentobarbital or isoflurane. Mice were perfused intracardially with 0.9% saline followed by 4% paraformaldehyde (PFA). **Electrophysiology.** Brains were extracted immediately following perfusion and post-fixed in 4% paraformaldehyde for 24 h. In preparation for light sheet imaging brains were cleared using organic solvents following the 3DISCO protocol (Ertürk et al., 2012) (https://idisco.info/), with some modification. Briefly, on day 1 brains were washed 3× in PBS, then dehydrated in a series of increasing MeOH concentrations (20%, 40%, 60%, 80%, 100%, 100%; 1-h each) and incubated overnight for lipid extraction in 66% dichloromethane (DCM) in MeOH. On day 2 the brains were washed twice for 1-h each in 100% MeOH, then bleached in 5% \(\text{H}_2\text{O}_2 \) in MeOH at 4°C overnight. On day 3 brains were washed 2× in 100% MeOH, then final lipid extraction was accomplished in a series of DCM incubations (3-h in 66% DCM in MeOH, 2× 100% DCM for 15 min each) before immersion in dibenzyl ether (DBE) for refractive index matching. Brains were imaged on a light sheet microscope (LaVision Biotec UltraScope II) 2-7 days after clearing. Brains were immersed in DBE in the imaging well secured in the horizontal position, and illuminated by a single light sheet (100% width, 4 \(\mu m \) thick) from the right. Images were collected through the 2X objective at 1X magnification, from the dorsal surface of the brain to the ventral surface in 10 \(\mu m \) steps in 488 nm (autofluorescence, 30% power) and 594 nm (DiI, 2-10% power) excitation channels. The approximately 1000 raw TIF images were compiled into a single multi-image file with 10 \(\mu m \) voxels, then spatially downsampled to 25 \(\mu m \) voxels for transformation to the Allen common-coordinate framework (CCF) volume (Wang et al., 2020b) using the Elastix algorithm (Shamonin et al., 2014). Transformed volumes were used to track fluorescent probe tract locations in CCF using Lasagna (https://github.com/SainsburyWellcomeCentre/lasagna), generating a series of CCF pixel coordinates for points along each probe tract. CCF pixel coordinates (origin front, top, left) were transformed to bregma coordinates (x==ML, y==AP and z==DV).
in preparation for final integration with electrophysiology recordings using the International Brain Lab electrophysiology GUI (Faulkner M, Ephys Atlas GUI; 2020. https://github.com/int-brain-lab/iblapps/tree/master/atlaselectrophysiology). For recording alignment, sorted spikes and RMS voltage on each channel were displayed spatially in relation to the estimated channel locations in Atlas space from the tracked probe. The recording sites were then aligned to the Atlas by manually identifying a warping such that recording sites were best fit to the electrophysiological characteristics of the brain regions (e.g. matching location of ventricles or white matter tracts with low firing activity bands). This procedure has been estimated to have 70 µm error (Liu et al., 2021; Steinmetz et al., 2019). Brain regions were then ascribed to each unit based on location of the recording site with maximum waveform. We additionally assigned MOs neurons to anterolateral motor cortex (ALM) if they were within a 0.75mm radius of 2.5mm AP, 1.5mm ML (Chen et al., 2017). Imaging. Following perfusion, intact heads were left in PFA for an additional week before brain extraction. Brains were then sliced on a Leica Vibratome (VT1000S) at 70 µm before mounting and nuclear staining via Fluoroshield with DAPI (Sigma-Aldrich F6057-20ML). Slices with GRIN lens tracks were then imaged on a Zeiss Axio Imager M2 Upright Trinocular Phase Contrast Fluorescence Microscope with ApoTome. The resulting images were manually aligned to the Allen Brain Atlas to reconstruct the location of each GRIN lens.

Neuron tracking.

To identify the same neurons across imaging sessions, we used two approaches. To track neurons across the two odor sets on day 3, we concatenated the TIF files from each session and extracted ROIs simultaneously. To track neurons across days 1-3, we manually identified ROIs from the ROI masks outputted by suite2p. We linked the ROIs using a custom Python script that permitted selection of the same ROI across the 3 imaging planes using OpenCV and saved the coordinates on each day.

Behavioral analysis.

For electrophysiology experiments, eye and face movements were monitored by illuminating the subject with infrared light (830 nm, Mightex SLS-0208-A). The right eye was monitored with a camera (The Imaging Source, DMK 23U618) fitted with a zoom lens (Thorlabs MVL7000) and long-pass filter (Thorlabs FEL0750), recording at 70 Hz. Face movements were monitored with another camera (same model with a different lens, Thorlabs MVL16M23) directed at a 2 × 2 cm mirror reflecting the left side of the face, recording at 70 Hz. Licks were detected by thresholding the average intensity of an ROI centered between the lips and the lick spout, calculated for every frame. For imaging experiments, licks were detected with a capacitance sensor (MPR121, Adafruit Industries) connected to an Arduino board. To determine the impact of cues and previous outcomes on anticipatory licking, we fit a linear model on all electrophysiology sessions simultaneously (and for each mouse). We predicted the number of licks 0 to 2.5s from odor onset using cue identity, outcomes on previous 10 trials, outcomes on previous 10 of that cue type, and total number of presentations of that cue type so far (to account for cue-specific satiety) using ‘fitlm’ in MATLAB. When dividing sessions into ‘early’ and ‘late’, we used the first 60 and last 60 trials of the session. When dividing sessions into thirds for the GLM (‘early’, ‘middle’, ‘late’), we used even splits of trials into thirds.
PSTH creation.

Peri-stimulus time histograms (PSTHs) were constructed using 0.1s bins surrounding cue onset. **Electrophysiology.** Neuron spike times were first binned in to 0.02s bins and smoothed with a half-normal filter ($\sigma = 300$ ms) across the previous (but not upcoming) 50 bins. PSTHs were then constructed in 0.1s bins surrounding each cue onset. Each bin of the PSTH was z-scored by subtracting the mean firing rate and dividing the standard deviation across the 0.1s bins in the 2s before all trials. When splitting responses by polarity (above/below baseline, Figs. 1I, 2G), we used half of trials to determine polarity and plotted the mean across the other half of trials. **Imaging.** Frames were collected at 30Hz with 2-frame averaging, so the fluorescence for each neuron and the estimated deconvolved spiking were collected at 15Hz. We interpolated the smoothing filter from the electrophysiology analysis (which was calculated at 50Hz) and applied it to the deconvolved spiking traces. We then constructed PSTHs in 0.1s bins surrounding each cue onset and z-scored (same as electrophysiology). **Licks.** Licking PSTHs were constructed in 0.1s bins surrounding cue onset. Each trial was then smoothed with a half-normal filter ($\sigma = 800$ ms) across the previous (but not upcoming) 10 bins. For the GLM, the lick rate was calculated across the whole session by first counting licks in either the 0.02s (electrophysiology) or 15Hz (imaging) bins, smoothed with a half-normal filter over 25 previous bins, and then converted to 0.1s bins relative to each cue.

Kernel regression.

To identify coding for cues, licks, and rewards in individual neurons, we fit reduced rank kernel-based generalized linear models (GLM) (Steinmetz et al., 2019). **Data preparation.** The discretized firing rates $f_n(t)$ for each neuron n were calculated as described above for PSTH creation. We used the activity -1 to 6.5 s from each cue onset for our GLM analysis. **Predictor matrix.** The model included predictor kernels for cues (CS+, CS50, and CS- for each odor set, as relevant), licks (individual licks, lick bout start, and lick rate), and reward (initiation of consummatory bout). The cue kernels were supported over the window 0 to 5s relative to stimulus onset. The lick predictor kernels were supported from -0.3 to 0.3 s relative to each lick, from -0.3 to 2 s relative to lick bout start, and lick rate was shifted from -0.4 to 0.6 s in 0.2 s increments from original rate. The reward kernel was supported 0 to 4s relative to first lick following reward delivery. For electrophysiology experiments, the model also included 6 constants that identified the block number, accounting for changes in firing rate across blocks. For each kernel to be fit we constructed a Toeplitz predictor matrix of size $T \times l$, in which T is the total number of time bins and l is the number of lags required for the kernel. The predictor matrix contains diagonal stripes starting each time an event occurs and 0 otherwise. The predictor matrices were horizontally concatenated to yield a global prediction matrix P of size $T \times L$ containing all predictor kernels. Rate vectors of all N neurons were horizontally concatenated to form F, a $T \times N$ matrix. **Reduced-rank regression.** To prevent noisy and overfit kernels and reduce computational cost we implemented reduced-rank regression (Steinmetz et al., 2019), which allows regularized estimation by factorizing the kernel matrix K into the product of a $L \times r$ matrix B and a $r \times N$ matrix W, minimizing the total error: $E = \|F - PBW\|^2$. The $T \times r$ matrix PB may be considered as a set of ordered temporal basis functions, which can be linearly combined to estimate the neuron’s firing rate over the whole training set, resulting in the best possible prediction from any rank r matrix. To estimate each neuron’s kernel functions we generated the reduced rank predictor matrix PB for $r = 20$, estimated the weights w_n to minimize the squared error $E_n = |f_n - PBw_n|^2$ with lasso regularization (using the MATLAB function ‘lassoglm’) with parameters $\alpha = 0.5$ and $\lambda = [0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]$, using
4-fold cross-validation to determine the optimal value for λ for each neuron. The kernel functions for neuron n were then unpacked from the L-length vector obtained by multiplying the first $r = 20$ columns of B by w_n. **Predictor unique contributions.** To assess the importance of each group of kernels for predicting a neuron’s activity we first fit the activity of each neuron using the reduced-rank regression procedure, then fit the model (with 4-fold cross-validation) again excluding the kernels belonging to the predictor to be tested (cues, licks, rewards). If the difference in variance explained between the full and held-out model was $> 2\%$, and the total variance explained by the full model was $> 2\%$, the neuron was deemed selective for those predictors (Steinmetz et al., 2019). **Training and testing on other time points.** In the imaging experiments, we also fit the models independently to each session third (early, middle, late) of days 1-3 with odor set 1 to determine how fits and unique contributions evolved over time. To assess coding stability of individual neurons in the imaging experiment, we used the kernels resulting from fitting the full model on day 3 and the predictors from each session third to predict neural activity at those time points. We assessed the the accuracy of the prediction by correlating it with the true activity and comparing that to the correlation with trial-shuffled data. We also did this with models trained on day 3 odor set 1 and tested on day 3 odor set 1 and 2. **Cue coding models.** To assess cue coding schemes, we fit a new set of models focusing on a more restricted time window (-1 to 2.5 s from cue onset) using only cues (modified to 0 to 2.5 s from cue onset) and licks (as before) as predictors. Cue and lick neurons were identified as before, and subsequent cue characterization was performed on neurons with only a unique contribution of cues. To identify value coding among cue neurons, we fit an additional version of the kernel model with only one cue kernel that scaled according to cue value. We estimated cue value for each cue type by finding the mean value predicted by the lick linear model (described in section ‘Behavioral analysis’), using cue type, 10 previous outcomes, and 10 previous cue outcomes as predictors. We also fit 89 additional versions of this model consisting of all permutations of cue value assignment to the 6 odors. We classified neurons according to which of the 90 models best fit an individual neuron. For neurons where the value model was the best, we also fit another version of the model where instead of scaling the cue kernel by mean value, we scaled it by the trial-by-trial prediction of value from the lick linear model, which we called the history value model. For neurons better fit by the history model, we also fit 1000 additional models with shuffled trial values within each cue. The median percentage of shuffles that the true history model improved upon was 96.5% across all neurons for which the history model improved over the mean model. All value neurons best fit by the history model and improving over $> 65\%$ shuffles ($< 8\%$ of value neurons better fit by the history model than the mean model were below 65%) were classified as history coding. We also fit the value model and its 89 shuffles to the neurons imaged on separate days, concatenating the data from each odor set and adding a constant for each day to account for day differences.

Principal component analysis.

To visualize the dominant firing pattern of value and meaning cells irrespective of direction (excitation or inhibition), we performed principal component analysis (‘PCA’ in MATLAB) on the concatenated PSTHs across all 6 cues for the neurons of interest, with each neuron’s activity normalized by peak modulation so that each neuron’s concatenated PSTH peaked at -1 or 1. We then visualized the score of the first component.
Cue coding dimension.

To project population activity onto the coding dimensions separating CS+ activity from CS-, respectively, we adapted an approach from (Li et al., 2016). We first normalized the PSTH activity of each neuron across the three cue types by dividing by its peak activity across those conditions. This prevented neurons with particularly large z-score from dominating the dimension. Then, for each neuron, we found the 0.5s bin in the range 0 to 2.5s from cue onset that maximally separated CS+ activity from CS-. The difference between the normalized CS+ and CS- activity for all neurons in their preferred bins comprised a vector defining the coding dimension for each group of neurons of interest. We then multiplied that difference vector by the original z-score values of each neuron in their peak bins to find the values of peak CS+ and CS- coding; we used these values to transform the data onto a 0 to 1 scale for CS- to CS+ activity. To find population activity along that dimension at each moment for CS50 trials of various values, we multiplied the activity of all neurons in each 0.1s bin of the CS50 PSTH from each value level (z-score) by the difference vector and used the same conversion to 0 to 1 scale. To estimate the distribution of values along the CS+ / CS- dimension for each CS50 value condition, we bootstrapped (5000 iterations, with replacement) the population projection and took the mean 1-2.5s from odor onset. We calculated a p-value by finding the bootstrapped distribution of differences between CS50 high value projections and CS50 low value projections and calculating the fraction of the distribution that was less than 0 (supporting the null hypothesis that CS50 high value activity is not greater than CS50 low value activity).

Statistics.

All statistical tests were performed in MATLAB (MathWorks). To compare the fraction of neurons of a specific coding type across regions, we fit a generalized linear mixed-effects model (‘fitglme’ in MATLAB) with logit link function and with fixed effects of intercept and region and a random effect of session and then found the estimated mean and 95% confidence interval for each region. Regions with non-overlapping CIs were considered to have significantly different fractions of neurons of that coding type. To compare the number of anticipatory licks on different trial types, we found the mean number of anticipatory licks for each cue in each session and then performed a two-way ANOVA with effects of cue and subject and session as our n. To compare variance explained during each third of the first session, we found the mean value across neurons from each mouse and then performed a one-way ANOVA on those means with mouse as our n. To compare day 3 model performance on true and shuffled data across each time point, we found the mean value across neurons from each mouse at each time point and then performed a two-way ANOVA with main effects of shuffle and time point, with mouse as our n. We then calculated pairwise statistics using ‘multcompare’ in MATLAB with Bonferroni correction. To compare cue, lick, and reward unique variance at each time point for each cell category (determined on day 3), we found the mean from the cells in that category in each mouse at each time point and performed a two-way ANOVA with main effects of variable and day, with mouse as our n. We then calculated pairwise statistics using ‘multcompare’ in MATLAB with Bonferroni correction.

References

Figure S 1: Anticipatory licking during the electrophysiology sessions.

Figure S1. Anticipatory licking during the electrophysiology sessions.

(A) Mean anticipatory licks (change from baseline) for the CS+ and CS50 from odor set 1 (left) and 2 (right) for every session, color-coded by mouse. $F(1, 66) = 32.07$ and $F(1, 66) = 26.93$ in each odor set for a main effect of cue in a two-way ANOVA including an effect of subject.

(B) As above, for the CS+ and CS- from odor set 1 (left) and 2 (right). $F(1, 66) = 433.1$ and $F(1, 66) = 574.6$ in each odor set for a main effect of cue in a two-way ANOVA including an effect of subject.

(C) As above, for the CS50 and CS- from odor set 1 (left) and 2 (right). $F(1, 66) = 252.3$ and $F(1, 66) = 450.1$ in each odor set for a main effect of cue in a two-way ANOVA including an effect of subject.
Figure S 2: Comparing proportions of cue and lick neurons across regions.

Figure S2. Comparing proportions of cue and lick neurons across regions.

(A) Fraction of neurons in each region classified as coding cues (left), licks (middle), or both (right), as well as estimated fraction(+/-95% CI) with random effect of session (see methods).

(B) Additional cue/lick/both cells in region on Y-axis compared to region on X-axis as a fraction of all neurons, for regions with non-overlapping 95% confidence intervals.

(C) Fraction of neurons in each region group classified as coding cues (left), licks (middle), or both (right), as well as estimated fraction(+/-95% CI) with random effect of
session.

(D) Additional cue/lick/both cells in region on Y-axis compared to region on X-axis as a fraction of all neurons, for regions with non-overlapping 95% confidence intervals.
Figure S3: Additional analysis of odor coding schemes.

(A) Normalized activity of every value neuron, sorted by mean firing 0-1.5s following odor set 1 CS+ onset.

(B) Normalized activity of every meaning neuron, sorted by model and then by mean firing 0-1.5s following odor set 1 CS+ onset.
(C) Fraction of neurons in each region and region group classified as coding cues but not value or meaning, as well as estimated fraction (+/- 95% CI) with random effect of session (see Methods). Light gray bars are total cue neurons (including value and meaning cells).

(D) Additional cue (but not value or meaning) neurons in region on Y-axis compared to region on X-axis as a fraction of all neurons, for regions with non-overlapping 95% confidence intervals.

(E) Additional value, meaning, or other cue neurons in region group on Y-axis compared to region group on X-axis as a fraction of all neurons, for regions with non-overlapping 95% confidence intervals.
Figure S 4: Value coding as a proportion of cue cells.

Figure S4. Value coding as a proportion of cue cells.

(A) Fraction of cue neurons in each region classified as coding value (left), meaning (middle), or neither (right), as well as estimated fraction(+/−95% CI) with random effect of session (see methods).

(B) Additional value/meaning/neither cue neurons in region on Y-axis compared to region on X-axis as a fraction of all cue neurons, for regions with non-overlapping 95% confidence intervals.

(C) Fraction of cue neurons in each region group classified as coding value (left), meaning...
(middle), or neither (right), as well as estimated fraction(+/−95% CI) with random
effect of session.

(D) Additional value/meaning/neither cue neurons in region group on Y-axis compared
to region group on X-axis as a fraction of all cue neurons, for regions with non-
overlapping 95% confidence intervals.
Figure S5. Comparing PFC and striatum.

(A) Fraction of neurons in each region and region group classified as coding cues (left), licks (middle), or both (right), as well as estimated fraction(+/−95% CI) with random effect of session (see methods).

(B) Fraction of neurons in each region and region group classified as coding value (left), meaning (middle), or neither (right), as well as estimated fraction(+/−95% CI) with random effect of session. Light gray bars are remaining cue neurons not in that category.
Figure S6. Lens placements for imaging experiments.

(A) Sample histology image of lens placement. Visualization includes DAPI (blue) and GCaMP (green) signal with lines indicating cortical regions from Allen Mouse Brain Common Coordinate Framework.

(B) Location of all lenses from experimental animals registered to Allen Mouse Brain Common Coordinate Framework. Blue line indicates location of lens in (A). The dotted black line represents approximate location of tissue that was too damaged to reconstruct an accurate lens track. The white dotted line indicates PL borders.
Figure S 7: Cue and lick coding in separately trained odor sets.
Figure S7. Cue and lick coding in separately trained odor sets.

(A) Mean (+/- SEM) licking for the cues on day 3 of each odor set (n = 5 mice).

(B) Normalized activity of all pixels in one imaging plane following CS+ presentation for each odor set.

(C) Normalized deconvolved spike rate of all neurons imaged on day 3 of both odor sets.

(D) Fraction of neurons coding for cues, licks, rewards, and their combinations for day 3 of each odor set.

(E) Mean (+/- SEM, across mice) correlation between activity predicted by odor set 1 models and true data, for real (black) and trial shuffled (gray) activity. Thin lines are individual mice. F(1, 16) = 3.2, p = 0.09 for main effect of odor set, F(1, 16) = 135, p < 10^{-8} for main effect of shuffle, F(1, 16) = 2.2, p = 0.16 for interaction, n = 5 mice, two-way ANOVA.

(F) Mean (+/- SEM, across mice) unique cue, lick, and reward variance for cells classified as coding cues, licks, both, or neither for odor set 1. For each category, odor set 1 unique variance preference was maintained for odor set 2 (p < 0.04) except for both cells, for which lick and reward variance were not different in odor set 2 (p = 0.22, Bonferroni-corrected, n = 5 mice).

(G) Distribution of best model fits across all cue neurons.

(H) First principal component (48-69% variance explained) of all neurons best fit by the original value model or other meaning models.