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1. Abstract 

NeuVue is a software platform created for large-scale proofreading of machine segmentation and 
neural circuit reconstruction in high-resolution electron microscopy connectomics datasets. The 
NeuVue platform provides a robust web-based interface for proofreaders to collaboratively view, 
annotate, and edit segmentation and connectivity data. A backend queuing service organizes 
proofreader tasks into purpose-driven task types and increases proofreader throughput by limiting 
proofreader actions to simple, atomic operations. A collection of analytical dashboards, data 
visualization tools, and Application Program Interface (API) capabilities provide stakeholders real-time 
access to proofreading progress at an individual proofreader level as well as insights on task generation 
priorities. NeuVue is agnostic to the underlying data being proofread and improves upon the traditional 
proofreader experience through quality-of-life features that streamline complex editing operations such 
as splitting and merging objects in dense nanoscale segmentation.  
 
NeuVue heavily leverages cloud resources to enable proofreaders to simultaneously access and edit 
data on the platform. Production-quality features such as load-balancing, auto-scaling, and pre-
deployment testing are all integrated into the platform’s cloud architecture. Additionally, NeuVue is 
powered by well-supported open-source connectomics tools from the community such as 
Neuroglancer, PyChunkedGraph, and Connectomics Annotation Versioning Engine (CAVE). The 
modular design of NeuVue facilitates easy integration and adoption of useful community tools to allow 
proofreaders to take advantage of the latest improvements in data visualization, processing, and 
analysis.  
 
We demonstrate our framework through proofreading of the mouse visual cortex data generated on the 
IARPA MICrONS Project.  This effort has yielded over 40,000 proofreader edits across the 2 petavoxels 
of “Minnie” neuroimaging data. 44 unique proofreaders of various skill levels have logged a cumulative 
3,740 proofreading hours, and we have been able to validate the improved connectivity of thousands 
of neurons in the volume. With sustained development on the platform, new integrated error detection 
and error correction capabilities, and continuous improvements to the proofreader model, we believe 
that the NeuVue framework can enable high-throughput proofreading for large-scale connectomics 
datasets of the future.   

2. Introduction 

As high-resolution electron microscopy (EM) data acquisition capabilities continue to advance, it has 
become common for research labs to image increasingly large (e.g., > 100 teravoxels) data volumes 
(Shapson-Coe et al. 2021; MICrONS Consortium et al. 2021; Turner et al. 2022; Dorkenwald et al. 
2019).  Following image volume collection, automated methods are applied to segment and identify 
objects of interest, such as neurons, nuclei, and synapses (Januszewski et al. 2018; Popovych et al. 
2022; Yin et al. 2020).  The performance of these algorithms has dramatically improved in the past few 
years; however, current methods are still imperfect and require significant human intervention (Scheffer 
et al. 2020; Dorkenwald et al. 2022). An end goal of these efforts, for which accurate segmentation is 
crucial, is to construct a connectome of sufficient quality for research into the underlying connectivity of 
the brain. In an ideal environment, expert proofreaders would visually inspect each segmentation result 
and connection point (i.e., synapse). As data volumes increase in size, manual inspection becomes 
intractable and so careful choices need to be made, balancing and prioritizing corrections which 
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maximize impact on connectome quality, based on available manpower (Plaza et al. 2014, Hubbard et 
al. 2020).   
 
Several existing frameworks for proofreading connectomics data exist, including CATMAID (Saalfeld 
et al. 2009), Eyewire (Kim et al. 2014), Flywire (Dorkenwald et al. 2022), WebKnossos (Boergens et al. 
2017), and NeuTu (Zhao et al. 2018). Our approach offers a complementary framework with an 
emphasis on atomic tasks; flexibility and scalability to accommodate a variable size userbase that 
includes both novices and experts; an open-source, data agnostic approach; and a web-based (cross-
platform, zero install) solution that integrates easily with key tools in the community for error detection 
and correction.  In this work, we share our key infrastructure and approach, and demonstrate sample 
workflows used to improve the MICrONS visual cortex dataset (MICrONS Consortium et al. 2021). 

3. Materials and Methods 

Below we describe NeuVue, a system developed for high-throughput connectomics proofreading. The 
high-level diagram of the proofreading workflow shown in Figure 1 illustrates how error identification 
methods and proofreading analytics interconnect with the NeuVue ecosystem to form a complete 
“proofreading workflow.” This proofreading workflow begins with generating proofreading tasks through 
a multifaceted error identification analysis. The generated tasks are then queued to proofreaders who 
then complete the tasks through the NeuVue interface. During this process, proofreader actions are 
recorded to analyze their impact on the underlying data volume quality.  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.18.500521doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500521


 
 

4 

 

Figure 1. Diagram of the high-level workflow and connectivity of the various components of the current proofreading 
system. Error identification methods (blue) generate tasks that are then queued in the NeuVue ecosystem (green). 
Tasks are completed within this ecosystem and fed back to the original data sources. Proofreading Analysis (red) 

uses the completed task data to provide quantified improvements to the connectivity and skill assessment for 
individual proofreaders. 

3.1 NeuVue Design  

The NeuVue system is composed of the following components: a cloud-based, highly-available task 
queue service called NeuVue-Queue, a web browser-based proofreader interface with integrated 
community tools, and an analysis interface that provides information on available, pending, and 
completed proofreading tasks.  
 
The NeuVue system is designed for flexibility of both proofreading task archetypes and data sources. 
We developed a simple API interface for NeuVue administrators to create atomic task types and assign 
tasks to proofreaders (Figure 2). The modular design of NeuVue permits connectivity with different 
image and segmentation data sources, but for the initial system design and demonstration, we point to 
data volumes and systems generated on the Intelligent Advanced Research Projects Activity (IARPA) 
Machine Intelligence from Cortical Networks (MICrONS) program. 
 

 

Figure 2. Diagram of the high-level design of the NeuVue proofreading workflow. Segmentation IDs sourced from 
error detection methods are provided to NeuVue administrators to create individual tasks. NeuVue administrators 
create the task type based on the identified error information and assign it to proofreaders through the NeuVue-
Queue API. Proofreaders interact with the NeuVue Web App to view Neuroglancer states that complete the task, 
after which the app sends oover the completed task data back to NeuVue queue where it can be used for further 

analysis.  

3.2 Connectomics Data Sources 

We demonstrate the capabilities of the NeuVue system with publicly-released EM imagery of the mouse 
visual cortex from both the “Minnie” (MICrONS Consortium et al. 2021) and “Pinky” datasets 
(Dorkenwald et al. 2019) generated on the MICrONS Program. For these datasets, the associated fine-
aligned imagery, static segmentation, and 3D meshes are stored in BossDB as precompute data (Hider 
et al. 2022, Maitin-Shepard 2020).  
 
Additionally, we use a dynamic PyChunkedGraph (Dorkenwald et al. 2022) segmentation which is a 
direct descendent of the publicly-released MICrONS data. This dataset is directly linked to several 
annotation tables for soma and nuclei locations, cell typing, and connectivity which are automatically 
updated as edits are made by the proofreaders. To retrieve this dynamic segmentation, the NeuVue 
system connects to the Minnie datastack (“minnie65_phase3_v1”), (i.e., the collection of imagery, 
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dense segmentation, and annotation tables), through the PyChunkedGraph (Dorkenwald et al. 2022) 
and Connectomics Annotation Versioning Engine (CAVE) tools (Seung-Lab/CAVEclient [2018] 2022). 
The MICrONS Proofreading Coordination Group have also provided us a “sandbox” Pinky 
PyChunkedGraph that we use for training and testing purposes.  
 

3.3 Proofreading Queue and Client Architecture  

NeuVue-Queue provides a RESTful API designed to deliver tasks generated from analytical methods 
to the proofreaders in a priority queue system. NeuVue-Queue’s backend consists of a MongoDB 
database coupled with an Express application server which is hosted on a scalable fleet of Docker 
containers. NeuVue-Queue and Neuvue-Client were developed as an extension of Colocard, a tool 
used for previous MICrONS evaluation efforts as a part of the CONFIRMS framework (Bishop et al. 
2021). 
 
To ensure that NeuVue-Queue can handle high proofreader loads mitigate the risk of data loss or 
service outages, we deployed NeuVue-Queue in an AWS cloud environment with token-based 
authentication, automated backups, and autoscaling. The queue stores all proofreading tasks under 
unique “namespaces” or task types.  A proofreading “task” is represented as a standardized schema 
defining attributes of the task such as instructions, priority, assignee, author, Neuroglancer state, 
metadata, and telemetry of when the task was created, opened, and completed. Tasks are designed 
to be “stateless”, where one task does not depend on other tasks and can be completed independently 
in any order. The “priority” attribute of the task allows administrators to discretely control the order in 
which tasks are completed by proofreaders. 
 
NeuVue administrators can create tasks using the NeuVue-Client, a python package which interfaces 
with NeuVue-Queue API to query, modify, and post tasks to the queue. The client conforms with the 
numpy and pandas data standard to provide administrators a flexibility and autonomy when managing 
proofreader tasks for multiple proofreaders (Harris et al. 2020, Reback et al. 2022). 

3.4 Proofreading Interface Architecture 

The NeuVue proofreading interface is a web application built with the Django web framework that 
provides proofreaders the ability to view and complete their assigned tasks as well as a suite of 
administrator tools for managing queues and task types. It leverages a modified version of Google’s 
Neuroglancer software (Maitin-Shepard 2020) to visualize the imagery and segmentation data through 
modern browsers.  We designed the NeuVue web application to support an initial, predetermined set 
of task archetypes (e.g., splitting, merging, validating, training) while building in the ability to flexibly 
create new task schemas on demand in order to accommodate multifaceted proofreading goals as they 
evolve. 
 
Proofreaders sign into the NeuVue interface (“NeuVue Web App”) to work on queued proofreading 
tasks retrieved from NeuVue-Queue. The associated image and segmentation data for the task is 
shown in an embedded Neuroglancer window on their workspace page (Figure 5). Proofreaders can 
then complete the assigned tasks via several routes such as manual edits, forced-choice decisions, or 
generating annotations on spatial data. NeuVue also provides high-level administrator access for user 
management and analytics.  
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3.4.1 Accessing the Proofreading Interface 

The proofreading interface webpage (https://app.neuvue.io) can be accessed via most web browsers 
following a Google OAuth login. Since the PyChunkedGraph dynamic segmentation can only be 
accessed through authorized Google accounts, we adopted a Google OAuth authentication system to 
provide seamless access to the app and data through one Google account.  To give a proofreader 
access to NeuVue, an administrator must configure the appropriate permissions and assign the 
proofreader’s account tasks, as outlined below.  Following login, proofreaders are directed to the main 
homepage, which displays a welcome greeting, a panel for recent changes, and a navigation menu 
(Figure 3).  

 

 

Figure 3. NeuVue landing page. This page is shown once a user with the appropriate access logs in with their Google 
OAuth account. A welcome greeting, panel for recent changes, and navigation bar are shown for quick access to 

other pages. 

To access their assigned tasks, a proofreader can navigate to the “My Tasks” page (Figure 4). It 
contains tabularized information on open, pending, and closed tasks assigned to the proofreader as 
well as descriptive statistics on performance and completion speed. Users are not limited to working 
on one task type at a time and can have different task types open for completion in parallel that use 
different data sources. If a proofreader has pending or open tasks for one of the available task types, 
they can click the “Start Proofreading” button to enter the “Workspace” page and begin completing the 
tasks. Depending on a proofreader’s level of experience with a task, proofreaders can also self-manage 
their queues by adding more tasks from an unassigned pool or removing tasks from their queue. 
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Figure 4. NeuVue task page. This page shows available tasks and user statistics based on past activity. Each blue 
tab represents an individual task type which can be expanded to show a list of all pending and closed tasks. Buttons 

located on the right-side of the tab allow users to start proofreading and self-manage their queues.  

3.4.2 Workspace Interface and Performing Edits 

An authenticated proofreader is routed to the “Workspace” page from the “Task” page provided that 
they have pending or open tasks to complete. Proofreaders do not get to choose the task they load 
from the queue; instead, tasks have an administrator-defined priority which determines the order in 
which they are loaded. The “Workspace” page renders an embedded Neuroglancer window to view 
and edit the data (Figure 5). The right-side panel displays the relevant task information such as task 
instructions, relevant segmentation ID, and task tags. Task-specific buttons are located on the top and 
bottom headers of the screen.  
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Figure 5. NeuVue workspace page with neuroimaging data loaded (electron microscopy, segmentation), proofreader 
task actions (buttons at bottom), and task related information (at right). The embedded Neuroglancer window 

provides the main visualization and editing interface for the proofreader to complete the task. User preferences are 
available in a submenu which control the layout and UI of the workspace.  

Tasks are loaded by retrieving a Neuroglancer state, a JSON object containing data layer and 
visualization information, from NeuVue-Queue for that task and loading it on the active Neuroglancer 
window. Once the task loads, the proofreader will follow its instructions and complete the task by one 
of two methods: by making edits directly in Neuroglancer or by clicking on the administrator-defined 
task-specific buttons located above the Neuroglancer window. 
 
Proofreaders are able to use Neuroglancer’s existing suite of features such as local annotations, 
hotkeys, and undo/redo to optimize proofreading throughput. We also modified the “NeuVue 
Neuroglancer”, an adapted fork of the Flywire Neuroglancer (Dorkenwald et al. 2022), with additional 
hotkeys, user preferences, and bug fixes to facilitate a smooth proofreading experience. A link sharing 
button that copies the state to an external Neuroglancer deployment (https://neuroglancer.neuvue.io) 
allows tasks to be shared amongst proofreaders and administrators. Besides the context-specific 
submission methods available to each task types, the proofreader can also perform the following 
queue-related actions during their task:  
 

• Flag Task: Save and close the current task as "errored".  

• Remove Task: Permanently removes the task from your queue and places it back to the 

unassigned pool. 

• Skip Task: Save and re-queue the current task and load next task in the queue. 
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• Save State: Saves the current Neuroglancer state in the Task attributes stored in NeuVue-

Queue. 

• Save and Exit Task: Save the current task and redirect user to the “My Tasks” page. Record 

total duration. 

 
Proofreaders navigate the data through the Neuroglancer window and, in some cases, make direct 
changes to the data by using the built-in merge and split tools in the NeuVue Neuroglancer. To keep 
an accurate log of changes committed by a proofreader, we record the initial and final state of the 
Neuroglancer viewer, as well as a log of all actions performed by the user. This granularity in user logs 
creates the ability to quickly debug and resolve issues as well as perform in-depth analysis of 
proofreader actions.  
 
After a task is submitted, skipped, or flagged, the NeuVue Web App will automatically load the next 
task for the proofreader if there is one available. During proofreading, NeuVue Web App will record the 
total active duration, or “session time” a proofreader is on a task. Inactivity reminders and save alerts 
are also displayed to maintain an accurate record of how much time a proofreader spends on a task.  
 

3.4.3 Administrator Tools 

NeuVue contains an admin dashboard, lineage viewer, user management, and task analysis tools for 
proofreading management. Administrators assign proofreaders into “groups” to facilitate automated 
task management and separate proofreaders by characteristics such as proofreading proficiency. The 
admin dashboard provides a tabular summary of proofreader progress for each task type for users in 
a particular group (Figure 6). Clicking on an individual proofreader yields a secondary table containing 
information about their assigned tasks. Administrators can directly delete, re-assign, or re-prioritize 
tasks through this dashboard.  
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Figure 6. NeuVue admin dashboard allows browsing of proofreader activity, including data on pending, open, closed, 
and “errored” tasks. Tasks for a specific user open in a separate page if a username is clicked. Dashboards are 

primarily organized by “Namespace” (task type) and user groups.  

 
Administrators have access to powerful query tools that provide insights on task statistics, which can 
be filtered by user, time-range, task type, or group through the “Reports” page. For tasks that have a 
configurable forced-choice decision submission process, bar charts are dynamically generated (Figure 
7) showing the distribution of user decisions for a particular set of tasks. These charts and tables can 
be exported into a sharable image or file.  

 

Figure 7. NeuVue reports page allows administrator to generate decision bar charts and visualize proofreading 

activity over time. Proofreader activity for specific task types and groups can be viewed for user-specific time ranges 
(user groups/names have been removed for publication). 

 
In order to visualize the proofreading progress in the dataset itself, we developed the “Lineage Viewer” 
tool (Figure 8). This tool allows administrators to input a neuron’s segmentation ID from the dataset 
and view its current reconstruction as well as previous “history”, or associated parent IDs from previous 
edits, in a single Neuroglancer window. This permits users to intuitively visualize the updates to a 
particular neuron after proofreading edits have been made.  
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Figure 8. NeuVue lineage viewer permits the visual inspection of neurons that have been proofread, allowing a user 
to view the state of the neuron at various stages throughout proofreading (with a list of associated IDs at the right). 

Clicking IDs on the lineage graph image on the right automatically selects that ID in the Neuroglancer window. 

 

4. Results 

NeuVue and its integrated queue system were developed to meet the requirements for large-scale 
proofreading of the MICrONS dataset.  These requirements include:  1) compatibility with ongoing 
proofreading using the PyChunkGraph, 2) high-throughput proofreading, 3) efficient splitting of large 
merge errors, and 4) ability to leverage innovations from the MICrONS and broader research 
community.  
 
Our proofreading team consisted of a total of 8 part-time experts with significant previous training and 
experience in similar tasks; 8 intermediate proofreaders, drawn from a student population who received 
significant neuroanatomy training and achieved a demonstrated level of proficiency; and 26 novice 
students .  
 
As an example of NeuVue’s capabilities, we describe the proofreading operations optimized for efficient 
splitting of falsely merged neurons in the MICrONS dataset.  Using nucleus detections and neuron 
classification available for this dataset (MICrONS Consortium et al. 2021), we identified approximately 
6,000 segmentation IDs with more than one neuronal nucleus or soma (Figure 9). NeuVue 
administrators constructed tasks for these segmentation IDs and assigned them to proofreaders. 
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Figure 9. The number of segmentation IDs which contain a certain number of nuclei as of October, 2021. Nuclei detection data were obtained via 
CAVEclient (Seung-Lab/CAVEclient [2018] 2022) by querying the “nucleus_neuron_svm” table containing predictions of what nuclei in the dataset 

are neurons.  
 
 
To date, our proofreaders have successfully split ~5,500 multi-soma segmentation IDs in NeuVue, 
generating over 14,000 new single-soma neurons.  This work was performed in less than one calendar 
year and required ~3,600 proofreader hours (2.5 person years) to complete. During this process, 
NeuVue was optimized for both high-throughput validation tasks and semi-automated proofreading 
tasks as described below.        
 

4.1 Workflow to perform high-throughput validation and correction of 
automated split locations in multi-soma IDs 

To first address multi-soma splitting, we leveraged the results of a newly developed algorithm from 
Baylor College of Medicine (Celli et al., in preparation) to identify putative merge errors in multi-soma 
IDs and seed potential split locations. To assess the accuracy of this split location detection algorithm, 
we examined 9,459 locations that represent putative merge errors in a subset of multi-soma IDs.  
 
For each potential merge error, the split location detection algorithm provided a set of red and blue 
“split points” which, in combination with a second algorithm, the min-cut algorithm that executes the 
multi-point cut (Dorkenwald et al. 2022), would split and fix the merge error, and a dotted path indicating 
the path between the two neurons that would be split (Figure 9). The split location detection algorithm 
identifies the path between branches of the neurons where there is a merge error.  Its accuracy at 
correctly identifying the location of the merge error on the branch and its accuracy at placing points to 
split the errors needed to be assessed to determine if it could be run autonomously on a subset of the 
data volume. To assess the initial accuracy of the algorithm’s placement choices, we generated a 
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“Forced Choice Split Location” proofreading queue to review these locations of interest. To increase 
the throughput of the assessment, a preview of the proposed split was pre-generated and included in 
the Neuroglancer state the proofreaders viewed (Figure 10).  
 

4.1.1 Task to identify forced choice split locations 

We validated approximately 7,500 putative split locations predicted by the split location detection 
algorithm using a forced choice-style task.  Proofreaders were directed to assess the provided split 
location and split preview and determine if the location was a true a merge error and if the provided 
split points correctly resolve the merge error (Figure 10).  NeuVue was optimized to provide 
proofreaders with five responses to choose from: 
 

• Confirm Split:  if the location and the point placement was adequate 

• Split Requires Refinement: if the location was correct, but point placement off 

• Reject Split, But Error Nearby: if the location was incorrect, but a merge error was very nearby 

• Reject Split: if the location was not a merge error 

• Unsure: if it was too difficult to assess the location 

 

Figure 10. Example of a Forced Choice Task through the NeuVue proofreader web-browser based interface. Forced choice 
decision buttons are located above the Neuroglancer window. This view currently shows the EM panel with the red and blue 

colored region indicating how the split would separate the currently selected segmentation ID.  

In addition to providing feedback on the algorithm, this exercise helped proofreaders gain familiarity 
with the data in a low-risk manner. Proofreaders were able to view and assess hundreds of unique error 
locations in the data before moving on to editing the data.   
 
Depending on the response of the proofreaders to the Forced Choice tasks, the proposed split was 
then either executed programmatically or placed in one of two additional queues based on difficulty 
(Figure 11).  If the response was ‘Confirm Split’, the proposed split was considered good as is and the 
split was executed using the split points provided by the algorithm and the CAVEclient API (MICrONS 
Consortium et al. 2021).   
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As shown in Figure 11, if the response was ‘Split Requires Refinement’ or ‘Reject Split, Error Nearby’ 
the location was passed to our Task 2 queue: Automated Point Adjustment Queue. If the response was 
‘Reject Split’ or ‘Unsure’ the location was passed to our Task 3 queue: Guided Find and Fix.  

 
Figure 11. Proofreading workflow for the automated split locations from Baylor College of Medicine Automated Proofreading Algorithm. 
After filtering split locations provided by Baylor College of Medicine algorithm and pre-generating the split preview, 7,515 split locations 

were available for task 1.   

 

 

4.1.1.1 Force Choice Proofreader Throughput 

To measure forced choice proofreader throughput, the average time per task was computed for each 
task in this queue (Figure 10). Based on a subset of 4,181 tasks completed by experienced 
proofreaders, the average time per task was 1.52 minutes (Figure 12). Interestingly, the average time 
per task for novice proofreaders was also 1.56 minutes (Figure 12), which was similar in time to the 
expert proofreaders.  
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Figure 12. Duration of Proofreading Tasks. Histograms of time to complete task in minutes. Top row:  Forced Choice Split Location tasks 
by expert (left) and novice (right) proofreaders; Middle row: Automated Point Adjustment task (left) and Guided Find and Fix task (right); 
both by expert proofreaders only; Bottom row:  Multi-Neuron by Segmentation ID by expert (left) and intermediate (right) proofreaders. 

 

4.1.2 Task to adjust automated split points 

Our Automated Point Adjustment queue addresses the locations from the split detection algorithm that 
either correctly identified the merge error location but misidentified the split points that would fix the 
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merge, or were very near to a merge error. Proofreaders were provided the Neuroglancer view of the 
split location and the automatically placed points and were instructed to manually adjust or replace the 
red and blue split points to correctly split the merge error (as judged by previewing the split using the 
min-cut tool in Neuroglancer). They then executed the split directly in Neuroglancer. Once the merge 
error was split, they submitted the task and were provided the next split location.  
 
To measure proofreader throughput, we computed the average time per task for this queue (Figure 10). 
Given that this operation requires manually adjusting of the split points and may require multiple 
attempts, the average time per task was 6.8 minutes (based on 1,662 tasks executed by expert 
proofreaders). 

 

4.1.3 Task to find and fix locations with guidance 

For our Guided Find and Fix queue, proofreaders review the locations where the algorithm did not find 
the correct merge location or it was too difficult or complicated to assess quickly. These tasks are more 
difficult than the Task 2 locations due to the nature of the merge errors that were missed by the 
algorithm. Frequently, the merge errors that end up in this queue are locations where two different 
branches were incorrectly merged ‘head-to-head’ due to the shifts in image alignment (Figure 13). 
These are relatively difficult to identify from a distance and require careful stepping through the provided 
cut path. Proofreaders were instructed to follow the provided cut path, find the merge error, place the 
necessary red/blue split points, preview the split, and manually execute the split in Neuroglancer.  
 
 

     

Figure 13. Examples of 'head-to-head' merge errors in the Task 3 queue. 

We computed the average time per task for this queue based on 884 closed tasks. Similar to the Points 
Adjustment task, this task requires manually adjusting the split points and may require multiple 
attempts.  This work was performed by experienced proofreaders.  The average time per task was 6.5 
minutes (Figure 12).  
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4.2 Workflow to perform semi-automated splitting of multi-soma IDs 

4.2.1 Task to split multi-neurons by segmentation ID  

Multi-soma IDs often contain several merge errors (up to 20 per ID) that must be corrected to 
successfully isolate single-soma neurons.  Using the Split Detection Algorithm described in section 4.1, 
we generated approximately 2,500 new single-soma neurons and reduced the number of multi-soma 
IDs by about 1,000. For the remaining 5,000 multi-soma IDs in the dataset, the algorithm predicted split 
locations were not available. To accommodate this, a targeted and semi-automated approach to 
“comprehensively” correct merge errors was applied for each multi-soma ID until single-soma IDs were 
generated.  Proofreaders generated the dotted path on demand using the path tool in Neuroglancer 
(Dorkenwald et al. 2022) and inspected the path for merge errors (Figure 14).  During the forced choice 
tasks, proofreaders evaluated hundreds of unique error locations in the data and thus became familiar 
with how to visually identify merge errors.    
  
After locating the merge error, proofreaders manually placed split points and previewed the split using 
Neuroglancer’s min-cut tool (Dorkenwald et al. 2022), as done in the Automated Point Adjustment task. 
If the preview was acceptable, the proofreader applied the split operation to the dataset through 
Neuroglancer.  Proofreaders also had the option to adjust the split points as needed to achieve an 
optimal split.  Neuroglancer refreshed after each split operation and two single-soma IDs were 
generated if there were no remaining merge errors between soma. If not, proofreaders generated 
another dotted path and repeated the process until two IDs were generated.  
 
To train and evaluate our novice proofreaders, we prepared a ground truth set for forced choice and 
split point adjustment tasks.  Proofreaders with ≥ 90% agreement with ground truth were approved to 
work on multi-soma splitting, and received edit permission. We also recorded the operation ID of 
proofreader edits made on the segmentation, so that administrators could review and reverse edits if 
necessary. 
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Figure 14. Multi-Neuron by Segmentation ID task. Top row: dotted path & split location with red and blue points; Bottom row: 
neurons appear as different colors with new IDs if successfully separated by split operation. 

 

 

4.3 Multi-Soma Splitting Throughput 

To date, we have split 5,460 multi-soma IDs with more than one neuronal nucleus and generated 
14,426 new single-soma neurons.  This work was completed by 8 part-time experts with proofreading 
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experience in Drosophila connectomics, and 8 intermediate-level proofreaders.  Given their 
intermediate level of experience, non-experts primarily worked on multi-soma with no more than two 
nuclei, and the most difficult multi-soma IDs were reserved for experts.  
 
Using NeuVue’s dashboard, we computed the total proofreading time to complete all tasks in each 
queue (Table 1). In total, proofreaders completed ~36,000 tasks and this work required ~3,600 hours. 
It took four times as much proofreading time per single-soma neuron using the split detection algorithm 
(~40 minutes) versus semi-automated split detection (~10 minutes; Table 2).  This difference is largely 
due to 1) assigning same split location to multiple novice proofreaders for consensus decision-making, 
and 2) improving efficiency for expert- and intermediate-level proofreading by consolidating operations 
(split location and point adjustment) into one task and making updates to NeuVue.  It is important to 
note that in our initial use case, we were intentionally conservative with novice proofreaders and 
assigned 5-6 proofreaders to each split location as we assessed their ability to work on more 
complicated tasks. 
 
We also measured proofreader throughput by computing average time per task for this queue. Based 
on 1,628 tasks completed by expert proofreaders, the average time per task was 25.6 minutes (Figure 
12). As expected, the average time per task for intermediate proofreaders was less (15.6 minutes; 
based on 1,606 tasks) because they worked exclusively on multi-soma IDs with two nuclei while experts 
worked on multi-soma IDs with up to 20 nuclei (Figure 12).  
 
 
 

Split Location 
Detection 
Algorithm 

Task 
 

Total Duration 
(hours) 

Proofreader 
Level 

# Split 
Locations 

# Tasks 
Completed 

Yes 
Forced Choice Split 

Locations 
208.37 Expert 5,139 5,139 

Yes 
Forced Choice Split 
Locations – Group1 

827.5 
 

Novice 3,086 22,967 

Yes 
Automated Split 

Points Adjustment 
367.31 Expert 3,059 3,059 

Yes 
Guided Find and Fix 

the Merge Error 
184.09 Expert 1,421 1,421 

No 
Multi-Neuron by 
Segmentation ID2 

1,441.4 Expert n/a 1,628 

No 
Multi-Neuron by 
Segmentation ID2 

567.49 Intermediate n/a 1,606 

1Decision by consensus (26 novice proofreaders); 5-6 proofreaders per split location; one split location per task 
2Proofreaders corrected one or more split locations per segmentation id; one id per task 
 

Table 1.  Total time to complete all tasks per queue (with or without split location detection algorithm). 
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Split Location Detection 
Algorithm 

Total Duration 
(hours) 

# Single-soma 
Neurons Generated 

Time per Single-soma 
Neuron (hours) 

Yes 1,587.3 2,468 0.64 

No 2,008.89 12,152 0.17 
 

Table 2.  Total time to complete all tasks and time per single-soma neuron generated (with and without split location detection 
algorithm). 

 

5. Discussion 

We developed a lightweight, web-based framework to guide proofreaders from heterogeneous 
expertise levels through high-value workflows to mature the quality of the connectomics data produced 
through machine learning methods.  These tools and accompanying workflows leverage efficient task 
queuing and customized, atomic environments to aid users in making rapid, atomic, and high-quality 
decisions.  When considering the rapid advances in technology and algorithms that enable large-scale 
image acquisition and automated alignment, registration, and segmentation approaches, proofreading 
strategically and scalably remain as major contemporary bottlenecks.  Reducing the human resource 
expense (e.g., time, cost, available workforce) is critical to many future research questions.  We believe 
that these tools provide an important, complementary toolkit to existing methods and can be easily 
expanded to incorporate additional datasets, tasks, and user communities.  
 
NeuVue was developed to meet the demands for large-scale proofreading of the MICrONS dataset, 
one of the largest connectomic datasets produced to date with automatic machine segmentation 
(MICrONS Consortium et al. 2021).  In general, segmentation errors can be divided into two types: 
merge errors, in which two or more neurons are falsely merged together, and split errors, in which a 
neuron is falsely split or broken, resulting in orphan segments.  Machine segmentation typically begins 
with an over-segmented base segmentation followed by agglomeration of segments into neurons. A 
conservative agglomeration may minimize merge errors at the expense of generating more orphans, 
such as broken axons. In contrast, an aggressive agglomeration that minimizes orphans can be applied 
if resulting merge errors can be efficiently corrected, as done in the hemibrain dataset (Scheffer et al. 
2020).  The hemibrain volume is approximately 1/64th of the MICrONS volume and another recently 
released cubic millimeter volume, H01 (Shapson-Coe et al. 2021). Correcting merge errors in 
increasingly larger volumes presents a major proofreading challenge.  H01 used a conservative 
agglomeration that minimized merges between neuronal somata at the expense of more axon breaks 
(Shapson-Coe et al. 2021). NeuVue’s tools and multi-soma splitting workflows may allow researchers 
to use a more aggressive agglomeration in the next generation of MICrONS- and H01-like or larger 
volumes, thus allowing more axonal connections between neurons to be analyzed by machine 
segmentation.   
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