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Abstract: 

The  large  heterogeneity  in  autism  spectrum  disorder  (ASD)  is  a  major  drawback  for  the  development  of

therapies.  Here,  we  apply  consensus-subtyping  strategies  based  on  functional  connectivity  patterns  to  a

population of N=657 quality-assured autistic subjects. We found two major subtypes (each divided hierarchically

into several minor subtypes): Subtype 1 exhibited hypoconnectivity (less average connectivity than typically

developing controls) and subtype 2, hyperconnectivity. The two subtypes did not differ in structural imaging

metrics in any of the regions analyzed (64 cortical and 14 subcortical),  nor in any of the behavioral scores

(including  Intelligence  Quotient,  ADI  and ADOS).  Finally,  we used the  Allen  Human Brain Atlas  of  gene

transcription to show that subtype 2, corresponding with about 42% of all patients, had significant enrichment

(after multiple comparisons correction) to excitation-inhibition (E/I) imbalance, a leading reported mechanism in

the developmental pathophysiology of ASD. Altogether, our results support a link between E/I imbalance and

brain hyperconnectivity in ASD, an association that does not exist in hypoconnected autistic subjects.

Keywords: Autism, Subtyping, Excitation-Inhibition Balance, Hyperconnectivity, Allen Human Brain Atlas 

Abbreviations: ABIDE  =  Autism  Brain  Imaging  Data  Exchange,  ADI-R  =  Autism  Diagnostic  Interview-

Revised, ADOS-G = Autism Diagnostic Observation Schedule-Generic,  AHBA = Allen Human Brain Atlas,

ASD = Autism Spectrum Disorder, CSF = cerebrospinal fluid, Des = Desikan-Killiany, DSM-5 = The Diagnostic

and Statistical Manual of Mental Disorders V, E/I = Excitation/Inhibition, FC = Functional Connectivity, FDR =

False Discovery Rate, FIQ = Full Intelligence Quotient, GO = Gene Ontology, GSEA = Gene Set Enrichment

Analysis,  GWAS = Genome-Wide Association Studies,  MDMR = Multivariate  Distance Matrix Regression,

MRI = Magnetic Resonance Imaging, NIMH = National Institute of Mental Health, NEG = Negative Associated,

OLS = Ordinary Least Squares, PIQ = Performance Intelligence Quotient, POS = Positive Associated, QC =

Quality Checks, SFARI = Simons Foundation Autism Research Initiative,  TDC = Typically Developing Control,

VIQ = Verbal Intelligence Quotient.
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Introduction 

Autism encompasses multiple manifestations from impaired social communication and language to restricted or

repetitive  behavior  patterns,  interests,  and  activities1–3.  Due  to  the  wide  heterogeneity  in  behavior,  and  as

recommended in The Diagnostic and Statistical Manual of Mental Disorders (DSM–5), this condition is referred

as autism spectrum disorder (ASD), in which the term "spectrum" emphasizes the variation in the type and

severity of manifestations4. ASD is thought to result from complex interactions during development between

genetic,  cellular,  circuit,  epigenetic and environmental  factors5–9.  Several  researchers have suggested that  an

excitation/inhibition (E/I) imbalance during development10,11 may be an important mechanism, yet precise factors

driving the disease are not well understood. Therapeutic interventions aiming to restore the E/I balance in ASD

are then a major challenge12. 

With regard to neurobiology, alterations in different brain networks have been found, e.g. in frontal, default

mode  and salience  networks13–18,  as  well  as  in  the  social  network19 –  encompassing  primary  motor  cortex,

fusiform,  amygdala,  cerebellum,  insula,  somatosensory  and  anterior  cingulate  cortex13,20,21.  ASD  is  also

heterogeneous in relation to network characteristics; less segregation and greater efficiency has been shown 22,23,

and the opposite too24 or a combination of both25,26.  Furthermore, ASD neuroanatomical correlates are not static

but  undergo  changes  throughout  development27–29,  and  the  same  seems  to  occur  behaviorally  in  social

functioning and communication30. Altogether, accumulated evidence has shown high heterogeneity within ASD

in the participation of functional brain networks and behavioral  manifestations, but  also,  in the longitudinal

trajectories at the single subject level. 

Moreover, in relation to neuroimaging studies, recent work has shown additional sources of heterogeneity due to

variations in the diagnostic and inclusion criteria, and differences in the processing neuroimaging pipeline31,32.

ASD is also a polygenic highly heterogeneous condition, with 1010 different genes being associated with ASD

as of July 8th 2022 according to the SFARI gene human-database, see also33. Of those, 213 have a relevance

score of 1,  meaning having maximum pathophysiological  published evidence in relation to ASD. This high

genetic  complexity  is  also  another  manifestation  of  the  heterogeneity  in  this  condition.  Previous  work  has

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.14.500131doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500131
http://creativecommons.org/licenses/by-nc-nd/4.0/


assessed the relations between transcriptomics and brain morphology34, showing that genes which are down-

regulated and enriched for synaptic transmission in individuals with autism were associated with variations in

cortical thickness. 

Novel strategies for ASD subtyping are needed to overcome such multi-scale heterogeneity, which is the largest

drawback for the efficacy of therapies. Here, and following previous work35–37, we looked at large-scale brain

connectivity patterns which are common within groups of patients to deploy subtyping in ASD. In particular, we

applied consensus clustering strategies to multivariate connectivity patterns of brain regions 38,39, and as a result,

if two subjects belong to the same subtype, it means that each region in the two brains connects to other brain

regions in a similar manner, revealing similarity in the multivariate brain connectivity of patients within the same

subtype. Next, we linked connectivity-based ASD subtypes to their neurogenetic profile and hypothesized the

ability to determine the biological processes that characterize each subtype, which is a major challenge in this

condition. For this, we used the Allen Human Brain Atlas (AHBA) of whole-brain transcriptional data 40 and

characterized the functional connectivity patterns for each ASD subtype separately, following a strategy similar

to the one used in several previous studies41–47. We performed our subtyping analyses on 657 autistic patients

from the Autism Brain Imaging Data Exchange (ABIDE) repository48, all of them having passed a very strict

quality-assurance  criterion  of  elimination  of  subjects  by  head  movement  during  image  acquisition,  thus

correcting a well-known spurious excess of functional connectivity driven by head movements, which is even

more pronounced in the autistic condition. Moreover, to overcome inter-scanner variability in the functional

connectivity values across different Institutions, we applied rigorous harmonization strategies to transform data

that are heterogeneous --and that come from different Institutions-- into equivalents49–52.
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Materials and Methods 

Participants

A total of N=2156 subjects from the ABIDE I48 and ABIDE II53 repositories were initially considered in this

study, of which 1026 were ASD patients and 1130 were typically developing control (TDC) subjects. These data

were collected across 35 different scanning Institutions. For each participant both anatomical and functional

MRI  data  were  used.  Acquisition  parameters  for  each  scanning  site  are  found  at

http://fcon_1000.projects.nitrc.org/indi/abide/. In addition, we also used the cognitive performance and disease

severity information from the Autism Diagnostic Observation Schedule-Generic (ADOS-G), Autism Diagnostic

Interview-Revised (ADI-R) and the verbal, performance and full Intelligence Quotient (IQ) scores (respectively,

VIQ, PIQ and FIQ).

Data quality-assurance 

We discarded participants having scanning duration shorter than 5 minutes after scrubbing, lacking of full brain

coverage, and with an average framewise displacement greater than 0.3 mm 54. Participants from scanning studies

KUL sample 3 and NYU sample 2 were also omitted because they only contained ASD subjects and therefore

those cohorts did not provide any TDC. As a consequence, the number of finally considered subjects was 1541

(884  TDC,  657 ASD),  corresponding  to  33  scanning  studies  that  were  further  merged into  24  institutions

following the guidelines provided in http://fcon_1000.projects.nitrc.org/indi/abide/. The descriptive statistics per

institution (number of subjects, ASD cases, mean age, sex distribution) is found in Table S1.

Neuroimaging pre-processing and functional connectivity matrices

A state-of-the-art pre-processing pipeline was adopted using FSL 5.0.9, AFNI 16.0.0155 and MATLAB 2020b.

We first applied slice-time correction, volume alignment to the average one to correct for head motion artifacts,

which was followed by intensity normalization. We next regressed out 24 motion parameters, as well as the

average cerebrospinal fluid (CSF) and average white matter signal. A band-pass filter was applied between 0.01

and 0.08 Hz, and linear and quadratic trends were removed. All voxels were spatially smoothed with a 6 mm
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FWHM. FreeSurfer v5.3.0 was used for brain segmentation and cortical parcellation. A total of 82 regions were

generated, with 68 cortical regions from the Desikan-Killiany Atlas (34 in each hemisphere) and 14 subcortical

regions (left/right thalamus, caudate, putamen, pallidum, hippocampus, amygdala, accumbens). The parcellation

for each subject was projected to the individual functional data and the mean functional time series of each

region was obtained. Finally, one connectivity matrix for each subject was built by Fisher z-transforming the

Pearson correlation coefficients  between the region pairs  of  time series.  For  structural  neuroimaging group

comparisons, region-wise volume and thickness were calculated with Freesurfer.

Data Harmonization

To harmonize our multi-institution functional connectivity data, and before performing subtyping, we used an in-

house implementation of Combat (https://pypi.org/project/pycombat),  adjusting batch effects by linear mixed

modelling and the use of Empirical Bayes methods50.  See suppl. information for details.

ASD subtyping via consensus clustering

Consensus clustering was applied to brain connectivity matrices38,39. Since connectivity matrices may contain

effects of not interest (e.g. age), prior to subtyping we regressed out age, sex and motion from each connectivity

entry  of  the  ASD subjects.  To  note,  this  regression-out  step  was  only  applied  at  this  subtyping  stage.  In

subsequent analyses, the original connectivity matrices were used and the effect of these variables was controlled

for using them as covariates. 

Association between subtypes and transcriptomics

We computed the association between pseudo-R2 maps (more info at Suppl. Info) and brain transcriptomics maps

using  spatial  autoregressive  models  to  reduce  the  correlation-bias  produced  by  the  similar  transcriptomic

expression in proximal brain regions45. This analysis was implemented by means of the maximum-likelihood

estimator routine (ML_Lag) from the Python Spatial Analysis Library (pysal)56. As a result, for each brain gene

we obtained one t-stat and one p-value, which allowed us to assess the association with the pseudo-R 2 maps
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while accounting for possible spatial autocorrelations. Among the significant associated genes, we identified as

relevant those genes included in the SFARI database (https://gene.sfari.org/) with gene score equal to one.

Gene set enrichment analysis and protein interaction analysis

We only considered for the analyses such genes with a p-value FDR corrected < 0.05 in each subtype. After that,

we  performed  a  Gene  Set  Enrichment  Analysis  (GSEA)  using  WebGestalt57 (http://www.webgestalt.org/)

introducing as the input the list of the corrected genes and the t-stat from the association analysis, so the spatial

correlation-bias  was  accounted  for.  We  computed  the  GSEA for  GO  biological  process58 and  Reactome

pathways59 and we only considered such enriched categories with a p-value FDR corrected < 0.05. For the

protein  interaction  analysis,  we  used  the  tool  STRING  v11.560 for  generating  a  physical  protein-protein

interaction network for each subtype, with Experiments and Databases as interaction sources. These networks

were after analyzed using Cytoscape v3.9.0.
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Results 

We obtained harmonized functional connectivity matrices from 657 ASD and 884 typically developing control

(TDC) subjects (Fig. 1). For subtyping, we first removed any effect from age, sex and head motion in the brain

connectivity matrices of  the ASD group and then applied a consensus clustering.  We thus found two main

subtypes1:  the  first  one with 348 subjects  (52.97% of all  ASD subjects),  and the second with 284 subjects

(43.23%). In addition to these two subtypes, which were at the highest order in a hierarchy that was broken

down into smaller subtypes (Fig. S1), we also found two residual subtypes of only 23 subjects (3.5%) and 2

subjects (0.3%) respectively, but they were ignored for further analysis due to their low number of subjects. The

robustness  of  the  subtyping  solution  was  assessed  by  two different  strategies,  multi-resolution  hierarchical

clustering  and  cross-validation  (suppl.  info).  As  expected,  given  that  their  effects  were  removed  prior  to

subtyping, none of the resulting subtypes were differentiated by age (absolute Cohen’s |d| = 0.04, t-test, p =

0.58), sex (Cramer’s V = 0.02, χ2 test, p = 0.55) or head motion (absolute Cohen’s |d| = 0.04, t-test, p = 0.64). 

With respect to cognitive and behavioral performance, none of the five scores provided significant differences

(Table 1). Moreover, no significant differences between subtypes 1 and 2 were found on structural neuroimaging

after multiple test corrections in either region volume or thickness. Therefore, all the following analyses are

based on differences in functional connectivity that each ASD subtype has in in relation to TDC.

(Figure 1)

To assess the differences between groups in the overall connectivity per subject, defined here as the average

positive  correlation  of  the  harmonized  connectivity  matrix,  we  performed an  ordinary  least  squares  (OLS)

regression  while  controlling  for  age,  sex  and  full  intelligence  quotient  (FIQ)  (Fig.  2).  Subtype  1  showed

significant  hypo-connectivity  with respect  to TDC (β =  -0.08,  p<0.01),  and the opposite was true for the

subtype 2 (β  = 0.04, p<0.01), thus corresponding to hyper-connectivity. Moreover, the difference in (absolute)

1 For subtyping, we only use connectivity matrices from subjects with ASD. The matrices from TDC subjects were only used for the
neurobiological characterization of each subtype, as we studied the association between the separability of each ASD subtype with respect
to TDC, encoded in the pseudo-R2 vectors, and brain transcriptomics.
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β  coefficients, provided for subtype 1 higher values as compared to subtype 2, indicating a bigger separability in

connectivity with respect to TDC. When using other metrics than the average positive correlation of the subject-

level connectivity matrix, such as absolute value, median or trimmed mean, the same results were maintained

(suppl. info). 

(Figure 2)

Table 1: Behavioral characterization of ASD subtypes. For each behavioral score, the number of observations

in each subtype, their means and 95% confidence intervals, and the FDR-corrected p-values from a one-way

ANOVA test to assess any statistical difference between them. Both ADI and ADOS total scores are composites

of  social  and  communication  sub-item  scores.  For  ABIDE  data,  we  followed  ADI_TOTAL  =

ADI_R_SOCIAL_TOTAL_A  +  ADI_R_VERBAL_TOTAL_BV,  and  ADOS_TOTAL  =  ADOS_COMM  +

ADOS_SOCIAL.

SCORE

(NSUBTYPE 1/NSUBTYPE 2)

SUBTYPE 1 SUBTYPE 2 P-VALUE

FIQ

(321/266)

105.23

[103.54-106.99]

106.81

[104.96-108.61]

0.31

VIQ

(273/241)

104.43

[102.28-106.51]

106.78

[104.44-108.98]

0.31

PIQ

(277/245)

105.0

[103.18- 106.96]

105.4

[103.27- 107.56]

0.80

ADI_TOTAL 35.21 34.07 0.31
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(228/190) [34.07- 36.33] [32.59- 35.51]

ADOS_TOTAL

(221/179)

11.86

[11.37- 12.36]

11.01

[10.46- 11.58]

0.15

Next,  we  assessed  the differences  in  connectivity  pattern  between each  ASD subtype  and the TDC group,

measured by region-wise normalized pseudo-R2 statistical maps resulting from MDMR (Fig. 3, and Suppl. Inf.).

The similarity between these spatial maps was very low (r=0.09, permutation-based p=0.67, after using 5000

surrogates  that  preserved  spatial  autocorrelation),  indicating  that  each  subtype  exhibited  a  rather  unique

neurobiological  profile  of  brain-wide connectivity patterns.  Specifically,  for  subtype 1 higher  differences  as

compared to TDC were found in superior temporal,  posterior cingulate,  and insula,  covering the functional

networks of default  mode and salience. For subtype 2 higher differences existed in thalamus, putamen, and

precentral, affecting to the networks of default mode and somatomotor. In this way, the two subtypes presented

alterations in the connectivity patterns of regions within default mode network, but one subtype also showed

specific alterations in salience (subtype 1) and the other in somatomotor (subtype 2). 

(Figure 3)

Subsequently, for the biological  characterization of each subtype, we set  out  to identify which brain-related

genes had an expression across brain regions significantly associated (p-FDR < 0.05) with the differences in

connectivity measured by the normalized R2 brain maps (Fig. 3 - histograms). For subtype 1, a total of 195

negative-associated (NEG) genes and 364 positive-associated (POS) genes existed. Relevant NEG-genes were 2

GFAP,  CHD7,  SKI,  SHANK3,  ANK3,  and  CACNA1E,  while  POS-genes  were  ASXL3,  MAP1A,  STXBP1,

DPYSL2, KNCB1, SCN8A, RIMS1, and CDKL5. Similarly, for subtype 2, we found 142 NEG-genes, including

GRIA2, RFX3, SHANK2, GRIN2B, DLG4, LRRC4C, ARX, GABRB3, and 180 POS-genes, including  MAGEL2

and IQSEC2. We next applied gene-enrichment to the list of significant genes within each subtype, finding no

2 Genes with a significant association (p-FDR < 0.05) and present in the SFARI gene human-database with a relevance score of 1.
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significant  enrichment  for  subtype  1,  the  one  with  brain  hypoconnectivity.  However,  for  subtype  2,  the

enrichment of the NEG-genes included GO: Biological processes and Reactome pathways related to glutamate

signaling (affecting both AMPA and NMDA receptors) and synapse organization, in relation with the excitation-

inhibition imbalance occurring during development of brain circuits (Fig. 4A). We also assessed which NEG-

genes participated in each biological process and pathway (Fig. 4B), finding that genes DLG4, GRIN2B, GRIA2,

and  SHANK2 were participating in most of them; and in particular, the gene  DLG4 did it in all of them. In

addition, the DLG4 gene was the one with the highest degree in the protein interaction network.

Finally, it is important to note that no significant enrichment was found for subtypes lower in the dendrogram

level corresponding to the two subtypes previously described (Fig. S1), neither after repeating the same analysis

using the entire ASD group, thus indicating the need for subtyping to reveal our findings. Similarly, in order to

test that the enrichment findings were inherent to the ASD group, we repeated our analytical pipeline over two

matched subgroups of TDC subjects, one used for subtyping, and the other for estimating the pseudo-R2 maps

with the resulting subtypes (see suppl. info). Two main subtypes of TDC  emerged again, one characterized by

hyperconnectivity and the other by hypoconnectivity. However, neither of these TDC subtypes provided genes

that significantly associated with the  pseudo-R2 vectors after correcting for multiple comparisons. Summing up,

the significant  association between excitation-inhibition imbalance and hyperconnected autistics  is  observed

when  subtyping  in  ASD  and  only  in  the  ASD  group,  thus  demonstrating  the  specificity  of  the  reported

enrichment.

(Figure 4)
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Discussion 

Two major subtypes result from functional connectivity-based subtyping in a cohort of 657 autistic patients. The

two are indistinguishable by morphometric comparisons based on structural neuroimaging and also with respect

to behavioral scores. As compared to TDC, the first subtype is characterized by hypoconnectivity, connectivity

alterations  in  default  mode  and  salience  networks  with  no  significant  gene  enrichment  after  multiple

comparisons.  The  second  subtype,  representing  43%  of  subjects  with  autism,  is  characterized  by

hyperconnectivity,  network  alterations  in  default  mode  and  somatomotor  networks  with  significant  gene

enrichment towards glutamate signaling (affecting both AMPA and NMDA receptors) and synapse organization,

which is consistent with one of the most accepted hypotheses in the pathophysiology of autism, in relation to the

excitation-inhibition imbalance which occurs during brain development. This enrichment is specific to the ASD

condition and as such does not occur in the TDC group. Moreover, if no subtyping is performed, the connectivity

profile in the entire autistic population has no significant enrichment, evidencing the need of subtyping first to

find the connection towards excitation-inhibition imbalance in one class of autistic patients.  

Some studies have set out to assess the heterogeneity in ASD for better stratifying the ASD condition37,61–63.

Stratification yields reduced inter-individual differences and therefore, could complement -and even alleviate-

the need for big sample sizes in autism-based biomarker discovery64. Our approach is unique in several ways.

First, our study is based on a large cohort of patients with ASD (N = 657) from the ABIDE initiative, all of them

having passed rigorous criterion of motion removal, and it combines anatomical and functional neuroimaging

data from 24 different institutions. Second, we have used Combat, a rigorous data harmonization method to

eliminate the variability between MRI scans across the 24 institutions, one of the largest sources of variability

when combining imaging data from multiple institutions65. Third, our analysis of brain connectivity was carried

out on a large-scale, where each brain region is represented by its connectivity pattern across the entire brain.

Therefore, we do not consider a priori any brain region as more dominant or relevant than the others. Fourth, we

made use of a consensus clustering approach we have developed38,39, and that has been successfully tested by

others66,  to group subjects in the same subtype if the connectivity vectors are similar  across all  the regions
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analyzed, which in our case involved a total of 68 cortical regions and 14 subcortical ones. Finally, we made use

of  the  AHBA to  describe  the  neurogenetic  profiles  of  each  subtype,  which  it  has  been  used  before  for

morphometric information in ASD34,  but  never for characterizing subtypes based on functional  connectivity

patterns of this condition. 

Due to the large heterogeneity and diversity reported in ASD genetics, the use of AHBA may shed new light, as

it  provides  information on the transcriptome across the brain in  unprecedented detail,  accounting for 3,702

sampling sites with transcription information of 20,500 genes as a specific signature for each anatomical region.

Moreover, the use of AHBA is complementary to other techniques, such as genome-wide association studies or

GWAS67,  that  simultaneously  addresses  genotype–phenotype  associations  from  hundreds  of  thousands  to

millions  of  genetic  variants  in  a  data-driven  manner.  Indeed,  GWAS  has  previously  been  used  for  ASD

subtyping68,69, yet using behavioral scores as traits and therefore, the subtypes obtained were more closely related

to symptom severity and not to functional connectivity.

Our results show that DLG4, a.k.a. PSD95, is the gene with major implication in the protein interaction network

of  subtype 2.  DLG4 mediates  NMDA and AMPA receptor  clustering and function,  it  affects  glutamatergic

transmission, and has been shown to have an aberrant function in ASD70–74.  DLG4 also influences the size and

density of dendritic spines during brain development, having strong effects on synaptic connectivity and activity.

In particular, reduced DLG4 activity leads to increased dendritic spine numbers75, that might correspond to the

hyperconnectivity found in these patients10,76–78 that in our case corresponded to those in subtype 2.

A number of limitations are present. First, our transcriptomic analysis made use of AHBA, which was obtained

from brain samples of healthy donors and not from brain tissues of ASD patients, so the relations studied here

between ASD-dependent  connectivity patterns  and healthy transcriptomics  highlight  large-scale organization

aspects of the connectivity alterations in relation to gene expression. Future studies should confirm our findings

using gene expression data from a pathologic cohort, which unfortunately is not currently available. A second

limitation is that our study was restricted to the characterization of autism in terms of the functional networks
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that emerge from the resting activity of the brain, but we did not consider brain functionality across different

tasks.  

In  summary,  our  novel  approach,  which includes  data  harmonization,  multivariate  distancing in  large scale

functional connectivity patterns and transcriptome brain maps, reveals strong enrichment in ASD for glutamate

signaling (affecting both AMPA and NMDA receptors) and synapse organization, reinforcing the mechanistic

hypothesis of excitation-inhibition imbalance occurring during development of autistic patients, linked to brain

hyperconnectivity, but not to hypoconnectivity, thus suggesting a route for new potential therapeutic strategies in

this subtype.

Data and code availability

The data employed in this study belong to the ABIDE-I and ABIDE-II repositories. Their IDs can found in

https://github.com/compneurobilbao/asd-subtyping-enrichment, as well as the codes used for the analyses.
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Fig. 1. General workflow. A: Multicentric ABIDE dataset funded by NIMH and consisting in functional and

anatomical  MRI  data  from 24  different  Institutions  and  two  groups  of  subjects,  TDC (N=1130)  and  ASD

(N=1026). Some participants were eliminated after strict imaging quality checks (QC), resulting respectively in

884 TDC and 632 ASD.  B: Image preprocessing and calculation of whole brain functional connectivity (FC)

matrices using Desikan-Killiany (Des.) partition.  C: Impact of rigorous data harmonization using the Combat

algorithm to remove variability due to the effects of institution, age and sex.  D: Transcriptome Allen Human

Brain Atlas (AHBA) data  preprocessing to be used for  association with brain connectivity  patterns  in  each

subtype. E: ASD subtyping after consensus clustering applied to brain connectivity matrices. Using the results

from D and E, we provide a biological characterization of each subtype using regression analysis between gene

expression and connectivity patterns, and with a spatial autoregressive process for correlation-bias correction.
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F: Physical  gene  interaction  network  obtained only for  the  group of  FDR-significant  genes.  G: Biological

characterization of the significant associated genes using Gene Set Enrichment Analysis (GSEA).  
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Fig. 2. Two ASD subtypes, one with hypoconnectivity and the other with hyperconnectivity. Histogram and

box plots of the individual average connectivity values (measured as Fisher’s Z) for the TDC group (blue), the

population of all ASD subjects without (brown) and the two ASD subtypes (pink and orange). The median value

of the TDC group is marked as the baseline by a dashed red line. Values greater than the baseline correspond to

hyperconnectivity and those below the baseline hypoconnectivity. Subtype 1 is dominated by hypoconnectivity,

and subtype 2 by hyperconnectivity.  Additionally, within subtypes 1 and 2, we introduce two colors for the

different subjects, blue for hypoconnectivity, and red for hyperconnectivity.
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Fig. 3. Association between transcriptome and connectivity patterns for each ASD subtype.  For subtype 1

and 2, we calculated the pseudo-R2 vector (one component per brain region) accounting for the differences in

connectivity pattern that each subtype has with respect to TDC. (Right) Brain maps of normalized pseudo-R 2.

(Left)  Histograms of  association values  between pseudo-R2 and gene transcription activity  (different  values

correspond to association with different genes). This procedure was repeated using the pseudo-R 2 values for each

subtype. The tail of the negative (N) genes (p-FDR < 0.05 and t-stat < 0) is marked by a blue rectangle and the

tail of the positive (P) genes (p-FDR < 0.05 and t-stat > 0) by a red one for both subtypes.  Significance-limits (t)

are also shown. For each distribution tail, we also show the relevant genes present in the SFARI ASD genes with

score = 1.  
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Fig. 4. Excitation-Inhibition imbalance enrichment exists in one class of autistic subjects (Subtype 2).  A:

GSEA characterization of the FDR-significant genes in subtype 2, including the Gene Ontology (GO) Biological

processes (dark gray) and Reactome pathways (light gray) enrichments. B: Participation count that each gene has

in the processes shown in A, ranging from 4 to 10 (participating in all processes in panel A, only occurring for

DLG4).  C: Protein-protein interaction physical network from the list of FDR-significant genes. For the ease of

visualization,  only  sub-networks  with  a  minimum of  10  genes  are  depicted.  D: Node  degree  of  the  genes

participating in the network shown in C.  DLG4 is the gene with highest degree.  B,C: Bars corresponding to

genes with SFARI score =1 are colored in red, and the same occurs in D for network nodes.
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Supplementary Information

Data Harmonization

Batch  effects  may  reflect  the  different  set-ups  for  image  acquisition  at  each  institution

included (e.g., MRI scanner manufacturer, different antenna and/or software, gradient coils,

magnet field strength, etc.). Let Y ijk represent the value of the connectivity entry k  for subject

j  at institution  i. Combat adjusts the  Y ijk data by estimating the coefficients present in the

following linear mixed model:

Y ijk=α k+X βk+γik+δ ik ϵ ijk , Eq. (1)

where α k is the fixed intercept, βk the fixed slopes for the variables in a design matrix X , and

γik and δ ik the location and scale institution factors modelled as random effects. One of the

strong points of Combat is the use of an empirical Bayes (EB) approach to better estimate γ ik

and δ ik, an iterative step that is particularly relevant when sample sizes are small. Specifically,

it  assumes  that  the  two  parameters  controlling  the  random effects  are  sampled  from the

following prior distribution:

γik∼N (γi , τ i2 )  Eq. (2)

δ i k∼ InverseGamma ( λi ,θ i ) Eq. (3)

The  hyperparameters  γi,  τ i
2,  λ i and  θi are  empirically  estimated  using  an  expectation-

maximisation (EM) procedure as described in1. Thus, the harmonized data Ŷ ijk read:

Ŷ ijk=
Y ijk−α̂ k−X β̂k− γ̂ ik

δ̂ik
+α k+X β̂k Eq. (4),

where α̂ k,  β̂k,  γ̂ik and δ̂ ik are the fitted coefficients present in Eq. (1). The design matrix  X

encodes the effects of interest that we want to preserve during the harmonization process,

which in our case corresponded to the diagnosis label (TDC vs ASD) in connectivity. 

We verified the presence of heterogeneity related to scanning institution in our connectivity

matrices by applying to each link a Kruskal-Wallis test, which aims at testing median location

differences, and a Lavene’s test, which assesses differences in variances. The former yielded

all the links significantly different across institutions after FDR correction (3321), whereas

the latter gave 1236.  Such scanning institution differences disappeared after the application

of Combat, while retaining the between-group variability of our data. 

ASD subtyping via consensus clustering
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First, we regressed out from the ASD harmonized connectivity matrices the effects of age, sex

and head motion, since they could affect subsequent subtyping. Then, these matrices were

used to define, for each brain region i , a matrix of euclidean distances between u and vASD

subjects, i.e.   

(Di )≡duv
i =√∑j=1

M

( y iju− y ij
v )2 Eq. (5),

where M=82 reflects the number of brain regions, and  y⃗ i≡ y ij the whole-brain connectivity

pattern for a given region i, i.e. a vector of dimension equal to the number of regions, where

each component is defined as the amount of connectivity between the given region and any

other in the atlas.  Then, each distance matrix  Di was partitioned into  k  groups of subjects

using a k-medoids clustering method2, and the resulting clustering information encoded into

an adjacency matrix, whose entries are 1 if a pair of subjects belongs to the same cluster and

zero otherwise. Subsequently, a N ×N  consensus matrix C was evaluated by averaging this

information across the nodes. Hence, the entries of  Cuv indicate the number of partitions in

which subjects u and v are assigned to the same group, divided by the number of partitions.

Eventually, the consensus matrix is averaged over the k  range in the interval (2-20), so that

information about the underlying structure at different resolutions is combined in the final

consensus matrix, for more details see3. The consensus matrix C was further used to define a

Newman and Girvan-like modularity matrix4:

B=C−P Eq. (6),

where  P is  the  expected  co-assignment  matrix,  uniform  as  a  consequence  of  the  null

ensemble  strategy  obtained  by  repeating  the  permutation  of  labels  1000  times.  Such  a

modularity matrix  B encodes all the information about the interaction between subjects at

different levels. As a result, one could now define any distance quantity applied to this matrix

for assessing clustering. Instead, we directly fed this  B matrix into a generalized Louvain

method for community detection (https://github.com/GenLouvain/GenLouvain), yielding an

optimal output partition that maximizes the network modularity.

Robustness of subtyping solution through multi-resolution hierarchical clustering

Given  the  implicit  resolution  dependence  when  clustering  of  the  Newman and  Girvan’s

modularity matrix5, we validated our subtyping solution by applying to the consensus matrix a

multi-resolution  clustering  method  that  finds  the  hierarchical  community  structure  after

sampling the entire ranges of possible resolutions6. As a result of this, two major clusters were

obtained,  which  remain  fairly  stable  and  invariant  as  we  go  down  the  multi-resolution

hierarchical tree. When comparing these major clusters in the higher level of the tree with our

two original subtypes, we found a large similarity (Normalized Mutual Information NMI =
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0.91) and no statistical differences in the subjects content (χ2=0.15, p = 0.69) between both

clustering solutions. 

Robustness of subtyping solution through cross-validation

We first split the raw data into two halves matched by age, sex and head motion and then the

same harmonization and clustering procedure was applied to both subsamples. The first half

yielded two ASD subtypes (189 and 139 subjects), whereas the second half also produced two

subtypes of comparable subjects (179 and 142 subjects), in addition to two residual subtypes

(7 and 1 subjects). Subsequently, a connectome-based predictive modeling7 was trained on the

first  half  (observed  labels  provided  by  its  subtyping  solution)  and  then  tested  on  the

observations of the two major subtypes in the second half. The accuracy between predicted

and observed labels (i.e. those provided by its subtyping solution) was 93.41%, showing a

high agreement between both subsamples with respect to the presence of two similar ASD

subtypes, and thus confirming the reliability of our subtyping results.

Separability of ASD subtypes with respect to TDC

To assess the separability of brain connectivity profiles between each ASD subtype and the

TDC group, we performed a  Multivariate Distance Matrix Regression (MDMR) analysis8,9.

Specifically, MDMR regressed each distance matrix per region given by Eq. (5) onto a design

matrix X  formed by a set of m predictors, yielding a pseudo-F statistic F x
i  that reads:

F x
i=

tr (H xG
i ) /(mx )

tr [ ( I−H )Gi ] / (N−m )
Eq. (7),

where  tr indicates  the  trace  operator,  N  the  number  of  observations,  mx the  degrees  of

freedom  of  predictor  x,  H x the  isolated  effect  of  predictor  x from  the  usual  matrix

H=X ( XT X )−1 XT, and Gi the so-called Gower matrix built from the distance matrix Di10. In

our case, the predictors consisted of the ASD vs TDC group factor as the variable of interest,

and sex, age, mean framewise displacement and FIQ as covariates. Like the F-estimator in a

standard ANOVA analysis, Eq. (3) assesses the variance explained by a predictor variable

with respect to the unexplained variance. Finally, to estimate how much variability can be

attributed  to  each  predictor,  a  pseudo-R2 effect  size  can  be  computed  by  dividing  the

numerator without the degrees of freedom in Eq. (3) by the total sum of squared pairwise

distances in the Gower matrix

 R x
2=
tr (H xG )
tr (G )

 Eq. (8)
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Similar to standard linear models, this effect size quantifies the proportion of the total sum of

squares that can be explained by the predictors.

Robustness of hyper- and hypo-connectivity findings

To assess the connectivity class in each subtype, we compared the average connectivity per

subject between each subtype and the TDC group (baseline). We found hypo-connectivity for

subtype 1 and hyper-connectivity for subtype 2, both situations with respect to the TDC group

(baseline). These results were obtained when comparing the positive values of the correlation

matrix, but the same results were found when using the absolute correlation matrix, or the

median  or  trimmed means  as  the  overall  connectivity  metric,  preserving  in  all  cases  the

findings of hypo-connectivity for subtype 1 and hyper-connectivity for subtype 2.

Transcriptomics

To build brain transcription maps, we took advantage of the publicly available data in the

AHBA11.  The  dataset  consisted  of  MRI  images,  and  a  total  of  58,692  microarray-based

transcription profiles of about 20,945 genes sampled from 3,702 different regions across the

brains  of  six  humans.  To pool  all  the  transcription data  into a  single  brain template,  we

followed a similar  procedure to that  employed elsewhere12,  which includes:  (1) Probe re-

annotation using a re-annotator toolkit13; (2) Removal of probes whose sampling proportion in

any of the six brains did not exceed the 70%; (3) Unique probe to gene assignment using the

maximum differential stability (DS) criterion14; (4) Removal of the inter-subject differences

by pooling together  the Z-scores of  the transcription values  for  each gene and brain;  (5)

Computation of a single transcription value for each region in the left  hemisphere of the

Desikan-Killiany atlas by calculating the median of all  the values belonging to the given

region; (6) Gene filtering considering only brain-specific genes relative to other tissues using

the Human Protein Atlas15,16 (https://www.proteinatlas.org).

Robustness of association between ASD subtypes and transcriptomics

We  also  tested  if  the  significant  genes  resulting  from  association  between  pseudo-R 2

statistical  maps  and  gene  expression  were  dependent  on  the  clustering  method  used,

comparing the results of  generalized Louvain algorithm to those found by multiresolution

clustering. As a measure of distance between the two solutions, we computed the dice index

between  the  gene  list  associated  with  subtype  1  and  the  same  for  subtype  2,  obtaining

respectively dice values of 0.99 and 0.89, which indicating high-level of reproducibility of the

gene-expression association to brain alterations between the two clustering strategies.
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Finally, to prove that our gene and enrichment findings were exclusive of the ASD condition,

we also repeated the same procedure but only in the TDC population. To do that, we first

divided the entire TDC cohort into two subgroups, half sized and randomly chosen so that

they were well-matched for age, sex, movement, FIQ, and overall connectivity (mean across

positive entries in the connectivity matrices).  Next,  we applied in one subgroup the same

subtyping procedure (including the same previous denoising step to avoid clusters driven by

effects of not interest), obtaining again two subtypes, one representing hyperconnectivity and

the other hypoconnectivity. We then used the other TDC subgroup to calculate the pseudo-R2

statistical  maps,  which  were  subsequently  associated  with  the  transcriptomics  data.  As  a

result, no gene survived by FDR in any subtype, thus concluding that the excitation-inhibition

imbalance found in the hyperconnected autistic subtype is specific to the autistic condition.
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Institution name
Number of
subjects

contributed

Age
(mean ± sd)

Sex
distribution

(Female)

Number of
ASD cases

BNI (II) 40 39.85 ± 15.59 0 19

CALTECH (I) 37 27.42 ± 9.76 8 18

CMU (I) 20 25.45 ± 5.29 4 8

EMC (II) 27 8.40 ± 1.09 4 15

ETH (II) 26 22.91 ± 4.57 0 6

GU (II) 76 10.92 ± 1.66 28 29

IU (II) 37 24.43 ± 7.59 9 17

KKI (I and II) 205 10.29 ± 1.28 70 48

LEUVEN (I) 61 18.18 ± 4.97 7 26

MAX_MUN (I) 44 28.77 ± 11.79 7 18

NYU (I and II) 245 13.82 ± 6.74 42 115

OHSU (II) 83 10.95 ± 2.05 31 33

OLIN (I) 22 17.41 ± 3.70 4 12

ONRC (II) 18 22.39 ± 3.58 5 7

PITT (I) 43 19.53 ± 6.87 7 22

SBL (I) 25 34.08 ± 6.41 0 13

SDSU (I and II) 86 13.75 ± 2.67 15 42

STANFORD (I) 19 10.23 ± 1.48 6 11

TCD (I and II) 73 16.86 ± 3.41 0 33

UCD (II) 28 14.98 ± 1.81 7 15

UCLA (I and II) 70 12.98 ± 2.42 8 36

UM (I) 107 14.60 ± 3.26 24 41

USM (I and II) 103 23.36 ± 7.67 5 52

YALE (I) 46 12.97 ± 2.97 13 21

ALL 1541 16.50 ± 8.82 304 657
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Table S1: Main data characteristics for each Institution participating in our study. BNI

= Barrow Neurological Institute; CALTECH = California Institute of Technology; CMU =

Carnegie Mellon University; EMC = Erasmus University Medical Center Rotterdam; ETH =

ETH Zürich; GU = Georgetown University; IU = Indiana University; KKI = Kennedy Krieger

Institute; LEUVEN = University of Leuven; MAX_MUN = Ludwig Maximilians University

Munich;  NYU  =  NYU  Langone  Medical  Center;  OHSU  =  Oregon  Health  and  Science

University;  OLIN  =  Olin;  Institute  of  Living  at  Hartford  Hospital;  ONRC  =  Olin

Neuropsychiatry Research Center, Institute of Living at Hartford Hospital; PITT = University

of  Pittsburgh  School  of  Medicine;  SBL  =  Social  Brain  Lab,  Netherlands  Institute  for

Neurosciences; SDSU = San Diego State University; STANFORD = Stanford University;

TCD = Trinity Centre for Health Sciences; UCD = University of California Davis; UCLA =

University of California Los Angeles; UM = University of Michigan; USM = University of

Utah School of Medicine; YALE = Yale Child Study Center. I: ABIDE 1. II: ABIDE 2.

Figure  S1: The  two  major  ASD  subtypes  were  subdivided  hierarchically  into  smaller
subtypes,  but  the  significant  enrichment found only occurred for  the two subtypes at  the
highest dendrogram level.
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