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ABSTRACT 

Spatial transcriptomics (ST) is a powerful approach for cancers molecular and cellular 

characterization. Pancreatic intraepithelial neoplasia (PanIN) is a pancreatic ductal 

adenocarcinoma (PDAC) premalignancy diagnosed from formalin-fixed and paraffin-

embedded (FFPE) specimens limiting single-cell based investigations. We developed a 

new FFPE ST analysis protocol for PanINs complemented with novel transfer learning 

approaches.  The first transfer learning approach, to assign cell types to ST spots and 

integrate the transcriptional signatures, shows that PanINs are surrounded by PDAC 

cancer associated fibroblasts (CAFs) subtypes, including the rare antigen-presenting 

CAFs. Furthermore, most PanINs are of the classical PDAC subtype while one sample 

expresses cancer stem cell markers. A second transfer learning approach, to integrate 

ST PanIN data with PDAC scRNA-seq data, identifies a shift between inflammatory and 

proliferative signaling as PanINs progress to PDAC. Our data support a model of 

inflammatory signaling and PanIN-CAF interactions promoting premalignancy 

progression and PDAC immunosuppressive characteristics. 

 

Significance 

We developed a novel FFPE spatial transcriptomics analysis pipeline to profile the 

heterogeneous CAF and malignant epithelial cells in PanINs, premalignant lesions that 

can progress to invasive PDAC. This study identifies for the first time similar CAF 

populations residing in PanINs and associated molecular changes that together may be 

early mediators of premalignant transformation to PDAC.  
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INTRODUCTION 

Spatial molecular technologies can drive pathway discoveries in cancers and their tumor 

microenvironment (TME) while preserving tissue architecture, thus allowing the 

characterization of molecular changes resulting from cell-to-cell direct interactions(1). 

Until recently, these approaches were limited to fresh frozen sample profiling that 

maintain RNA integrity(2–6). However, the major source of biopsy and surgical tissues 

from current and retrospective studies are samples stored in paraffin blocks. Moreover, 

the diagnosis of preinvasive cancer lesions, such as pancreatic intraepithelial neoplasias 

(PanINs), is almost always limited to formalin-fixed and paraffin embedded (FFPE) tissue. 

Thus, the recent development of a ST technology that can utilize FFPE samples will 

provide untapped opportunities to apply high dimensional approaches to evaluate 

archived FFPE specimens from prior clinical trials as well as standard of care diagnostic 

samples(7). Nevertheless, a challenge for section preparation exists as the platform limits 

the size of the sections that can be analyzed. Since most samples are fixed and 

embedded in larger sizes, methods to prepare smaller sections from FFPE blocks must 

be developed with the aim of preserving limited valuable clinical samples. 

ST approaches have already identified transcriptional signatures associated with spatial 

interactions that are delineating the cellular phenotypes that underlie tumor biology, 

evolution, and responses to therapy(1). Even without spatial characterization, 

complementary single-cell RNA-sequencing (scRNA-seq) technologies have enabled 

unprecedented characterization of the molecular and cellular pathways in the PDAC TME 

and of their hypothesized role in cancer progression(8–12). Nevertheless, current scRNA-

seq approaches dismantle the tissue architecture and crucial intercellular interactions are 
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lost. On the other hand, determining complementary inference from ST data is limited by 

the current lack of single-cell resolution that could be solved by performing integrated 

single-cell analysis and ST on the same sample(13). Therefore, the identification of the 

cellular and molecular changes in PDAC progression would ideally be achieved through 

matched scRNA-seq and ST profiling of both PanINs and PDAC but scRNA-seq 

approaches are also currently incompatible with FFPE samples because these 

technologies are dependent on cell viability, making them inaccessible for PanINs 

profiling. In ST, the possibility of staining the sections prior to library preparation allows 

pathological examination of cell morphologies to enhance cellular annotations. 

Nevertheless, manual integration of histologic annotations with ST requires two images, 

one with the pathology annotations and another with ST mapped clusters, that are 

compared side-by-side. This process is subjective and based on approximate visual 

selection thus prone to error and biases. New computational methods that incorporate 

imaging data are emerging to augment clustering of ST data for cell type annotation, but 

disregard the functional information represented by the cellular morphology(14,15). The 

matched stained FFPE image from ST offers the unique opportunity to integrate gene 

expression data with morphological features associated with cellular phenotypes through 

machine learning.  

We recently developed a machine learning method that provides 3-dimensional (3D) 

pathologic tissue assessments called CODA, to identify and quantify normal and PanIN 

cells in the pancreas from hematoxylin and eosin (H&E) stained FFPE sections(16). Here, 

we report the successful integration of CODA with FFPE ST data through transfer learning 

of the cellular annotations from CODA to the stained images in Visium to enhance 
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pancreas cell type annotation by spatial spots and robustly examine cell-type specific 

molecular phenotypes in PanIN lesions. To further expand our findings and further 

delineate the transitional pathways that drive normal cell to PanIN to PDAC development, 

we applied a second transfer learning approach, projectR(17), to integrate CODA and ST 

data  with scRNA-seq data from prior reported studies that have been entered into a novel 

PDAC atlas (18). Applying transfer learning to multiple types of data provides the 

opportunity to create a model of PDAC initiation and progression to advanced disease.  

In this study, we build up from a recently developed FFPE ST approach(7) with our 

transfer learning approaches(16,17,19) to examine the transcriptional alterations across 

the stages of PanIN progression. We developed a novel sample preparation workflow to 

ensure minimal manipulation of FFPE blocks for ST slide preparation. Subsequently, we 

adapted our transfer learning approaches used for 3D imaging to evaluate the combined 

ST data, and successfully identified the cellular components in each sample, including 

normal and premalignant epithelial cells. We discovered that all except one of the 

premalignant PanIN samples share similar expression patterns as the classical PDAC 

subtype. The one PanIN sample that does not express this classical signature expresses 

cancer stem cell (CSC) markers, suggesting that cells with stemness transcriptional 

features are present at premalignant stages. Moreover, we observed in PanINs the 

presence of the same cancer associated fibroblast (CAF) subtypes that are enriched in 

invasive PDACs, providing new evidence that these cells are already modulating the 

premalignant developing microenvironment. A common feature to all classical PanINs is 

the high expression of TFF1 that gradually increases through premalignancy 

development. Transfer learning integrating PanIN ST with PDAC scRNA-seq data verified 
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that TFF1 up-regulation persists in invasive cancer epithelial cells. We also found that the 

inflammatory pattern characterized in our PDAC atlas of scRNA-seq data gradually fades 

with PDAC invasion. The loss of inflammation signals is associated with a concurrent 

increase in MYC pathway activation in mature PDAC. Overall, this integrated 

experimental and computational approach provides the means to develop a model of 

PDAC development and progression through integrated imaging, ST, and scRNA-seq 

datasets.  

 

RESULTS 

Spatial transcriptomics applied to FFPE specimens captures preneoplastic 

pancreatic tissue architecture 

To study the mechanisms of progression from pre-malignant early PanINs to PDAC, we 

applied ST to a cohort of 4 patients with paired low- (LG) and high-grade (HG) PanINs 

(total number of lesions = 8). This cohort was designed to enable comparisons of 

progressive mechanisms within and between patients.  The ST slide’s dedicated areas 

for analysis are small (6x6 mm), and the FFPE preserved samples are typically larger 

and would require coring or scraping of the block to isolate only the PanIN lesion. 

Extensive manipulation of FFPE blocks for the ST sample preparation would limit 

subsequent profiling of larger regions with other technologies and additional clinical 

diagnostics of the broader PDAC surgical specimen in which PanINs are detected. 

Therefore, we developed a method to score the surface of the FFPE blocks using 5 mm 

in diameter circular skin biopsy punches. Prior to sectioning, the punches were used to 
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score the regions of interest (ROI) containing the ~1mm PanIN lesion while preserving 

the block. The scoring then allowed the non-relevant tissue to detach from the ROI that 

was collected and placed on the designated area of the ST slide (Figure 1A). Initial total 

RNA quality check indicated that all samples presented some level of RNA degradation 

(RIN ~2) but with a high concentration of 200bp fragments (DV200 > 50%) compatible 

with the FFPE ST platform. Following ST data pre-processing and filtering, seven out of 

the eight samples presented high quality data for subsequent downstream analysis. We 

were able to detect an average of 71,695 reads and 2,537 genes per spatial spot, and an 

average of 16,266 genes per sample. 

The ST data from our PanIN cohort provides combined image and transcriptomics 

profiling (Figures 1B and 1C). We characterized the canonical cellular distribution of 

PanINs and surrounding pancreas tissue by first applying clustering to the ST profiling 

data alone. The normal pancreas is composed of multiple cell subtypes with different 

functions. To execute its most important functions, the pancreas is composed of exocrine 

cells (acinar cells) that are responsible for the production of digestive enzymes and by 

endocrine cells (islets of Langerhans) that produce insulin and other hormones. The 

excretion of enzymes occurs through pancreatic ducts, while insulin and hormones are 

directly released into the blood stream. PanINs and PDACs differentiation resembles the 

morphology of normal pancreatic ducts(20). Annotating marker genes differentially 

expressed in each cluster learned from the transcriptional signal infers these canonical 

and transformed cell types (Figure 1C, Supplemental Figure 1). Moreover, the 

distribution of the normal and neoplastic cell types identified from clustering matches their 

locations in the corresponding section image (Figures 1B and 1C). In all samples, it was 
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possible to map specific clusters to the PanINs that were distinct from the other clusters 

including the normal ducts. Nevertheless, in some regions the clusters extend beyond 

cellular boundaries into the adjacent cell types on H&E imaging (Supplemental Figure 

2).  This extended signal could arise either from the intercellular signaling extending the 

molecular changes beyond cellular margins or from technical artifacts in the ST 

technology. 

To improve cluster annotations based on tissue morphology, we applied a transfer 

learning method, named CODA, to accurately classify the pancreatic normal and 

neoplastic cells directly in the ST section imaging associated with the ST data. CODA is 

a 3D imaging-based approach that uses deep learning semantic segmentation to identify 

different cell types within the human pancreas (acinar cells, islets of Langerhans, 

fibroblasts, adipocytes, endothelial cells, ductal cells, neoplastic cells)(16). We adapted 

CODA to obtain a color-coded image with each color corresponding to a specific cell type 

from the stained tissue sections (Figure 1D). In contrast to the clustering annotations, 

cells annotated in CODA are at single-cell level and limited to cellular boundaries. Thus, 

we could apply this approach to estimate the true proportion of cells within each spot 

(Supplemental Figure 3) associated with each spatial barcode in the ST data for further 

downstream analysis. By determining cell proportions in each ST spot we were able to 

select those representing a unique cell type, while filtering out spots capturing multiple 

cell types, to avoid unwanted bias in the comparisons between normal and PanIN clusters, 

for example. 
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PanIN-associated fibroblasts are a heterogeneous population composed of the 

same subtypes detected in invasive PDAC 

The ability of ST to characterize the PanINs and their surrounding microenvironment 

provides the unique opportunity to examine the fibroblast population adjacent to these 

lesions. The PDAC TME is enriched with a heterogeneous population of cancer 

associated fibroblasts (CAFs). They have been classified into three subtypes based on 

RNA expression data and include: myofibroblastic CAFs (myCAFs), inflammatory CAFs 

(iCAFs), and antigen-presenting CAFs (apCAFs)(21–23). These populations of 

mesenchymal cells play dual roles and can induce or inhibit PDAC progression(21–24). 

CAFs exert a tumorigenic role by providing metabolites for tumor cell survival, stimulating 

cell growth pathways through paracrine signaling, and creating an immunosuppressive 

microenvironment(22). However, a  tumor suppressing CAF enriched TME can reduce 

essential nutrients required for tumor progression and differentiation, and the same CAFs 

can be functionally repolarized to release chemokines that will recruit immune cells into 

the tumor(22). 

MyCAFs and iCAFs have previously been observed in pancreatic premalignant lesions in 

murine models that recapitulate PDAC development, suggesting that they arise early 

during tumorigenesis(25,26). Nevertheless, in human premalignant lesions their 

presence is not well described. Here, we used well established markers(23) to map the 

distribution of myCAFs, iCAFs and apCAFs adjacent to human PanINs. In our cohort, the 

density of stromal cells varied but were observed adjacent to each premalignant lesion 

(Figure 1D, pink annotated regions). Since CODA annotates cells based on morphology, 

it does not have the ability to classify the CAF subtypes as the classification is based on 
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their transcriptional profile.  Instead, additional integration with the transcriptional profiles 

from the ST data was used to identify these cell types. This approach showed that a CAF 

common signature (pan-CAF) is consistently expressed across the collagen rich regions 

annotated by CODA (Figure 2A, orange and red spots). The expression of myCAF 

(Figure 2B) and iCAF (Figure 2C) markers were detected in all samples overlapping with 

the regions where pan-CAFs are present.  

The presence of a recently described subtype of apCAFs was also investigated. ApCAFs 

were first identified by scRNA-seq on a PDAC mouse model. Further characterization 

showed that these cells express MHC-II genes and can present antigens to CD4+ T cells 

in vitro(23).   Subsequently, apCAFS have been shown to present antigen to Tregs which 

activates their suppressive capability(27).  In our study, expression of the apCAF 

signature was detected in all samples (Figure 2D). As expected, a significant proportion 

of the apCAF positive spots also express CD45+, a marker of immune cells (Figure 2E) 

and that can express the same MHC-II genes. Since CODA cannot annotate immune 

cells due to their limited size and scant cytoplasm, and ST does not provide single-cell 

resolution, the confirmation of apCAFs  in some samples could not be exactly defined by 

our analysis. Nevertheless, in some regions of the stroma the expression of apCAF 

markers does not colocalize with the CD45, indicating that these mesenchymal cells are 

present in human PanINs. 

 

ST identifies expression of both PDAC classical subtype and cancer stem cell 

signatures in PanINs 
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CAFs are mediators of PDAC progression and aggressiveness through interactions with 

neoplastic cells(22,23,28). The detection of PDAC associated fibroblast subtypes in 

PanINs prior to establishment of invasive carcinoma suggests that the differentiation of 

fibroblasts into CAFs is an early event that may influence PanIN progression to PDACs. 

To test this, we leveraged the automated cell type annotation from CODA with cluster-

based annotations to select spots purely associated with ductal cells to compare normal 

and PanIN ducts. Next, we characterized PanIN cell heterogeneity relative to the 

established classical and basal-like PDAC subtypes(29). We demonstrate that six out of 

seven PanINs express the PDAC classical subtype signature (Figure 3A). The basal-like 

signature is not detected in any of the premalignant lesions (Figure 3B). This observation 

supports the hypothesis that PDACs arise with a classical phenotype and likely acquires 

the basal-like phenotype upon progression and accumulation of molecular 

aberrations(30).  

Only one HG PanIN sample (PanIN-HG3, Figure 1) expressed neither the classical nor 

the basal-like signatures. Thus, we hypothesized that this sample expresses a third 

transcriptional phenotype. PDAC progression, resistance to therapies, and immune 

evasion is in part associated with the presence of populations of cells expressing cancer 

stem cell (CSC) markers(31). We verified the expression of CSC markers among the 

PanINs in the cohort. Remarkably, the only sample with significantly high expression of 

CSC markers is the one that did not express the classical or the basal-like PDAC 

signatures (Figure 3C). The presence of cells expressing CSC markers in PanINs was 

previously described in a mouse model that mimics PDAC development(32) and in human 

samples(33), but little is known about the mechanisms leading to CSC genes up-
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regulation their role in PDAC progression. Our observation that this stemness signature 

is not observed in cells expressing the classical subtype suggests that neoplastic cells 

with stemness features are a distinct population that arise in early pre-malignant stages. 

Nonetheless, further investigation is needed to understand the pathways driven by 

stemness and how these cells are interacting with the CAFs and other cells in the TME 

to modulate PDAC biology. 

 

Differential expression analysis between PanINs and normal ducts identifies TFF1 

expression limited to the classical phenotype 

To further define the molecular features of PanINs, spots from all samples annotated to 

normal and premalignant ducts were merged for each patient and differential expression 

was performed  to identify gene expression changes across each patient’s premalignant 

lesions. A total of 118 genes are differentially expressed in PanINs relative to normal 

ducts (Figure 3D) and their expression pattern discriminated PanINs from normal ducts 

among the different samples (Figure 3E). Among the top 20 up-regulated genes in the 

premalignant lesions, only 5 genes (TM4SF1, CYP2S1, CD55, FER1L6 and PSCA) had 

no known role in pancreas tumorigenesis, suggesting that FFPE ST analysis is robust 

and corroborates previous gene expression analyses in PanINs(34–36). The pathway 

analysis from the differentially expressed genes indicates enrichment for MYC and 

oxidative phosphorylation pathway mediators. Both signaling pathways have been 

previously shown to be upregulated in PanINs and PDAC,  particulary in association with 

progression from premalignancy to invasive cancer, metastasis development, and 
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resistance to therapy(37–39) (Supplemental Figure 4). Although predominantly of the 

classical subtype, the differential expression analysis highlighted the inter-sample 

heterogeneity with only one differentially expressed gene showing up-regulation in all 

classical samples (TFF1). TFF1 is known to be up-regulated in PanINs and PDACs and 

has been suggested as a potential early detection marker found in bodily fluids(40). In in 

vitro cell culture models, the secreted form of TFF1 has been shown to increase PDAC 

and stellate cells motility without a significant impact on proliferation(41). Since stellate 

cells are considered one of the precursors to some PDAC CAF subtypes(42,43), it is 

possible that TFF1 is one of the mediators of intercellular interactions between PanIN and 

PDAC cells, and CAFs.  However, the sample expressing the CSC markers signature 

does not express TFF1, suggesting that the stemness signature and TFF1 are mutually 

exclusive (Supplemental Figure 5). 

 

TFF1 expression gradually increases from normal ducts through low to high grade 

PanIN lesions 

The characterization of multiple ducts, including those spanning across stages of PanIN 

differentiation (mixed ducts), provides the opportunity to trace the cellular changes 

associated with PanIN progression. Additionally, ST analysis provides the ability to 

visualize the preneoplastic differentiation stages and concomitantly map the respective 

gene expression level changes. We therefore compared expression changes between 

lesions classified as LG or HG based on their morphology. The differentiation stages of 

PanINs cannot be discriminated using CODA and the classification of LG and HG 
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preneoplastic ducts was performed through pathology examination (KF and LDW) 

(Figure 4A). Using the pathological PanIN classification, we identified mixed ducts 

containing normal, LG and HG preneoplastic cells (Figure 4B, 4C and 4D). 

Next, we used this pathologic classification to evalute MYC pathway targets across PanIN 

stages in our cohort. Expression of the MYC signature was increased in LG and HG 

PanINs when compared with normal duct expression (Supplemental Figure 6), 

mimicking what had been previously published in invasive PDACs(37,38). These findings 

further support our hypothesis that MYC pathway activation is an early event in the 

malignant transformation process to invasive PDACs. The oxidative phosphorylation 

pathway was also significantly enriched in our comparison of  PanINs and normal ducts. 

Oxidative phosphorylation is upregulated in PDACs and other tumors and is associated 

with resistance to chemotherapy(39,44). Here, we observed similar levels of expression 

of this pathway in both LG and HG lesions that were significantly higher than in normal 

ducts (Supplemental Figure 6). 

We expanded our differential expression analysis study to uncover additional gene 

expression changes across PanIN stages. This analysis identified five other genes 

(MUCL3, C19orf33, TSPAN1, SCD, and ACTB) that were up-regulated in HG lesions 

relative to LG lesions (Supplemental Figure 7). In addition, the level of expression of 

MUCL3 and TSPAN1 genes gradually increased from normal ducts through LG and HG 

lesions (Figure 4E and 4F). The same pattern was observed for TFF1. This gradual 

change in expression is best visualized in one of the PanIN samples in which a single 

duct presents a mix of normal, LG and HG cells (Figure 4G). 
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Changes in PanIN progression map to transitions in malignancy in PDAC 

PanINs are premalignant lesions that can progress to PDAC; this is supported by the 

detection of common driver mutations in premalignancies that are frequent in invasive 

cancer(45–47). The examination of other molecular alterations that are present in PanINs 

and conserved in PDACs could provide new knowledge about the early transcriptional 

events of pancreatic carcinogenesis and the mechanisms driving the continuous 

development into invasive cancer. To identify these alterations, we used a compilation of 

scRNA-seq PDAC datasets (PDAC Atlas)(18) to project on our PanIN ST data and 

mapped them according to grades of differentiation. The fine-scale assignment of cell 

types to ST spots by CODA allowed this further investigation through the projection of 

transcriptional latent spaces learned from the scRNA-seq expression data. The PDAC 

Atlas from six previously published scRNA-seq datasets includes gene expression 

profiles from 25,442 epithelial ductal cells (Cancer: 14,589 cells; Normal: 7,561 cells; 

Normal_Tumor_Adjacent: 2,375 cells, Unspecified: 917 cells) (Supplemental Figure 8A). 

These epithelial populations were analyzed using CoGAPS(48,49) that learnt eight 

transcriptional patterns associated with biological processes(18). To study the 

representation of the patterns learned in the PDAC atlas across PanIN stages, the 

patterns were projected onto epithelial spots from the ST data (N = 623 spots; normal = 

254, LG = 110, HG = 159) using projectR(17,19). 

Among the patterns projected from the atlas onto the ST data, Pattern 2 (Figure 5A and 

Supplemental Figure 8B) enriched with genes involved in KRAS signaling and estrogen 
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response, showed a marked increase in projected pattern weights from normal epithelium 

through LG and HG PanINs (Figure 5B  and Supplemental Figure 8C), corroborating 

previously reported studies showing up-regulation of pancreatic oncogenic signaling 

pathways in premalignancy initiation and progression(50,51). Pattern 5 (Figure 5C and 

Supplemental Figure 8D), associated with normal metabolic activity, showed a 

substantial decrease in projected pattern weights with progression of PanIN lesion grade 

(Figure 5D and Supplemental Figure 8E), suggesting a decline of normal cellular 

function in the PanIN cells with the same trend that is present in the primary tumor cells 

from the PDAC Atlas. A third pattern, Pattern 7 (Figure 5E and Supplemental Figure 

8F), representing an inflammatory state, is enriched in normal ductal cells and dissipates 

with the development of early stage PDAC and progression to advanced cancer.  Pattern 

7 also showed decreasing levels over the course of progression from normal cells to 

PanIN (independent of the differentiation grade), as demonstrated by the increase in the 

number of spots with low projected weights (Figure 5F and Supplemental Figure 8G).  

Finally, using the PDAC atlas, we verified that PDAC cells express TFF1 (Figure 5G) as 

do PanIN cells (Figure 5H), suggesting that its up-regulation is a marker of PanIN and 

invasive PDAC progression. TFF1 expression is almost undetectable in normal ductal 

cells. Surprisingly, the normal ductal cells adjacent to the tumor express low levels of 

TFF1, suggesting that the transcriptionally normal surrounding ducts are already 

programmed toward a pre-malignant state. Unfortunately, it was not possible to 

discriminate PanIN from PDAC cells from the atlas dataset. Due to the dissociation 

process required for scRNA-seq that disrupts the tissue architecture, PanIN and PDAC 

cell classification based on their morphology and neoplastic duct formation is not feasible. 
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DISCUSSION 

ST approaches are uncovering new molecular and intercellular interactions that are 

providing insights into how these complex signaling networks are modeling cancer 

development and progression(1). In this study, we applied a novel protocol developed for 

FFPE ST(7) to examine PanINs, premalignancies with potential to develop into invasive 

PDAC, and uncover the mechanisms of progression to advanced tumors that could 

provide new opportunities for therapeutic interventions. Besides the novel FFPE ST 

approach, we also innovated by using two transfer learning methods to overcome 

limitations of ST and scRNA-seq technologies. First, CODA(16) was used to accurately 

assign cell types to ST spots from the H&E imaging and identify transcriptional features 

that could be the result of intercellular interactions. Second, ProjectR(17,19), allowed the 

integration of scRNA-seq performed on invasive PDACs with ST data from PanINs to 

learn mechanisms associated with PDAC initiation and progression. The integration of 

state-of-the-art experimental and computational approaches allowed us to develop a 

model of molecular and cellular features of PanIN to PDAC development. 

Using a technology that preserves tissue architecture combined with gene expression 

profiling, we observed for the first time the presence of CAFs and the different 

transcriptional subtypes (myCAF, iCAF and apCAF) in premalignant human lesions.  

These subtypes were only previously described in PDACs(21,23). CAFs are the most 

abundant cell type in the PDAC TME and are known to influence tumor cell behavior and 

to create an immunosuppressive environment(52). The presence of these regulatory cells 
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in the human pancreatic premalignant lesions is not well described, but suggests that 

CAF-induced TME remodeling is an early event with durable impact on PDAC 

development. Further studies are necessary to examine what are the specific interactions 

driven by the different CAF subtypes and how they modulate preinvasive neoplastic cells 

and other cellular components of the PDAC TME. Such knowledge is critical to guide the 

development of new therapeutic interventions that inhibit or revert CAF oncogenic and 

immunosuppressive activity with the goal of intercepting PDAC development. 

ST analysis of the PanINs also identified transcriptional signatures that are known to be 

associated with PDAC phenotypes. PDACs are classified into classical and basal-like 

transcriptional subtypes(29). Classical PDACs present a better prognosis and represent 

most tumor cells found in early stage cancers before patients receive treatment. This 

supports the hypothesis that initially all PDACs develop from the classical phenotype and 

that during the tumorigenesis there is a diverging point in which some cells will 

differentiate into the basal-like phenotype, a phenotype that is usually expanded by 

chemotherapy as resistance develops(29,30). In our PanIN cohort, we detected the 

classical signature in six out of seven PanINs. This observation corroborates the 

hypothesis that PDAC initiates as the classical subtype that can differentiate into the 

basal-like sub-type. The only sample that could not be classified as classical or basal-like 

expressed a CSC signature. CSCs present a more aggressive behavior and their 

presence is associated with resistance to therapies, local recurrence, and development 

of metastasis(53–55). Using ST data, we were able to isolate PanIN ducts and 

demonstrate that cells expressing CSC features are present in PanINs. One hypothesis, 

based on these data, is that these cells are the result of interactions of PanINs with CAFs 
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that already reside in the preneoplastic microenvironment, thereby providing activation 

signals to stemness related pathways. Additional studies are needed to confirm these 

interactions. 

The differential expression analysis shows that LG and HG PanINs are transcriptionally 

similar. Among the few genes differentially expressed between these two PanIN grades, 

the expression of three genes (MUCL3, TSPAN1 and TFF1) gradually increased with 

PanIN progression. TSPAN1 is a transmembrane protein involved in signal transduction 

and associated with cell growth, differentiation, and motility in PDACs, but it is role or 

expression in PanINs have been poorly explored(56,57). The up-regulation of mucin 

related genes is frequent in PanINs and PDACs and are thought to be involved in the 

progression of these lesions as they encode proteins that confer survival advantage, 

contribute to immune evasion, and limit drug uptake(58). TFF1 is frequently up-regulated 

in PanIN and PDAC but little is known about its role in tumorigenesis. As mentioned 

previously, secreted TFF1 could be involved in tumor cell interactions with 

CAFs(35,41,59). The gradual increase in TFF1 expression is the most remarkable among 

the overexpressed genes in our PanIN ST progression analysis. The previous report that 

high levels of secreted TFF1 can modulate CAF motility combined with our finding that 

CAFs are present in PanINs, suggests that these are early features of PDAC 

development. Thus, this interaction should be further investigated to pinpoint the 

relationship between TFF1 expressing neoplastic cells and the adjacent CAFs as this 

could be a target for early PDAC intervention and screening. 

Utilizing our novel two stage computational approach we identified three new patterns 

associated with the development and progression of PanINs and the progression to 
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invasive PDACs. Specifically, a second transfer learning method was required to uncover 

PDAC scRNA-seq patterns from the PanIN ST data.  Adding to the  learned oncogenic 

and a normal pancreatic function patterns (Patterns 5 and 2, respectively) in the PDAC 

atlas(18), our approach identified a third pattern enriched for inflammation markers 

(Pattern 7) that is downregulated in primary PDAC cells. This reduction in inflammatory 

signals may be one mechanism by which PDACs evade immune recognition, as tumor 

cells will be producing less immune chemoattractants. We observed that the reduction in 

this inflammation pattern is gradual with progression from normal ductal cells through LG 

to HG PanIN lesions. It is possible that downregulation of this pattern may be due to 

development of immune suppressive CAFs that are already present in PanINs and are 

functionally similar to those present in PDACs, as demonstrated by Kinny-Koster et al. 

using a co-culture patient derived organoid model(18). In addition, CAFs can create an 

immunosuppressive TME by producing and releasing cytokines that inhibits immune cell 

infiltration and factors that provide cancer cells additional growth and survival 

advantages(21,23). 

Although we used a limited sample number, we were able to corroborate previous findings 

related to PanINs and discover new features and their potential role in the progression of 

these lesions to invasive PDAC. We successfully visualized the microenvironment in 

which PanINs are developing and showed for the first time the presence of CAFs  with 

potential suppressive function in PanINs. Our cohort included samples with varying 

stromal and acinar cells composition, but due to the limited size we did not observe 

correlations between PanIN transcriptional profiles with the adjacent cell types. To 

examine if the CAFs surrounding the PanINs are remodeling the premalignant 
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microenvironment and influencing their progression, a larger cohort with a more stringent 

selection criteria that considers patients’ clinical features and outcomes (e.g.: tumor stage, 

metastasis, response to therapies) to correlate with the TME composition would be better 

suited to unveil the critical features of CAF-PanIN (or PDAC) interactions. Nonetheless, 

we demonstrate that FFPE ST provides robust results that led to novel findings regarding 

PDAC initiation and development. We learned a PDAC gene pattern from scRNA-seq that 

is also detectable in PanINs. Overall, we present a workflow to integrate different datasets 

and that provides the tools to create a model of PanIN to PDAC progression even though 

the samples were prepared and analyzed by distinct high-dimensional transcriptomics 

approaches. 

 

METHODS 

Sample selection 

FFPE pancreatic ductal adenocarcinoma (PDAC) surgical specimens collected from 2016 

to 2018 were examined by experienced pathologists (KF and LDW). PanINs present in 

the specimens were marked and selected for ST analysis and were classified as low- and 

high-grade by experienced pathologists (L.D.W. and K.F.). The samples were obtained 

from the Johns Hopkins University School of Medicine Department of Pathology archives 

under Institutional Review Board approval (IRB00274690) under a waiver of consent.  

RNA quality control 
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All samples selected for the study had their RNA quality checked prior to the ST slides 

preparation. Total RNA was isolated from 20um sections of each sample using the RNase 

FFPE kit (Qiagen), following manufacturer’s instructions. RNA quality was measured 

using the DV200 assay on the Bionalyzer (Agilent) to determine the proportion of 

fragments with ~200bp in the sample. RNA quality was considered good if DV200 > 50%. 

Spatial transcriptomics slide preparation 

The ST data was generated using the commercial platform Visium FFPE (10x Genomics). 

The slides are designed to accommodate a total of 4 sections with a maximum size of 6 

x 6 mm. For the specimens that were larger than the designated regions of the Visium 

slides, we scored the selected sample area containing the PanIN using skin punches of 

5mm in diameter. The skin punches were used directly on the FFPE blocks to delimit the 

area of interest, so when the block was sectioned in the microtome the PanIN containing 

region was detached from the rest of the section and could then be placed in the ST 

capture area of the slides (Figure 1A). A 5µm section from each sample with 5mm in 

diameter was used for the ST analysis. Upon preparation, the slides were incubated at 

42oC and then stored in a desiccator until use. 

Spatial transcriptomics data generation 

Using the Visium FFPE (10x Genomics) platform and following manufacturer’s validated 

protocol the samples were deparaffinized, stained with hematoxylin, and scanned using 

the Nanozoomer scanner (Hamamatsu) at 40x magnification. Human probes 

hybridization was performed overnight at 50oC. Following probes ligation, the RNA was 

digested, and the tissue was permeabilized for probes release into the slides, capture, 
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and extension. The designated area for each sample is covered by probes containing 

oligo-d(T) that captures the probes by a poly-A tail sequence present in the probe 

sequence. The sequencing library preparations were performed as instructed by the 

manufacturer using the extended probes as the template. All libraries were sequenced 

with a depth of at least 50,000 reads per spot (minimum of ~250 millions per sample) at 

the NovaSeq (Illumina). The Visium Human Transcriptome Probe Set v1.0 contains 

probes to 19,144 genes and after computational preprocessing (filtering for probes off-

target activity) provides gene expression information for 17,943 genes. 

Cell type annotation using transfer learning from H&E imaging 

Seven microanatomical components of human pancreas tissue were multi-labelled using 

a semantic segmentation workflow. The seven components recognized were (1) islets of 

Langerhans, (2) normal ductal epithelium, (3) vasculature, (4) fat, (5) acinar tissue, (6) 

collagen, and (7) pancreatic intraepithelial neoplasia (PanIN). Briefly, fifty examples of 

each tissue type were manually annotated using Aperio ImageScope. Half of the newly 

generated annotations were used in the training dataset for the convolutional neural 

network and the other half were used as an independent testing dataset to evaluate model 

performance. The testing dataset revealed an overall accuracy of 94.0% in classification 

of tissues in the TMAs. Following training, the tissue images were segmented to a 

resolution of 1µm.  

Nuclear coordinates were generated via detection of two-dimensional hematoxylin 

intensity peaks. Briefly, the TMA images were downsampled to a resolution of 1 µm/pixel. 

As the tissues contained only a hematoxylin signal, color deconvolution (generally used 
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to de-mix the hematoxylin channel from the hematoxylin & eosin image) was not 

necessary. Instead, the color image was converted to greyscale. The image was 

smoothed using a Gaussian filter and two-dimensional intensity peaks with minimum radii 

of 2µm were identified as nuclear coordinates. 

Registration of ST data with cell type annotationsThe low-resolution image used for 

the Visium pre-processing with Space Ranger was registered to the high-resolution tissue 

image used for microanatomical measurements to integrate the two workflows. The 

registration utilized the fiducial markers present on the ST glass slide to estimate the 

registration scale factor and translation. As registration was performed on two scans of 

identical tissue sections, it was assumed that rotation was not necessary. Here, the low-

resolution image was registered to the high-resolution image (rather than the other way 

round) so that the scale factor was always greater than 1 and ensuring that the 1 µm 

resolution of the tissue micro annotations was preserved. First, the fiducial markers in 

each pair of images were segmented by identification of small, nonwhite objects 

surrounding the larger TMAs. Nonwhite objects were determined to be pixels with red-

green-blue standard deviations greater than 6 in 8-bit space. These objects were 

morphologically closed and very small noise (<50 pixels) were removed. The fiducial 

markers were then determined to be objects in the image within 20% of the median object 

size (as many fiducial markers existed for each corresponding tissue image). This 

process resulted in fiducial image masks for the high-resolution and low-resolution tissue 

images. With these masks, four possible registrations were calculated to account for the 

situation where the Visium analysis was performed on the tissue image rotated at a 0-, 

90-, 180-, or 270-degree angle. For each registration, the corner fiducial markers of the 
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low-resolution image were rescaled and translated to minimize the Euclidean distance to 

the fiducial markers of the high-resolution image. Of the four registration results, the 

registration resulting in the greatest Jaccard coefficient between the high-resolution and 

low-resolution fiducial masks was chosen. For the eight TMAs, the average Jaccard 

coefficient of the fiducial masks was 0.94. 

The registration information used to overlay the low-resolution tissue image to the high-

resolution tissue image was used to convert the coordinates corresponding to the location 

of the Visium assessment in the low-resolution image into the high-resolution images 

coordinate system. Once the Visium coordinates were registered to the high-resolution 

image, the generated tissue microanatomy composition and cellularity were calculated 

for regions within 25µm of each coordinate. For each Visium coordinate, pixels in the 

micro-anatomically labelled mask image within 25µm of that coordinate were extracted. 

Tissue composition was determined by analyzing the % of each classified tissue type 

within that dot. The cellularity of each dot was determined by counting the number of 

nuclear coordinates within 25µm of each Visium coordinate. Cellular identity was 

estimated by determining the microanatomical label at each coordinate where a nucleus 

was detected (a nucleus detected in the same pixel where the semantic segmentation 

model detected normal ductal epithelium was labelled an epithelial cell). 

Spatial transcriptomics data analysis of PanIN samples 

Sequencing data was processed using the Space Ranger software (10x Genomics) for 

demultiplexing and FASTQ conversion of barcodes and reads data, alignment of 

barcodes to the stained tissue image, and generation of read counts matrices. The 
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processed sequencing data were inputs for the analyses using the Seurat software(60–

63). Data preprocessing with Seurat involved initial visualization of the counts onto the 

tissue image to discriminate technical variance from histological variance (e.g.: collagen 

enriched regions present lower cellularity that reflects in low counts). The filtered data 

was normalized using the SCTransform approach that uses a negative binomial method 

to preserve biological relevant changes while filtering out technical artifacts. Following 

normalization, data from all slides were merged and batch correction was performed with 

Harmony from harmony_0.1.0. Unsupervised clustering was subsequently performed on 

the harmony reduction using the Louvain algorithm as implemented by Seurat. 

Louvain clusters were annotated using the overlap of CODA annotations and 

quantifications per spot with well-characterized marker genes. Neoplastic and ductal 

epithelium groups were generated through selecting spots from the respective Louvain 

cluster that were estimated to be greater than or equal to 70% of the respective cell type 

on CODA.  The data dimensionality was reduced using PCA for clustering and in tissue 

visualization of the transcriptional clusters. Unsupervised clustering was performed based 

on the most variable features (genes). Differential gene expression analysis of normal 

ducts and PanINs, and low and high grade lesions were performed using the MAST 

test(64) as implemented by Seurat. For comparisons performed across different slides, 

the slide was assigned as a latent variable and the matrix was prepared using 

PrepSCTFindMarkers to account for the multiple SCT models. Pathway analysis was 

performed using GSEA v4.2.1(65,66). High- and low-grade PanIN spots were subset from 

the neoplastic Louvain cluster by pathologist (LDW) annotation using a custom-made 

Shiny app derived from the SpatialDimPlot function in Seurat.Violin plots, spatial plots, 
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were generated in Seurat. Volcano plots were generated in ggplot2(67). Heatmaps were 

generated using ComplexHeatmap(68). 

Transfer learning to relate ST data from PanIN to a scRNA-seq atlas of Pancreatic 

Ductal Adenocarcinoma 

We obtained scRNA-seq data for pancreatic epithelial cells from an atlas of 29 tumor 

samples and 14 non-cancerous samples collated from Peng et al. and Steele et al. as 

described in Kinny-Koster et al.(18). We inferred cellular phenotypes in the epithelial cells 

using CoGAPS (R, version 3.5.8)(48,49) to infer 8 patterns on the log transformed 

expression values. Pattern annotation was based on overrepresentation analysis of 

patternMarker genes identified by CoGAPS (R, version 3.9.5)(69) and Molecular 

Signatures Database Hallmark gene sets (version 7.5.1)(70,71) using the R package 

fgsea (version 1.18.0)(72). TFF1 expression was measured as log-normalized counts. 

Uniform manifold approximation and projection (UMAP) plots were made using monocle3 

(version 1.0.0)(73–79). UMAP plots for epithelial cells from the PDAC atlas were made 

with cells colored by epithelial cell type, log normalized TFF1 expression, and Pattern 2, 

5, 7 weights. 

PanIN ST data was subset to spots annotated as epithelial by CODA (N = 623 spots; 

normal = 254, low-grade = 110, high-grade = 159). CoGAPS patterns learned from the 

PDAC atlas were projected onto scaled SCT expression values from epithelial ST spots 

using ProjectR (version 1.8.0)(17,19). Projected pattern weights were plotted as violin 

plots using Seurat (version 4.1.0). Mean pattern weights were compared across epithelial 

lesion grades using Wilcoxon rank-sum tests within ggpubr (version 0.4.0). UMAP plots 
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of ST spots and over layed plots of ST spots colored by epithelial type, log normalized 

TFF1 expression, and projected Pattern 2, 5, 7 weights over tissue slices were prepared 

using Seurat (version 4.1.0)(60). 
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FIGURE LEGENDS 
 
FIGURE 1 – Spatial transcriptomics analysis of FFPE pancreatic intraepithelial 
neoplasia (PanIN). (A) Pancreatic cancer surgical specimens in FFPE were examined 
and the regions containing PanIN lesions were identified for scoring using a 5mm skin 
biopsy punch and sectioning onto the spatial transcriptomics slide. (B) Stained sections 
were used for pathology examination and identification of PanINs and other pancreatic 
histological regions. (C) The unsupervised clustering of the spatial transcriptomics data 
identified gene expression clusters which location resembles the distribution observed 
in the stained sections. (D) CODA for cell type classification was applied to assign with 
accuracy the cell type mapped to each spatial spot and to determine the spots that 
captured more than one cell type. 
 
FIGURE 2 – Spatial distribution of PDAC cancer associated fibroblasts (CAF) subtypes. 
(A) CAFs localization was mapped using pan-CAF markers, (B) myofibroblastic-CAF 
markers, (C) inflammatory-CAF markers and (D) antigen presenting-CAF markers. (E) 
CD45 expression was examined to identify regions where CAFs and immune cells were 
co-localized. 
 
FIGURE 3 – Pancreatic intraepithelial neoplasia (PanINs) transcriptional features. (A) 
Six out of seven PanINs, expressed markers that characterize the classical subtype of 
pancreatic cancer, while (B) the basal-like signature was not expressed by any of the 
premalignant lesions. (C) The only sample that is neither classical nor basal-like 
expresses cancer stem cell (CSC) markers. (D) Differential expression analysis 
identified genes which up-regulation (blue dots) or down-regulation (red dots) in PanINs, 
relative to normal ducts, discriminate preneoplastic from normal cells (E). 
 
FIGURE 4 – Identification of transcriptional changes associated with pancreatic 
intraepithelial neoplasia (PanIN) differentiation grade. (A) Normal, low grade (LG) and 
high grade (HG) PanINs are morphologically distinct and can be classified by pathology 
examination. (B, C and D) As a model for PanIN progression, a mixed pancreatic duct 
containing normal, LG and HG cells was used to better visualize changes in expression. 
Top genes from the differential expression analysis, (E) MUCL3, (F) TSPAN1 and (G) 
TFF1, show gradual increase from normal through LG until HG progression. 
 
FIGURE 5 – Integration of pancreatic intraepithelial neoplasia (PanIN) spatial 
transcriptomics (ST) data with invasive pancreatic cancer single-cell RNA-sequencing 
(scRNAseq) using transfer learning. (A, C and E) Representation of enriched MSigDB 
pathways in Pattern 2, Pattern 5 and Pattern 7 of the PDAC atlas. (B, D and F) Violin 
plots of projected PDAC atlas Pattern 2, Pattern 5 and Pattern 7 weights in PanIN ST 
spots. (G) UMAP embedding of epithelial cells from the PDAC atlas colored by TFF1 
expression. (H) Violin plots of TFF1 expression in all PanIN ST epithelial spots grouped 
by epithelial lesion grade. P-values were calculated using two-sample Wilcoxon rank-
sum tests. (N: normal, LG: low-grade, HG: high-grade).  
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