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1. Effect of using different genotype callers to generate genotype 26 

likelihoods, i.e., input for imputation 27 

In order to determine whether the choice of genotype caller to calculate genotype likelihoods prior to 28 

imputation influences the quality of the imputed calls, we compared the accuracy of imputation using 29 

genotype likelihoods obtained with two different callers i) bcftools1, a tool designed to handle 30 

modern DNA, and ii) ATLAS2, a genotype caller that models and/or estimates deamination patterns 31 

and takes these into account when calling genotypes for ancient genomes. In the case of ATLAS, 32 

we empirically estimated the damage pattern before proceeding to genotype calling. In addition, to 33 

compute the imputation accuracy, we used two different validation sets, where calls were obtained 34 

using i) bcftools and ii) ATLAS. Figure S1 shows imputation accuracy obtained with the four 35 

previously described configurations for a subset of 16 genomes downsampled to 1.0x prior to 36 

imputation. For a few genomes, such as Lovelock23 and SIII4, there were no noticeable differences 37 

between the different configurations. In most cases, the most striking differences were between 38 

validation sets, regardless of the genotype likelihoods set used for imputation. Indeed, the accuracy 39 

curves tend to cluster by validation rather than genotype likelihood set. However, in the case of 40 

Sumidouro5, there is a larger difference between the two different genotype likelihood 41 

configurations for the same validation set, particularly at sites with minor allele frequency (MAF) 42 

below 5%. For this genome, with 40% frequency of C-to-T substitutions at the reads’ ends, the 43 

highest accuracy was obtained with both imputation using genotype likelihoods and validation calls 44 

obtained with ATLAS. In conclusion, imputation calls were not significantly affected by the choice of 45 

tool to call genotype likelihoods for most of the cases here analyzed and, therefore, we chose to 46 

calculate genotype likelihoods using bcftools with no further filtering before imputation. However, the 47 

two genotype callers used to obtain the validation calls from the high-coverage genomes had clear 48 

differences and we further investigated the differences between them in the next section. 49 
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 50 
Figure S1: Imputation accuracy for a subset of 16 imputed 1.0x genomes, where imputation was 51 

performed from genotype likelihoods calculated with i) bcftools (purple) and ii) ATLAS (green). Two 52 

different validation sets were used in this analyses that differ in the tool used to call genotypes: i) 53 

bcftools (circles) and ii) ATLAS (triangles). 54 
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2. Validation dataset 63 

In order to be able to assess imputation accuracy when imputing low-coverage ancient genomes, 64 

we resorted to downsampling and imputing ancient genomes with average depth of coverage above 65 

10x, using the high-coverage genomes as ground truth. However, these high-coverage genomes 66 

are not free from the inherent ancient DNA challenges, in particular, base deamination. This 67 

constitutes a problem in determining what the true genotypes are for a particular genome, thus 68 

affecting how well we can validate imputation results in the context of this work. To determine how 69 

we can best circumvent this problem, we tried different approaches to generate the validation calls 70 

that were expected to decrease the impact of ancient DNA damage on the resulting genotype calls 71 

in the case of four 1x ancient genomes, namely, RISE11685,6, SIII4 (UDG-treated), Sumidouro53 (a 72 

highly damaged genome) and WC17 (with intermediately high damage levels). Firstly, we called 73 

genotypes with ATLAS, a genotype caller that models the deamination patterns at the ends of 74 

reads, except for RISE1168, that includes paired-end libraries in addition to single-end libraries. 75 

Then, prior to genotype calling with bcftools, we trimmed five base pairs from the reads in the bam 76 

files. We also followed the filtering approach carried out in previous studies3:  i) we called genotypes 77 

with bcftools using reads with mapping quality of at least 30 and bases with quality 20 (“-q 30 -Q 78 

20”), as well as the recommended option -C 50; ii)  we retained only the sites present in the 1000 79 

Genomes accessible genome strict mask; iii) we excluded sites located in regions known to contain 80 

repetitions; iv) we removed sites that have depth below the maximum of one third of the mean depth 81 

of coverage and eight, as this is typically the minimum depth of coverage for which we can 82 

confidently call genotypes, and sites that have depth above twice the mean depth; v) we retained 83 

sites for which the field QUAL is equal or greater than 30. Finally, we used these different genotype 84 

call sets as validation when evaluating imputation accuracy for the four aforementioned genomes. 85 

We learnt that the application of the aforementioned five filters gives a consistently higher 86 

agreement between imputation and validation calls, even though it does not yield the highest 87 

accuracy for the four genomes (Figure S2). In the case of Sumidouro5, ATLAS outperformed the 88 

other approaches, with the five filters approach in second place, but ATLAS performance was not 89 



 5 

consistent across samples. The trimming approach yielded intermediate accuracy curves, in 90 

general, but, compared to the five-filter option in the case of Sumidouro5, it yielded much lower 91 

values at rare variants (MAF<2%). Given these results, we chose to generate the validation calls 92 

used in all the analyses in the main paper by applying the five-filter approach. However, we are 93 

aware that more accurate calls could be obtained by applying stricter filters for particular genomes 94 

that contain more degradation, including Sumidouro5, as was done in Moreno-Mayar et al.3 We 95 

decided, instead, to apply the same approach to all 42 high-coverage genomes to expedite the 96 

process and have consistent datasets. 97 

 98 
Figure S2: Effect of applying quality filters to validation call set on imputation accuracy (first row) 99 

and genotype discordance (second row) for four different genomes, organized by column 100 

(RISE11685,6, SIII4, Sumidouro53 and WC17). The imputed genomes had been downsampled to 1x 101 

coverage. The filters were applied in the following order: i) genotype calling with bcftools using 102 

reads with mapping quality of at least 30 and base quality 20 (“-q 30 -Q 20”), as well as the 103 

recommended option -C 50; ii) only sites present in the 1000 Genomes strict mask are retained; iii) 104 

exclusion of sites that are located in regions known to contain repetitions; iv) filtering out of sites that 105 

have depth below the maximum of one third of the mean depth of coverage and eight and sites that 106 

have depth above twice the mean depth; v) retaining sites for which the field QUAL is equal or 107 

greater than 30. For each validation and filter, the same imputed data were used in this analysis.  108 
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3. Individual samples 109 

Table S1: Information on the ancient genomes used in the benchmark of imputation of low-coverage 110 

genomes: id, modern country where remains were found, age of remains in years before present 111 

(yBP), depth of coverage, and population of the 1000 Genomes panel whose minor allele frequency 112 

(MAF) was used in imputation accuracy analyses for each of the individuals, when applicable. AFR: 113 

Africa, AME: America, EAS: East Asia, EUR: Europe, SAS: South East Asia, All: overall allele 114 

frequency in 1000 Genomes. For RISE1160, a low-coverage genome, we do not indicate a MAF 115 

label, as we did not estimate imputation accuracy as a function of MAF for this genome. In the case 116 

of the ancient trio age (RISE1159, RISE1160 and RISE1168), we report a time span obtained for 117 

the mass grave as a whole. This range is the result of a model that took into consideration the 118 

number of contemporaneous individuals in the grave, radiocarbon dating of the different remains, as 119 

well as the ontogenetic constraints on how much the ages (e.g., parent/offspring relations) can 120 

vary6. 121 
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ID Country Age range (yBP) Coverage MAF label Study 

atp016 Spain 4867-5212 13 EUR Valdiosera et al., PNAS (2018)8 

Stuttgart Germany 7020-7260 16 EUR Lazaridis et al., Nature (2014)9 

Loschbour Luxembourg 7940-8160 18 EUR Lazaridis et al., Nature (2014)9 

Ballynahatty Ireland 4970-5293 10 EUR Cassidy et al., PNAS (2016)10 

sf12 Sweden 8757-9033 59 EUR Günther et al., PloS Biology (2018)11  

NE1 Hungary 7021-7256 18 EUR Gamba et al., Nat. Com. (2014)12 

RISE1159 Poland 4726-4830 27 EUR Schroeder et al., PNAS (2019)6;  
Allentoft et al., bioRxiv (2022)5 

RISE1160 Poland 4726-4830 5 - Schroeder et al., PNAS (2019)6;  
Allentoft et al., bioRxiv (2022)5 

RISE1168 Poland 4726-4830 19 EUR Schroeder et al., PNAS (2019)6; 
Allentoft et al., bioRxiv (2022)5 

SIII Russia 33031-35154 11 EUR Sikora et al., Science (2017)4 

Rathlin1 Ireland 3835 – 3976 11 EUR Cassidy et al., PNAS (2016)10 

SSG-A-2 Iceland 950 – 1100 10 EUR Ebenesersdottir et al., Science (2018)13 

HSJ-A-1 Iceland 950 – 1080 29 EUR Ebenesersdottir et al., Science (2018)13 

STT-A-2 Iceland 950 – 1050 14 EUR Ebenesersdottir et al., Science (2018)13 

VK1 Greenland 750 – 950 12 EUR Margaryan et al., Nature (2020)14 

BR2 Hungary 3060 – 3220 18 EUR Gamba et al., Nat. Com. (2014)12 

SZ15 Hungary 1346 – 1538 11 EUR Amorim et al., Nat. Com. (2018)15 

SZ3 Hungary 1346 – 1538 11 EUR Amorim et al., Nat. Com. (2018)15 

SZ4 Hungary 1347 – 1538 10 EUR Amorim et al., Nat. Com. (2018)15 

SZ45 Hungary 1347 – 1538 10 EUR Amorim et al., Nat. Com. (2018)15 

SZ43 Hungary 1347 – 1538 12 EUR Amorim et al., Nat. Com. (2018)15 

SZ1 Hungary 3220 – 5320 11 EUR Amorim et al., Nat. Com. (2018)15 

baa01 South Africa 1831 – 1986 14 AFR Schlebusch et al., Science (2017)16 

ela01 South Africa 453 – 533 13 AFR Schlebusch et al., Science (2017)16 

new01 South Africa 327 – 508 11 AFR Schlebusch et al., Science (2017)16 

I10871 Cameroon 7800 – 7970 15 AFR Lipson et al., Nature (2020)17 

Mota Ethiopia 4419 – 4525 10 AFR Gallego Llorente et al., Science (2015)18 

KK1 Georgia 9550 – 9890 12 EUR Jones et al., Nat. Com., (2015)19 

WC1 Iran 9032 – 9405 10 EUR Broushaki et al., Science (2016)7 

BOT2016 Kazakhstan 5318 – 5582 14 EUR Damgaard et al., Science (2018)20  

Yamnaya Kazakhstan 4837 – 4968 26 EUR Damgaard et al., Science (2018)20  

Andaman India 30 – 150 17 SAS Moreno-Mayar et al., Science (2018)3 

UstIshim Russia 42560 – 47480 35 All Fu et al., Nature (2014)21 

Yana Russia 30950 – 32950 27 All Sikora et al., Nature (2019)22 

Kolyma_River Russia 9665 – 9906 15 All Sikora et al., Nature (2019)22  

USR1 USA 11270 – 11600 17 AME Moreno-Mayar et al., Nature (2018)3 

AHUR_2064 USA 10770 – 11170 19 AME Moreno-Mayar et al., Science (2018)3 

Lovelock2 USA 1818 – 1942 15 AME Moreno-Mayar et al., Science (2018)3 

Lovelock3 USA 567 – 687 19 AME Moreno-Mayar et al., Science (2018)3 

Saqqaq Greenland 3600 – 4170 13 AME Rasmussen et al., Nature (2010)23 

Clovis USA 12572 – 12726 15 AME Moreno-Mayar et al., Science (2018)3 

Sumidouro5 Brazil 10258 – 10552 16 AME Moreno-Mayar et al., Science (2018)3 

A460 Chile 4430 – 4850 11 AME Moreno-Mayar et al., Science (2018)3 
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4. Imputation accuracy for transitions and transversions and method 122 

comparison 123 

 124 
Figure S3: Imputation accuracy, r2, for the aggregate of the 42 ancient genomes, previously 125 

downsampled to 1x, as a function of 1000 Genomes Project minor allele frequency (MAF), 0.1-50%, 126 

regarding (left to right) i) transitions (green) compared to transversions (purple), and ii) comparison 127 

between imputation methods, Beagle4.124 (green) vs. GLIMPSE1.1.125 (purple). 128 

 129 
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 140 
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5. PCA with focus on Europeans, several coverages 145 

 146 
Figure S4: Principal component analysis (PCA) of imputed 0.1x (A) and 0.25x (B) and high-147 

coverage ancient genetic data, and present-day data in 1000 Genomes reference panel (gray). 148 

Plots show individual coordinates along the two first principal components, zooming-in on the 149 

individuals of European ancestry. Imputed data points are represented by triangles and high-150 

coverage ancient data by full circles. Corresponding imputed and high-coverage data are connected 151 

by a line.  152 

 153 
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6. Genetic clustering analyses: from K=2 to K=5 clustering populations 154 

 155 
Figure S5: Genetic clustering results obtained from running unsupervised ADMIXTURE26 with the 156 

genetic data of a subset of individuals in 1240K dataset27 and high-coverage data (rightmost box). 157 

 158 

   159 
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Figure S6: Genetic clustering results obtained from running unsupervised ADMIXTURE with the 160 

genetic data of a subset of individuals in 1240K dataset and imputed 0.1x data (rightmost box). 161 

 162 
Figure S7: Genetic clustering results obtained from running unsupervised ADMIXTURE with the 163 

genetic data of a subset of individuals in 1240K dataset and imputed 0.25x data (rightmost box). 164 

 165 
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 166 
Figure S8: Genetic clustering results obtained from running unsupervised ADMIXTURE with the 167 

genetic data of a subset of individuals in 1240K dataset and imputed 0.5x data (rightmost box). 168 

 169 

 170 
Figure S9: Genetic clustering results obtained from running unsupervised ADMIXTURE with the 171 

genetic data of a subset of individuals in 1240K dataset and imputed 0.75x data (rightmost box). 172 
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 173 

 174 
Figure S10: Genetic clustering results obtained from running unsupervised ADMIXTURE with the 175 

genetic data of a subset of individuals in 1240K dataset and imputed 1.0x data (rightmost box). 176 

 177 
Figure S11: Genetic clustering results obtained from running unsupervised ADMIXTURE with the 178 

genetic data of a subset of individuals in 1240K dataset and imputed 2.0x data (rightmost box). 179 
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Table S2: Subset of the 1240K dataset27 used as reference in the genetic clustering analyses. The 180 

individuals are grouped by population: Neolithic Anatolia (“Anatolia_N”), western hunter-gatherer 181 

(“WHG”), Early to Middle Bronze Age Steppe (“Steppe_EMBA”). 182 

Population Individual 
Anatolia_N Bar31.SG 
Anatolia_N Bar8.SG 
Anatolia_N I0707 
Anatolia_N I0708 
Anatolia_N I0709 
Anatolia_N I0723_published 
Anatolia_N I0724_published 
Anatolia_N I0726 
Anatolia_N I0727_published 
Anatolia_N I0736 
Anatolia_N I0744 
Anatolia_N I0745 
Anatolia_N I0746 
Anatolia_N I1096 
Anatolia_N I1097 
Anatolia_N I1098 
Anatolia_N I1099 
Anatolia_N I1100 
Anatolia_N I1101 
Anatolia_N I1102 
Anatolia_N I1103 
Anatolia_N I1579_published 
Anatolia_N I1580_published 
Anatolia_N I1581_published 
Anatolia_N I1583_published 
Anatolia_N I1585_published 

WHG BerryAuBac 
WHG Falkenstein 
WHG I0585 
WHG I1507 
WHG I1875 
WHG I2158_published 
WHG Iboussieres25-1 
WHG Iboussieres31-2 
WHG Rochedane 

Steppe_EMBA I0126 
Steppe_EMBA I0231_published 
Steppe_EMBA I0246 
Steppe_EMBA I0357 
Steppe_EMBA I0370 
Steppe_EMBA I0371_published 
Steppe_EMBA I0374 
Steppe_EMBA I0418 
Steppe_EMBA I0429 
Steppe_EMBA I0438 
Steppe_EMBA I0439 
Steppe_EMBA I0440 
Steppe_EMBA I0441 
Steppe_EMBA I0443 
Steppe_EMBA I0444 
Steppe_EMBA RISE240.SG 
Steppe_EMBA RISE507.508.merge.SG 
Steppe_EMBA RISE509.SG 
Steppe_EMBA RISE510.SG 
Steppe_EMBA RISE511.SG 
Steppe_EMBA RISE546.SG 
Steppe_EMBA RISE547.SG 
Steppe_EMBA RISE548.SG 
Steppe_EMBA RISE550.SG 
Steppe_EMBA RISE552.SG 
Steppe_EMBA RISE555.SG 

  
 183 
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7. ROH estimates for Sumidouro5 184 

 185 
Figure S12: ROH segments identified in chromosome 10 for high-coverage and imputed data (DoC 186 

between 0.1x and 2.0x) for Sumidouro5. Top: ROH obtained using all sites. Bottom: ROH estimated 187 

using transversion sites only. 188 

 189 
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