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Abstract
A selective sweep occurs when positive selection drives an initially rare allele to high population frequency.

In nature, the precise parameters of a sweep are seldom known: How strong was positive selection? Did
the sweep involve only a single adaptive allele (hard sweep) or were multiple adaptive alleles at the locus
sweeping at the same time (soft sweep)? If the sweep was soft, did these alleles originate from recurrent
new mutations (RNM) or from standing genetic variation (SGV)? Here, we present a method based on
supervised machine learning to infer such parameters from the patterns of genetic variation observed
around a given sweep locus. Our method is trained on sweep data simulated with SLiM, a fast and �exible
framework that allows us to generate training data across a wide spectrum of evolutionary scenarios and can
be tailored towards the speci�c population of interest. Inferences are based on summary statistics describing
patterns of nucleotide diversity, haplotype structure, and linkage disequilibrium, which are estimated across
systematically varying genomic window sizes to capture sweeps across a wide range of selection strengths.
We show that our method can accurately infer selection coe�cients in the range 0.01 < s < 100 and classify
sweep types between hard sweeps, RNM soft sweeps, and SGV soft sweeps with accuracy 69 % to 95 %
depending on sweep strength. We also show that the method infers the correct sweep types at three empirical
loci known to be associated with the recent evolution of pesticide resistance in Drosophila melanogaster.
Our study demonstrates the power of machine learning for inferring sweep parameters from present-day
genotyping samples, opening the door to a better understanding of the modes of adaptive evolution in nature.

Author summary
Adaptation often involves the rapid spread of a bene�cial genetic variant through the population in a

process called a selective sweep. Here, we develop a method based on machine learning that can infer the
strength of selection driving such a sweep, and distinguish whether it involved only a single adaptive variant
(a so-called hard sweep) or several adaptive variants of independent origin that were simultaneously rising
in frequency at the same genomic position (a so-called soft selective sweep). Our machine learning method is
trained on simulated data and only requires data sampled from a single population at a single point in time.
To address the challenge of simulating realistic datasets for training, we explore the behavior of the method
under a variety of testing scenarios, including scenarios where the history of the population of interest was
misspeci�ed. Finally, to illustrate the accuracy of our method, we apply it to three known sweep loci that
have contributed to the evolution of pesticide resistance in Drosophila melanogaster.

Introduction
When positive selection drives an initially rare adaptive mutation to high population frequency, this

leaves the characteristic patterns of a so-called selective sweep in the surrounding genetic variation (Maynard
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Smith & Haigh, 1974). Over the past 20 years, a variety of summary statistics and computational approaches
have been developed for detecting target loci of recent positive selection by searching for sweep signatures
(Nielsen et al., 2005; Pavlidis et al., 2013; Sabeti et al., 2007; Tajima, 1989; Vitti et al., 2013). The application of
these selection scans has helped us uncover the molecular basis of many examples of recent adaptations,
including loci of medical and commercial relevance such as those underlying drug resistance in human
or livestock pathogens (Parobek et al., 2016; Redman et al., 2015), and insecticide resistance in crop pests
(Anderson et al., 2018; Calla et al., 2021).

The speci�c patterns a sweep is expected to produce can depend on its parameters and evolutionary
history. The strength of positive selection driving the sweep, for example, should determine the size of the
genomic region over which a sweep signature can be observed (Kaplan et al., 1989). Furthermore, three
di�erent modes of selective sweeps are generally distinguished based on the genealogy of adaptive alleles in
a population sample, with each type potentially producing distinct signatures (Hermisson & Pennings, 2005;
Pennings & Hermisson, 2006a, 2006b): In the classical “hard” selective sweep, a single adaptive allele arose
by mutation and was immediately positively selected. At the adaptive locus, all sampled lineages that carry
the adaptive allele should therefore coalesce in a most recent common ancestor that lived after the onset
of positive selection. The two other categories constitute so-called “soft” selective sweeps, where the most
recent common ancestor of the sampled alleles lived prior to the onset of positive selection. This could be
because the adaptive allele already existed in the population at an intermediate frequency before it became
adaptive, and multiple distinct lineages from that time were captured in the sample. We then refer to the
sweep as a soft sweep from standing genetic variation (SGV). Another possibility is that the adaptive allele
arose repeatedly in the population by independent de novo mutation events, in which case we refer to the
sweep as a soft sweep from recurrent new mutations (RNM).

It is important to recognize that this classi�cation of sweep types is based on the genealogy of adaptive
alleles in a given population sample. Consequently, the same adaptive event can result in a sweep that is soft
in one sample but hard in another. For example, if the adaptive allele arose several times in the population, a
sample capturing lineages from two distinct origins would constitute a soft sweep, while a sample capturing
only a single lineage (maybe because that lineage was much more prevalent in the population) would
constitute a hard sweep. Generally, we expect hard sweeps to dominate adaptation in mutation-limited
scenarios, while soft sweeps should be more common in larger populations where adaptation is not limited by
the availability of adaptive mutations due to a high level of standing variation and/or high population-level
mutation rates towards adaptive alleles (Hermisson & Pennings, 2017; Messer & Petrov, 2013).

The footprints of soft sweeps can be quite di�erent from those of hard sweeps, and are often more
di�cult to detect (Berg & Coop, 2015; Ferrer-Admetlla et al., 2014; Peter et al., 2012). Hard sweeps are
characterized by a very recent common ancestor of the adaptive allele, with a “star-like” genealogy at the
selected site. As a result, their hallmark signatures include a trough in genetic diversity around the adaptive
site, the presence of a single long haplotype, and a characteristic skew in the site frequency spectrum (SFS)
of linked neutral polymorphisms towards high and low derived allele frequencies (Fay & Wu, 2000; Sabeti
et al., 2002). In a soft sweep, by contrast, the longer time to the most recent common ancestor can result in
higher levels of genetic diversity being maintained at the sweep locus, with several long adaptive haplotypes
possibly present at intermediate population frequencies (Pennings & Hermisson, 2006b; Przeworski et al.,
2005). These di�erences to classical hard sweep signatures should be most pronounced for RNM soft sweeps,
whereas SGV soft sweeps can span a range of signatures, from those similar to RNM sweeps to signatures
that are essentially indistinguishable from hard sweeps, depending on the speci�c evolutionary history of
the adaptive allele. If the adaptive allele in an SGV sweep was still young at the onset of positive selection
(maybe because it was previously deleterious), the resulting sweep signature should be very similar to a
hard sweep. Conversely, if the allele was much older and already present on several diverged haplotypes
at the onset of positive selection, this should generate a signature more similar to an RNM sweep. The
adaptive allele could also have originated multiple times prior to the onset of selection and several alleles
of independent origins could have been picked up by selection, which should again produce a signature
resembling an RNM sweep.

The fact that sweep mode and parameters can a�ect sweep signatures raises the possibility that we may
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be able, in turn, to infer these parameters for a given sweep by analyzing its signatures in a population
sample. Such knowledge could provide valuable insights into the nature of adaptive events. Consider, for
example, a sweep associated with the evolution of drug resistance in a pathogen such as the malaria parasite
Plasmodium falciparum. Knowing the strength of selection that drove this sweep could allow us to predict
how rapidly the responsible mutations are expected to spread when introduced into a new population,
while knowing the mode of the sweep could help us assess whether these mutations can evolve quickly and
repeatedly, or whether this was possibly a one-o� event.

Indeed, several methods for inferring sweep mode and selection coe�cients have recently been developed
that can draw such inferences from the polymorphism patterns observed in a single population sample. The
popular sweep scans SweepFinder and SweeD (DeGiorgio et al., 2016; Pavlidis et al., 2013) already provide
estimates of selection coe�cients based on the analysis of the shape of the SFS around a putative sweep
locus using maximum likelihood analyses. Other approaches can estimate selection coe�cients from the
distribution of haplotype frequencies (Messer & Neher, 2012) or inferred ancestral recombination graphs
(Hejase et al., 2021; Stern et al., 2019). A shortcoming of these analytical approaches is that they require
rigid assumptions such as presuming a panmictic population of constant size and/or �xed sweeps. Even
when approaches are robust to violations of their assumptions, it is unclear how well they can be targeted
to a speci�c scenario if there is more information available about the history of the population of interest.
Moreover, analytical approaches are based on average sweep signals, but the signal of a given individual
sweep is stochastic and may deviate strongly from the analytical expectation. Several methods have further
been devised for distinguishing hard from soft sweeps using computational approaches such as Approximate
Bayesian Computation (Garud et al., 2015; Peter et al., 2012; Stern et al., 2019), but both analytical and
likelihood-free approaches tend to require tuning of a priori analysis hyperparameters, including genomic
window sizes. This is an important choice because the region over which sweep signatures are expected to
extend is approximately inversely proportional to the strength of positive selection that drove the sweep
(Kaplan et al., 1989). Thus, by choosing a speci�c window size, one intrinsically gears a method to a speci�c
selection strength. This is a problem if this selection strength and, therefore, the appropriate window size to
capture the sweep, is unknown in advance.

Supervised machine learning provides a new paradigm for evolutionary analyses that has gained in-
creasing attention over the past years (Schrider & Kern, 2018). Under this paradigm, in silico polymorphism
datasets are simulated and used as training data to �t a statistical model, which is then applied to make
inferences from the empirical data. When trained on a distribution of sweep signatures with known evo-
lutionary history, any parameter of a given sweep could in principle be inferred by the model, as long as
we can train it with accurate and appropriate simulations. Importantly, due to the �exibility provided by
simulations, which can explore large regions of parameter space and be designed to represent any particular
organism and locus of interest, supervised machine learning could provide a powerful approach for making
sweep inferences for a variety of organisms and scenarios. Indeed, several implementations of supervised
machine learning for sweep inferences have already been successfully demonstrated in recent years (Flagel
et al., 2019; Kern & Schrider, 2018; Lin et al., 2011; Mughal & DeGiorgio, 2019; Pavlidis et al., 2010; Pybus
et al., 2015; Ronen et al., 2013; Schrider & Kern, 2016; Sheehan & Song, 2016; Sugden et al., 2018; Torada et al.,
2019; Xue et al., 2021). By their nature of learning by example from diverse training data, these methods are
naturally capable of learning patterns across individual sweeps with highly stochastic signatures and across
a variety of analysis hyperparameters such as window size.

In this paper, we introduce a novel supervised learning framework that can in principle be trained to
infer any evolutionary parameter of a given selective sweep from its observed signature. We present a way
to e�ciently simulate hard and soft selective sweeps to produce training datasets. We �t convolutional
neural networks to estimate sweep mode and selection coe�cient of an observed sweep and show an
example of extending the approach by comparing models trained on �xed sweeps and ongoing sweeps.
Our method achieves good performance on validation datasets, indicating that signatures left by selective
sweeps in surrounding neutral polymorphism are informative about their mode and parameters. Finally,
we apply the method to previously characterized sweeps associated with pesticide resistance in Drosophila
melanogaster as an application to a real dataset, con�rming that our parameter estimates agree with previous

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.19.500702doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.19.500702
http://creativecommons.org/licenses/by-nc-nd/4.0/


Simulations Window analysis Model training Inference

Training

Validation
Trained 
models

Subwindow split & 
Summary statistics

Sweep parameters 
• Sweep strength? 
• Sweep mode?

21x21x7 
data

Convolutional 
neural networks

ReLU

Maxpool

Fully connected layer

Convolutional layer

Softmax (if classification)

ReLU

Maxpool

Convolutional layer

samples

SNP pos. 1 2 3 4 5 6 7 8

148,503 1 0 1 1 0 0 1 1

148,579 0 1 1 1 0 1 1 1

148,654 0 0 1 0 0 1 0 1

148,668 1 0 0 1 1 1 0 1

148,690 0 0 1 0 1 0 1 0

148,775 0 1 1 1 0 0 1 1

samples

SNP pos. 1 2 3 4 5 6 7 8

148,503 1 0 1 1 0 0 1 1

148,579 0 1 1 1 0 1 1 1

148,654 0 0 1 0 0 1 0 1

148,668 1 0 0 1 1 1 0 1

148,690 0 0 1 0 1 0 1 0

148,775 0 1 1 1 0 0 1 1

Known sweep locus

Subwindow split & 
Summary statistics 

21x21x7 data

Simulated sweeps

2. Sweep simulation in SLiM, 
recording tree sequence

1. Coalescent burn-in

3. Tree sequence simplification, 
mutation dropping

Figure 1: Diagram of inference method.

experimentally-derived hypotheses for these loci.

Methods
Our method for inference of sweep parameters involves four main steps (Fig. 1). First, we generate a

large data set of simulated sweep signatures spanning di�erent types and selection coe�cients. For each
sweep simulation, we calculate a set of haplotypes and SFS-based summary statistics at di�erent genomic
locations around the sweep locus, using systematically varying window sizes. The resulting data is split into
a training and a validation set. With the former, we train a convolutional neural network (CNN) capable of
estimating di�erent sweep parameters of interest. Finally, we apply the trained model to the validation set
to evaluate the performance of the model. The method is implemented as a reproducible pipeline where
each simulation and analysis parameter can be tuned (Table 1). Parameters can be given a constant value
or speci�ed by a probability distribution; the pipeline currently accepts uniform, log-uniform, and integer
uniform distributions. In the case of a distribution, a random value is picked from it for every simulation.

Sweep simulations
We model an adaptive site located at position xsweep of a genomic region of lengthL base pairs in a diploid

population. For simplicity, we assume that this adaptive site is a single nucleotide position. Note that this
could be a reasonable approximation also for a larger adaptive target site as long as alleles remain e�ectively
linked across this site during the sweep (Messer & Petrov, 2013). All other sites in the region are assumed to
be neutral. We model adaptive alleles with a selection coe�cient s > 0 such that wild-type individuals are
assigned �tness 1, heterozygotes are assigned �tness 1 + hs, and homozygotes for the adaptive allele are
assigned �tness 1 + s.
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Parameter Symbol Training value
Population size Ne 50 000
Number of sampled genomes k 205
Total locus size L 1000 kb
Neutral mutation rate µ 2.25× 10−8

Uniform recombination rate r 1.619× 10−7

Sweep site coordinate xsweep 500 kb
Selection coe�cient s log-Uniform(0.01, 100)
Dominance coe�cient h 0.5
Frequency at sampling fsample 1.0
Adaptive mutation rate µα log-Uniform(5× 10−8, 2.25× 10−5)
Frequency at selection onset f0 log-Uniform(0.0002, 0.01)
Maximum number of restarts Rmax 1000
Data dimension d 21
Smallest subwindow size lmin 1 kb

Table 1: Set of tunable simulation parameters in the analysis pipeline. Adaptive mutation rate and frequency
at onset of selection are only meaningful for RNM or SGV sweeps, respectively.

Our sweep simulations employ a hybrid approach that combines coalescence and forward simulation
(Haller et al., 2019). The initial state is a neutral coalescent burn-in generated in msprime (Kelleher et al.,
2016), which is saved in the succinct tree sequence format (Kelleher et al., 2018). This tree sequence is then
imported into SLiM 3.7 (Haller & Messer, 2019) to simulate the selection phase of the sweep. Importantly, only
the trajectory of adaptive alleles and recombination breakpoints occurring at the speci�ed recombination
rate r are modeled in this phase, but no neutral mutations. The tree sequence is continuously updated by
SLiM. After the adaptive allele has reached a desired frequency fsample, we stop the simulation to obtain
a population sample. This is done by importing the resulting tree sequence back into msprime, and then
taking k random leaf nodes from the tree sequence, corresponding to a sample of genomes of size k from
the population. The result is a simpli�ed tree sequence representing the entire genealogical history of the
sample, on which neutral mutations are then dropped by msprime according to the speci�ed mutation rate µ.
Finally, we convert the leaves (samples) into a list of haplotypes in ms format according to the in�nite-sites
model. This hybrid simulation strategy allows us to leverage the e�ciency of coalescent simulations while
keeping the �exibility of forward simulations, which can be customized in various aspects of the evolutionary
scenario such as demography, genetic architecture, and population life history.

In the selection phase, our simulations can model three types of sweeps: hard sweeps, SGV soft sweeps,
and RNM soft sweeps. To model hard sweeps, we introduce a single copy of the adaptive allele with given
selection coe�cient s into a randomly chosen chromosome from the population, and then follow its frequency
trajectory. If genetic drift causes the adaptive allele to be lost prior to reaching the desired frequency fsample,
the simulation is reset to the start of the selection phase and the adaptive allele is reintroduced. This is
repeated until a sweep of the desired population frequency is obtained.

To model soft sweeps from SGV, we assume that the adaptive allele is initially neutral and drifts to a
given population frequency f0, at which point it �rst becomes adaptive. This frequency f0 can be interpreted
as a tuning parameter for the “softness” of an SGV sweep, with higher frequencies tending to result in
softer sweeps. We simulate this scenario by introducing a single copy of the allele into a randomly chosen
chromosome, and then following its frequency trajectory under drift until it is either lost or reaches for the
�rst time the desired target frequency f0. If lost, we go back to the starting point and reintroduce the allele
in a single copy. If the allele successfully reaches frequency f0, its selection coe�cient is then set to the
desired value s > 0 and its frequency trajectory is further followed until it reaches the frequency fsample or
is lost. In the latter case, the simulation is reset and repeated from the point where the allele was recorded at
frequency f0 and positive selection started.
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To model soft sweeps from RNM, we assume that new instances of the adaptive allele arise at the selected
locus at a speci�ed “adaptive mutation rate” µα, such that multiple versions of the adaptive allele from
independent mutational origins can contribute to the sweep. The value of µα here serves as the tuning
parameter for sweep softness, with higher values tending to result in more versions of the adaptive allele
segregating in the population and therefore softer sweeps. We simulate this scenario similarly to the hard
sweep scenario, except that new instances of the adaptive allele can now continue to arise at the speci�ed
rate µα while the sweep is progressing. All instances of the adaptive allele are assumed to have the same
selection coe�cient s. However, we allow each chromosome to carry at most one such allele, meaning that
if a new adaptive mutation occurs on a chromosome that already carries one, the original adaptive allele will
be kept and the new one discarded. The simulation is followed until the combined frequency of adaptive
alleles across chromosomes reaches fsample. Note that similar to our hard sweep simulations, the simulation
is restarted from the beginning if the initial �rst copy of the adaptive allele is lost.

Whenever a simulation is restarted due to the adaptive allele being lost, it is given a new seed for the
random number generator in SLiM, but its parameters retain their exact numerical value. This guarantees
each set of simulation parameters is given multiple chances to produce an evolutionary trajectory resulting in
a selective sweep. For computational purposes, however, a failsafe is implemented where the set of simulation
parameters is entirely discarded if the number of simulation restarts exceeds a threshold Rmax.

One important thing to keep in mind is that not all sweeps generated by the above SGV and RNM
simulation models will indeed be soft. If f0 or µα are su�ciently small, both models may generate hard
sweeps with high probability (Hermisson & Pennings, 2017). To ensure that our machine learning approach
is trained with sweeps of the correct type, we reject any simulated sweeps generated under the SGV or RNM
models that are not actually soft according to their genealogy at the adaptive site. Speci�cally, this means
we keep only those sweeps generated under the above SGV and RNM procedures where the coalescence
time of all sampled adaptive allele copies is indeed older than the onset of positive selection, while sweeps
with younger coalescence times are rejected. According to this criterion, under our simulation parameters,
there was a probability of rejection of 47 % for RNM simulations and 12 % for SGV simulations.

Window analysis of sweep signatures
Our machine learning framework is trained on a set of summary statistics; the pipeline currently has

implemented 7 of them. Three of these statistics are designed to capture features of the SFS: the total number
of SNPs, the average nucleotide heterozygosity π (Charlesworth & Charlesworth, 2010), and Tajima’s D
(Tajima, 1989). The other four are designed to capture features of the haplotype frequency spectrum: the
number of distinct haplotypes, and haplotype homozygosity measures H1, H12, and H2/H1 (Garud et al.,
2015). We chose this broad set of statistics because they have already been successfully used in previous
approaches and can capture di�erent aspects of polymorphism patterns that may be informative about sweep
parameters and type.

These statistics are considered “windowed” in that they require speci�cation of a genomic window over
which they are estimated. This choice is to some extent arbitrary and previous approaches have invoked
di�erent rationales for speci�c choices. For example, Garud et al. (2021) estimated H12 and H2/H1 statistics
in their study over windows centered on the putative sweep locus, using a window size of 401 SNPs, which
corresponds to approximately 10 kb in the D. melanogaster population samples they analyzed. The choice of
window size intrinsically gears a method to a speci�c sweep strength, but this could be problematic if the
method is intended to be capable of inferring sweep parameters and type over a broad range of selection
strengths.

To address this issue, our method adopts a di�erent approach where each statistic is evaluated over
a wide range of systematically varying positions and window sizes, and the machine learning model is
then trained on all of these data. In particular, we estimate each of the 7 summary statistics over a total of
d× d = d2 subwindows designed to capture neutral polymorphism at di�erent locations and resolutions
around the sweep locus (Fig. 2). The smallest subwindow size is speci�ed in base pairs by the parameter lmin;
the largest is the size needed to cover the full genomic region of length L, with intermediate sizes scaling
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Figure 2: Division of genomic region into subwindows. Base pair values are shown for d = 21 dimensions,
with minimum subwindow size of lmin = 1 kb and a total locus size of L = 1000 kb. One subwindow size
(12 kb) is highlighted in red. Exact window sizes are listed in Table S2.

logarithmically. Positions of subwindows are chosen such that subwindows of the same size overlap by half
their size with each neighbor. The resulting 7d2 data points for each simulated population sample provide
the data representation and input for our machine learning algorithms. Note that in contrast to SNP window
sizes, we de�ne our windows by a number of base pairs. This allows window sizes to remain constant over
every sweep simulation, no matter their parameters, and lets the heterozygosity in a genomic region be itself
part of sweep signature.

For the purposes of computational neural network �tting, values are normalized to integers in the range
0 to 255 on a linear scale. Raw values above or below the bounds are then converted into the upper or lower
bounds, respectively. Bounds for most remaining statistics were based on biological limits (Table S1). The
bounds for Tajima’s D were picked as a range of 3 standard deviations above and below its theoretical mean
of 0 (Tajima, 1989). For π and the total number of SNPs, upper bounds were the highest values observed in
subwindows belonging to the empirical control sweeps in D. melanogaster data; see below.

Implementation of machine learning models
For the inference of sweep parameters and mode, our method trains a convolutional neural network

(CNN) taking as input the normalized data structure of 7d2 values. The CNN’s architecture with convolutional
�lters can take full advantage of the correlation structure between the three dimensions of subwindow
location, subwindow size, and summary statistic. The exact network architecure is a tunable parameter in
the pipeline and can be freely chosen as long as it accepts as input three-dimensional data of shape 7× d× d.
The architecture implemented by our pipeline consists of two groups of hidden layers, each composed
of a convolutional layer (with 2 × 2 kernels, stride 1, and padding 1), ReLU activation, and Maxpoool
regularization (with a 2× 2 kernel). The �rst convolutional layer has 128 channels of �lters and the second
64. After passing through the second group of hidden layers, data is �attened and passed to a fully connected
output layer. For classi�cation models, that output is then passed to an additional Softmax activation layer
to generate label probabilitites. The CNN architecture is implemented in PyTorch (Paszke et al., 2019). To
avoid over�tting and shorten training time, our pipeline employs the 1cycle learning policy of Smith (2018),
as implemented in the fastai v2 library (https://github.com/fastai/fastai).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.19.500702doi: bioRxiv preprint 

https://github.com/fastai/fastai
https://doi.org/10.1101/2022.07.19.500702
http://creativecommons.org/licenses/by-nc-nd/4.0/


Application to positive controls in D. melanogaster
To test our method on empirical data, we used three previously studied selective sweeps in D. melanogaster

genes associated with the evolution of pesticide resistance: Ace (FlyBase ID FBgn0000024); CHKov1 (FlyBase
ID FBgn0045761); and Cyp6g1 (FlyBase ID FBgn0025454) as positive controls. Our analyses were performed
on version 2 of the Drosophila Genetic Reference Panel (DGRP2; Huang et al., 2014; Mackay et al., 2012),
which we �ltered for biallelic SNP sites with at most 15 % missing data. The data was then imputed with
Beagle 5.1 (Browning et al., 2018). From the imputed SNP dataset we extracted subwindows centered around
the three sweep loci of interest. The SNP coordinates of the three resistance loci in Ace in the DGRP2 are
3R:9 069 054, 3R:9 069 408, and 3R:9 069 721; we used the middle SNP at position 9 069 408 as the center of
the Ace window. The CHKov1 window was centered at 2R:21 150 000, roughly the middle of the gene as
recorded in FlyBase. The Cyp6g1 window was centered at 2R:8 072 884, the insertion point of the Accord
transposable element that is common to all adaptive alleles at this locus (Battlay et al., 2018). All three
control loci represent partial sweeps in the DGRP2 dataset: 78 out of 205 (38 %) of lines have at least one
alternate allele at any of the Ace resistance loci; 139 lines (67.8 %) were found by PCR to have the resistance
insertion at the CHKov1 locus (Magwire et al., 2011); and 155 lines (75.6 %) have a resistant allele at Cyp6g1
as indicated by the alternate allele at the Accord insertion point. For the analysis of genome-wide patterns,
we studied 1-Mbp-long windows across the 2L, 2R, 3L and 3R chromosomes at 200 kb steps. Empirical SNP
genotypes at the extracted windows were converted to ms format and processed into 21× 21× 7 data as
described above, using the same statistic normalization bounds.

Software availability
The code used for simulation and inference in this paper is available at https://github.com/ianvcaldas/

drosophila-sweeps, together with instructions on how to adapt the method to new datasets.

Results
In principle, our machine learning framework can be trained to infer any sweep parameter in any

evolutionary scenario that can be appropriately simulated. Below, we �rst illustrate this for an application of
our method to infer selection coe�cient and sweep type in a simple population model broadly inspired by
Drosophila melanogaster. Using this model, we evaluate the method’s performance under di�erent training
procedures and its robustness to confounding factors such as misspeci�ed demography or recombination
rate, which will provide insights into the internal representation of sweep parameters in our method. We
then demonstrate an extension of the method to partial sweeps. Finally, we evaluate the performance at
positive controls provided by three known recent selective sweeps in D. melanogaster.

Basic model training and validation
As an initial demonstration of our framework we trained it for inferring selection coe�cient and sweep

type in a basic model of a diploid panmictic population of constant size. Our choice of parameters for this
model was broadly inspired by a natural population of D. melanogaster from North Carolina, described in the
DGRP2 data set, which we rescaled for computational e�ciency to an e�ective population size ofNe = 50 000
(Haller et al., 2019). The mutation rate was chosen such that the average nucleotide heterozygosity in our
model (under neutrality) equaled the empirical genome-wide estimate of π = 0.004518 from the DGRP2
data, yielding a value of µ = π/4Ne = 2.25× 10−8. The recombination rate was chosen such that the
ratio of µ/r in our model equals a previously derived estimate for D. melanogaster (Arguello et al., 2019),
yielding r = 1.619× 10−7. When comparing these values with an empirical estimate of the actual nucleotide
mutation rate of µ′ = 2.8× 10−9 in D. melanogaster (Keightley et al., 2014), this yields a rescaling factor of
µ/µ′ ≈ 8.03. In other words, one generation in our simulations should correspond to approximately eight
generations in the real-world population.
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The simulated genomic region is of size L = 106 base pairs, and we assume a sample size of k = 205
chromosomes drawn randomly from the population, equaling the number of inbred lines in the DGRP2.
To con�rm that this model indeed provides a reasonable approximation for genome-wide polymorphism
patterns in the DGRP2, we performed 500 neutral coalescence simulations under the chosen parameters and
compared the simulated site-frequency spectra to the empirical spectrum observed in DGRP2 data, showing
excellent agreement (Fig. S1).

To generate selective sweep data for model training, we simulated hard sweeps and soft sweeps from
RNM and SGV with randomly drawn selection coe�cients and softness parameters. Sweep location was set
at the center of the simulation region, with sweep coordinate at base pair position xsweep = 500 000. We
further assume that the population samples are taken in the generation where the combined frequency of all
adaptive alleles reaches fsample = 1.0, i.e., the moment the sweep reaches �xation in the population. For all
three types of sweeps, the value of s for each simulated sweep was drawn from a log-uniform distribution
with bounds 0.01 < s < 100. This corresponds to sweep signatures extending over approximately 10 kb
to 10 000 kb in our model, thus spanning a wide range of possible sweep signatures in D. melanogaster.
Simulations of hard sweeps at the extremes of this parameter range illustrate how our window analysis with
systematically varying window sizes can capture signatures across this full range of selection coe�cients
(Fig. S2).

For RNM sweeps, we drew the value of the adaptive mutation rate from a log-uniform distribution
with bounds 5× 10−8 < µα < 2.5× 10−5. This corresponds to a population level adaptive mutation rate
θα = 4Neµα between 0.01 and 5, which covers a broad range of softness levels, from hard sweeps to very
soft sweeps with many independently originated adaptive alleles captured in the sample (Hermisson &
Pennings, 2017). Note, however, that only true soft sweeps (see Methods) were kept and labelled as RNM
soft sweeps, while simulations resulting in hard sweeps were discarded. The �nal set of RNM soft sweeps
generated by this procedure contained 2 to 26 (median 4) independently originated adaptive alleles per
sample.

For SGV sweeps, the starting frequency f0 at which a previously neutral allele becomes adaptive was
drawn from a log-uniform distribution with bounds 2/(2Ne) < f0 < 0.01. This means the number of
chromosomes in the population carrying an adaptive allele at the onset of selection ranged from 2 to 1000.
Again, only true soft sweeps were kept and labelled as SGV soft sweeps. In the �nal set of SGV soft sweeps
generated by this procedure, the number of di�erent lineages present at onset of positive selection that were
captured in the sample ranged from 2 to 188 (median 24).

Overall, we generated a data set of 15 000 sweeps. Our training dataset consisted of 4000 sweeps from
each of the three di�erent modes (hard, RNM soft, and SGV soft), and our validation dataset of 1000 sweeps
from each mode. The population parameters of the basic model are summarized in Table 1. To calculate
windowed summary statistics, we chose a number of subwindow sizes and number of subwindow positions
per size of d = 21, resulting in 21× 21× 7 = 3087 summary statistic values per simulation. The smallest
subwindow size was set at lmin = 1 kb, with larger sizes increasing exponentially as described in the Methods.

We chose selection coe�cient and sweep mode as the main evolutionary parameters of interest. Estimation
of selection coe�cient was implemented as a regression model to determine the base-10 logarithm of the
selection coe�cient s of a complete sweep in our basic model. Estimation of sweep mode was implemented
as a three-way classi�cation: given a sweep signature, the method should tell whether it comes from a hard,
RNM, or SGV sweep. For each of these two applications, we trained a separate CNN.

To pick the length of training, we performed 10 training replicates of every model with a di�erent
training and validation split of the total data. We checked their learning curves against a variety of early
stopping criteria designed to avoid over�tting (Prechelt, 2012), and the �nal training period was chosen as the
one producing the lowest stable value of the loss function on the validation dataset (Fig. S3). Further training
would cause an even lower decrease of training loss but a gradual increase in validation loss, indicating
over�tting. Each model was thus trained for 50 epochs, each epoch being a full pass across the training
dataset in batches of size 64.
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Performance evaluation
We �rst checked the performance of our CNN trained for estimating selection coe�cient on the validation

dataset. Fig. 3A shows that this CNN estimates the selection coe�cient in an unbiased way over all four
orders of magnitude of s, for all three selective sweep modes. The regression model of s achieved a validation
root mean squared error (RMSE) of 0.11. Since the model operates on a log10 (s) scale, we de�ne the “mean
relative error” (MRE) of the inferences to be (|strue− sinferred|)/strue, measuring the average amount by which
inferences are o� compared to the true value. Overall, selection coe�cient inference achieves a MRE of
16.9 %. Sweeps from SGV carry less signal about selection strength if compared to hard or RNM sweeps:
the MRE for hard sweeps is 14.7 %, for RNM sweeps 13.8 %, and for SGV sweeps 22.2 %. There is more
uncertainty with increasing selection coe�cient (Fig. 4).

Our CNN trained for sweep mode classi�cation achieves an accuracy of 80.8 % on the validation dataset
(Fig. 3B). The model has an average area under the receiver operating characteristic (ROC) curve of 0.936 (Fig.
3C). Overall, our classi�cation performs substantially better than a random guess, which would have 33 %
accuracy and area under ROC curve of 0.5. In contrast to selection coe�cient, performance of classifying
sweep mode increases with sweep strength (Fig. 4). Most mistakes in identifying sweep mode are made
when true SGV sweeps are erroneously classi�ed as hard. This is consistent with the fact that some SGV
sweeps from low f0 can have signatures almost indistinguishable from those of hard sweeps.

To aid in interpreting the contributions of the individual summary statistics to the performance of our
models, we conducted a feature analysis. For each of the seven statistics used to summarize the sweep signal,
we re-trained our models with the same training and validation datasets, but with input modi�ed as to either
contain only the statistic of interest (21× 21× 1 values per simulation) or all but the statistic of interest
(21× 21× 6 values per simulation). CNNs were adapted to accept the di�erent input dimensions. Results are
shown in Fig. 3D. There is no single statistic that carries the most signal for selection coe�cient or sweep
mode, and any statistic can be removed from the analysis without great loss of performance. Individual
statistics have a more variable distribution of performance.

Gradient-boosted trees perform comparably to deep learning
Our use of CNNs was motivated by their innate capacity to incorporate correlations across data dimen-

sions. We also trained alternative models to see if CNNs represented a big improvement over an approach
that does not involve deep learning. In particular, we used the same datasets to train gradient-boosted
tree models (Hastie et al., 2009). Hyperparameters of the models were chosen according to a description
of gradient-boosted trees previously shown to work well for many di�erent bioinformatic scenarios and
applications (Olson et al., 2017). Validation performances are shown in Table S3. The neural networks have
improved performance over the tree-based model, but the di�erence between the approaches was small.

Additional binary classi�cation models
The same supervised learning framework can be used for applications where the research question is

narrowed. To illustrate this, we trained two additional binary classi�cation models. The �rst model was
trained to distinguish between hard and soft sweeps of any kind. The second model was trained to detect
whether a given a soft sweep originated from recurrent de novo mutations or standing genetic variation. For
the �rst model, we modi�ed datasets such that RNM and SGV sweeps were given the same label. For the
second model, only soft sweeps were included in the training dataset, as hard sweeps are irrelevant to the
question. Datasets were balanced such that each label was equally represented, and hyperparameter training
proceeded as described previously, with 50 epochs of training (Fig. S3C, D).

The two additional binary classi�cation models performed with high accuracy on validation data (Fig.
S4). The �rst model was able to distinguish between a hard sweep or a soft sweep of any mode with accuracy
of 82.9 % and area under ROC curve of 0.905. The second model was able to detect whether a given soft
sweep came from recurrent de novo mutations or from standing genetic variation with accuracy 96.1 % and
area under ROC curve 0.993. This high performance corroborates that these two di�erent modes of soft
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Figure 3: Validation of machine learning models to infer selection coe�cient and sweep mode. (A) True
versus inferred log10 (s) for the three sweep modes. (B) Confusion matrix of sweep mode inference, with
percentages given across columns. (C) ROC curves for sweep mode inference. Each curve designates a
one-vs.-all comparison between a reference mode and the other two modes combined. (D) Inference of
selection coe�cient and sweep mode by subset of summary statistic. Each row is a separate scenario with
only the statistics marked with an “x” on the left panel included in training. The baseline scenario with all
statistics is highlighted in red.
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Figure 4: Validation of machine learning models to infer selection coe�cient and sweep mode, split by
di�erent bins of the selection coe�cient s. Each bin contains approximately 380 simulations.

Dataset Parameter changed from main dataset
Main dataset —

Partial sweeps fsample ∼ Uniform(0.25, 1.0)
Strong bottleneck Nb = (0.01)Na = 500
Weak bottleneck Nb = (0.05)Na = 2500

Strongly o�-center xsweep = 510 kb
Weakly o�-center xsweep = 500.5 kb
Bigger population Ne = 100000

Smaller population Ne = 25000
Higher recombination r = 4.857× 10−7

Lower recombination r = 5.397× 10−8

Table 2: Simulation parameters for all datasets, indicating parameter changes from values in Table 1. The
partial sweeps dataset is used for training and validation as well as for assessing the robustness of the model
trained on �xed sweeps. Na refers to the pre-bottleneck population size, while Nb refers to the population
size during the bottleneck (see text for full description of the bottleneck simulation strategy).

sweeps indeed leave distinct genomic signatures from each other. Overall, these results demonstrate that the
best option of what simulated datasets to use and what sweep parameter to infer depend on the research
question under consideration.

Misspeci�cation of recombination rate and e�ective population size
The exact evolutionary parameters of a study population are usually unknown. This raises the question of

how sensitive our method will be to misspeci�cation of the parameters used for model training. To examine
this question, we �rst studied the performance of our method under a scenario of equilibrium demography
where only the recombination rate was misspeci�ed. This is especially salient because recombination rates
vary along the genomes of most organisms, and complete knowledge of the local recombination landscape is
not often available. In particular, we applied the models to validation datasets simulated with a recombination
rate that was three times higher or lower than the value used for the model training (Table 2). Figure 5A (left
two panels) shows that when the actual recombination rate is lower than what the model was trained on
(i.e., r was overestimated in the training model), sweep coe�cient is also systematically overestimated by
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our method, and vice versa.
These results are consistent with an interpretation where the neural network for selection coe�cient

estimation learned to use information on sweep size for its inferences. The expected size of the genomic
region over which a sweep signatures extends should be roughly proportional to the inverse of the product
of the recombination rate r and the expected sweep duration τ , de�ned as the average number of generations
it takes a positively selected mutation destined to �xation to proceed from its initial emergence to �xation
in the population (Kaplan et al., 1989). Using the theoretical approximation that τ ∼ 2 ln(2Nes)/s for a
codominant mutation of selection coe�cient s (Desai & Fisher, 2007), this yields an expected sweep size on
the order of ∼ s/[2r ln(2Nes)]. Neglecting the logarithmic dependence on Nes for now, sweep size should
therefore be roughly proportional to the ratio s/r. Consequently, if the model is indeed trying to �t sweep
size, it should compensate for an overestimation of r in the training data by also overestimating the inferred
s to obtain a sweep of similar size as observed in the actual data, and vice versa.

The behavior of our method when other evolutionary parameters are misspeci�ed further corroborates
this interpretation. For example, we studied a scenario whereNe is misspeci�ed in training while Θ = 4Neµ
and the ratio µ/r are set to their correct values. Such a scenario might be motivated by a study system for
which we have an estimate of the level of nucleotide heterozygosity that allows us to infer Θ, as well as an
estimate of the relative strength of mutation versus recombination, but we do not know the precise values of
Ne, µ, and r. In that case, one could set one of the parameters, say Ne, to some chosen value, and infer the
values of the other two using the two given relations.

Figure 5A (right two panels) shows the results for two examples of such a scenario, where Ne in the
validation data was set to a value either two times higher or lower than the value used for model training,
while Θ and µ/r were at their correct values. Here, selection coe�cient is underestimated when Ne was
overestimated in training, and vice versa. This is again consistent with the above interpretation, because
when Ne is overestimated, µ will be underestimated, given that Θ = 4Neµ is kept constant. Since µ/r
is also kept constant, this means r will be underestimated in training as well, which the method should
compensated for by by an underestimation of the inferred s to obtain a sweep of the size observed in the
validation data.

To more directly test our interpretation that the method captures information about sweep size for its
selection coe�cient inferences, we calculated for each of the above datasets with misspeci�ed training
parameters the ratios sinferred/rtraining and svalidation/rvalidation. If the method indeed relies on sweep size for
its inferences, these two ratios should be similar, given that sweep size should scale roughly with s/r. Fig.
5B con�rms that this is indeed the case, at least until selection becomes very strong, which makes sense
given that the s/r scaling is expected to break down for large s. We conclude moreover that our model is
not attempting to simply �t the observed value of the product 2Nes, a measure of the “e�ective” coe�cient
of selection often used in the context of deleterious mutations. If that would be the case, our method would
be expected to underestimate s when Ne is overestimated in training, and vice versa, the exact opposite of
what is actually observed.

Importantly, the overall accuracy of our method for sweep mode classi�cation was not severely a�ected
by any of the datasets with misspeci�ed training parameters (Fig. 5C). The method performed at a similar
overall accuracy of 73.9 % for underestimated r and 75.6 % for overestimated r. For the scenarios where
Ne was misspeci�ed, the method performed with accuracy of 77.3 % for underestimated Ne and 80.5 % for
overestimated.

Sweep mode inference is robust to demography misspeci�cation
Demographic events such as population bottlenecks can distort the signatures of selective sweeps (Crisci

et al., 2012; Simonsen et al., 1995; Thornton et al., 2007). This could lead to errors in the inferences of sweep
parameters if the model is not trained under the correct demographic history. To test the robustness of our
method under such demographic misspeci�cation, we applied the models trained on equilibrium demography
to sweeps simulated in populations that had undergone a bottleneck. We speci�cally tested two scenarios
where population size was reduced for 100 generations to either 5 % or 1 % of its original value (Table 2).
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Figure 5: Performance of machine learning models when applied to datasets with values of r andNe di�erent
to the training ones. In panel (B), inferred and true s/r refer to sinferred/rtraining and strue/rtrue, respectively.
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The onset of the bottleneck in each given simulation run was chosen independently of the start time of the
sweep, with each set to happen at a random generation in the range 1 to 2500 after burn-in. Population
samples were again taken in the generation where the sweep reached �xation. That way, a sweep could in
principle start before, during, or after the bottleneck. However, we discarded those simulations in which the
sweep had already �xed prior to bottleneck onset. All sweeps whose trajectories intersected the bottleneck
were kept, as were those where the sweep had started after the bottleneck to represent scenarios where a
sweep happens in a population recovering from a past reduction in size.

Fig. 6 shows that the presence of a bottleneck can cause overestimation of selection coe�cient in our
models trained on constant demography, with the e�ect being larger for the stronger bottleneck scenarios.
This overestimation is most pronounced for weaker sweeps with trajectories that overlap with the bottleneck
for a substantial period and then ultimately become �xed during the bottleneck; those sweeps are marked in
red in Fig. 6A.

This behavior is again consistent with the above interpretation that estimation of selection coe�cient
is based to some extent on sweep size. Consider, for example, a sweep that would fall entirely inside the
bottleneck period (i.e., one that starts and �xes during bottleneck). During its entire “lifetime”, such a sweep
would therefore experience the much smaller bottleneck Ne. This would result in a much shorter expected
�xation time, and thus a larger sweep size, as compared to a sweep of the same selection coe�cient in a
population of the original size. Thus, we would expect that our method trained on a model with the constant,
larger Ne would overestimate selection coe�cient. The relative increase in sweep size, and thus the expected
degree of overestimation of s, is larger for smaller selection coe�cients, consistent with our observations in
Fig. 6.

Classi�cation of sweep mode likewise loses power under a bottleneck, performing with an accuracy
of 71.5 % or 70 % for the weaker or stronger bottleneck, respectively. Our model tended to misclassify
soft SGV sweeps as hard, and vice-versa, as they did under equilibrium demography. While estimates of
selection coe�cient can be misled in a predictable direction by the presence of a bottleneck not accounted
for in training, the genomic signature of sweep mode is more robust to a temporary reduction in population
size, reinforcing the hypothesis that information about di�erent selective sweep parameters is contained in
di�erent aspects of the patterns of neutral polymorphism.

Robustness to sweep mislocalization
Our method assumes we know the precise location of the sweep, but that information might not be so

clear in reality. To test the robustness of our method to mislocalization of the sweep, we applied the trained
model to two datasets where sweeps were located 0.5 kb and 10 kb away from the exact center of the analysis
window (Fig. S5). Selection strength inference was very robust to mislocalization, with MRE of 17.26 % and
17.77 % for mislocalizations of 0.5 kb and 10 kb, respectively. Accuracy of sweep mode inference was very
robust to a small mislocalization of 0.5 kb, remaining at 80.6 %, but su�ered greatly when the sweep was
mislocalized by 10 kb, dropping to 55 %.

Models trained on �xed sweeps perform poorly on partial sweeps
The training and validation data we have used to this point modeled �xed sweeps. However, partial

sweeps could be very common in nature (Pritchard et al., 2010; Ralph & Coop, 2010), and it may not always
be straightforward to determine whether a given sweep is �xed or partial. To test how the models trained
on �xed sweeps behave when applied to partial sweeps, we generated a validation dataset of sweeps that
were sampled when the adaptive allele �rst reached a given population frequency f , drawn from a uniform
distribution in the range 0.25 to 1.0 (Table 2). Figure 7 shows that such partial sweeps can confound our
method quite substantially. In particular, selection coe�cients are underestimated, with the e�ect being most
pronounced for partial sweeps of lower frequencies. Sweep mode is always classi�ed as a soft sweep from
RNM, independent of the true mode, leading to essentially random performance. Both e�ects may be due to
the fact that in a partial sweep there are still neutral haplotypes segregating at the sweep locus, resulting in
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Figure 6: Performance of machine learning models when applied to two datasets with historical bottlenecks.
In panel (A), sweeps marked in red have reached �xation during the bottleneck.
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Figure 7: Performance of machine learning models when applied to a dataset of partial sweeps. Sweep
frequencies at time of sampling were distributed uniformly in the range 0.25 to 1.0.

higher levels of genetic variation as compared to a �xed sweep. This could bias our method towards inferring
sweep scenarios from the training data of �xed sweeps that maintained the highest levels of diversity, which
should be RNM soft sweeps with weak selection. Our results con�rm the previous �ndings of Xue et al.
(2021) that models trained on �xed sweeps are not robust when applied to partial sweeps.

Extending the model to partial sweeps
Given the observation that a model trained on �xed sweeps performs poorly when applied to partial

sweeps, we wanted to test whether explicitly including partial sweeps in model training allows the method
to regain its power. For this re-training, we used the same dataset as in the previous section, where sweeps
were sampled when the adaptive allele �rst reaches a given population frequency f , drawn from a uniform
distribution in the range 0.25 to 1.0 (Table 2). We again split this training dataset into 4000 sweeps of each
sweep type for training, and 1000 sweeps of each type for validation. Training proceeded in the same way
as for the original dataset, for 50 epochs. No over�tting was observed (Fig. S6).

Figure 8 shows that this re-trained model achieved almost the same accuracy for selection inference as
the original model that was trained and validated exclusively on �xed sweeps. Importantly, inference of
selection coe�cients in this new model was unbiased across the whole range of selection strengths tested.
Classi�cation of sweep mode performed at an accuracy of 74.6 %, which is only somewhat lower than the
80.8 % of the original model. Overall, these results suggest that it is critical to include partial sweeps in
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Figure 8: Validation performance of model trained on partial sweeps. (A) True versus inferred log10 (s) for
the three sweep modes. (B) Confusion matrix of sweep mode inference, with given across columns. (C) ROC
curves for sweep mode inference. Each curve designates a one-vs.-all comparison between a reference mode
and the other two modes combined.

model training whenever the method is applied to sweeps that may not be �xed in the population.

Performance at known sweep events in D. melanogaster
To assess the performance of our method on real-world data, we applied it to three positive control loci in

D. melanogaster where recent adaptations of known biological mechanisms have left distinct sweep signatures
in the DGRP data (Figure S7). The �rst locus is the gene Ace. Here, several point mutations that confer
resistance to a variety of pesticides have independently evolved and recently spread through the population
(Duneau et al., 2018; Fournier et al., 1993; Karasov et al., 2010). This locus should therefore represent a soft
sweep from recurrent de novo mutation. The second locus is the gene CHKov1, where the recent sweep of a
transposable element underlies the evolution of resistance to organophosphates (Aminetzach et al., 2005).
Prior to its spread, this transposable element was already segregating at low frequencies in ancestral African
populations (Magwire et al., 2011), presumably making this a soft sweep from standing genetic variation.
The third locus is the gene Cyp6g1, at which a series of nested transposable element insertions followed by a
duplication are associated with the recent evolution of resistance to DDT and other pesticides (Daborn et al.,
2001; Schmidt et al., 2010). Since multiple adaptive alleles have swept at this locus, it ful�lls the de�nition of
a soft sweep. However, given the complex genetic structure of this adaptive event, it is not immediately clear
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whether it more closely resembles our simulated RNM or SGV soft sweep scenarios.
Our inference models were already trained on parameters chosen to resemble the DGRP2 data (although

with a rescaled e�ective population size ofNe = 50 000 corresponding to a rescaling factor of approximately
8). Thus, we directly applied these models to the three control loci, using as input a window centered at
each sweep’s location (see Methods). Since all three sweeps are partial, with adaptive alleles segregating
between 30 % and 76 % in the DGRP2, we used the models trained on partial sweeps for these inferences.
We trained 10 models with the same training and validation datasets for each inference target to capture the
distribution of inference uncertainty.

The fact that inferences are based on a rescaled model has important implications for the interpretation
of estimated selection coe�cients. In particular, a rescaling factor of 8 means that a single generation in the
simulation model corresponds to 8 generations in the real population. Thus, a sweep that would �x in, say,
160 generations in the real population, would correspond to a sweep that �xes in only 20 generations in our
rescaled model, therefore requiring a much higher value s. We will show below how this reasoning can be
used to map an inferred selection coe�cients from the rescaled model onto its corresponding values in the
real population.

At Ace, our method classi�ed the sweep as an RNM soft sweep with probability 98.8 % to 99.9 % (median
99.6 %), consistent with the known sweep mechanism. The selection coe�cient was inferred to be between
1.82 < s < 3.35 (median 2.41) across 10 model training replicates. A sweep with s = 2.41 in our rescaled
simulation model takes on average ∼ 42 generations to �xation. Given the rescaling factor of 8, this should
correspond to ∼ 336 generation in the unscaled population with Ne = 400, 000. Using Wright-Fisher
simulations, we estimated that this corresponds to a selection coe�cient of s ∼ 0.14 in the unscaled
population, which is broadly consistent with previous estimates (Karasov et al., 2010). The sweep at CHKov1
was correctly inferred as a soft sweep from SGV, with all model replicates giving a probability above 99.9 %.
The selection coe�cient was inferred to be between 15.5 < s < 57.1, with a median value of 41.7. While
this value may appear very large, it speci�es a sweep that on average still takes ∼ 22 generations to �xation
in our rescaled model, and thus is only about twice as fast as the inferred sweep at Ace (thereby providing
a nice illustration for how the scaling of selection coe�cients becomes far from linear for larger s). This
should correspond to a sweep taking ∼ 176 generations in the unscaled population, which yields s ∼ 0.28.
Finally, the sweep at Cyp6g1 was again correctly inferred as a soft sweep, with our method classifying it as
SGV sweep with probability 99.1 % to 99.9 % and median 99.9 %. The selection coe�cient was inferred to
be between 5.16 < s < 23.53 (median 7.13). This speci�es a sweep that on average takes ∼ 29 generations
to �xation in our rescaled model, yielding a corresponding sweep duration of ∼ 232 generations and a
value of s ∼ 0.21 in the unscaled population. In summary, the classi�cations of sweep types by our method
are consistent with the know sweep mechanisms at each of the three control loci. The estimated selection
coe�cients suggest very strong selection, which seems consistent with the fact that all of these sweeps are
associated with the evolution of resistance against widely used insecticides.

Discussion
In this study, we presented a supervised machine learning framework for the inference of sweep parame-

ters from patterns of genetic variation observed around a sweep locus. We demonstrated the performance
of our method on models trained for the estimation of selection coe�cient and the classi�cation between
hard sweeps, SGV soft sweeps, and RNM soft sweeps across a wide range of evolutionary scenarios. We
further demonstrated how training data can be customized to adapt the method to new questions, such as an
extension to partial sweeps. Our method correctly recovered the sweep types at three loci in D. melanogaster
where strong selective sweeps of known mechanism have recently occurred. These results suggest that
di�erent sweep modes indeed leave distinct signatures in the patterns of surrounding variation that can
allow us to infer the strength and type of a sweep with some accuracy.

One critical consideration for any machine learning approach is deciding how to represent the data that
is fed into the method (Halevy et al., 2009; Mughal & DeGiorgio, 2019). In our case, we selected a variety of
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summary statistics evaluated around the sweep locus, which include estimates of the level of nucleotide
diversity, the shape of the site-frequency spectrum, and haplotype patterns. Previous approaches have used a
similar set of statistics (Schrider & Kern, 2016), while others have suggested alternative representations such
as the full site-frequency spectrum (Ronen et al., 2013), haplotype-frequency spectrum (Messer & Neher,
2012), the inferred genealogies (Ralph et al., 2020), or even a picture of the raw genotype alignment in the
hope to retain as much original information from the data as possible without any summarization (Flagel
et al., 2019). We are not aware of any systematic analysis that has yet tested these representation alternatives
against each other under comparable circumstances, so it remains unknown if any of them is consistently
more powerful than the others. One important advancement of our method compared to previous approaches
is that we systematically varied the window sizes over which summary statistics are estimated. This strategy
allows our method to attain power across a wide range of sweep strengths, including very strong sweeps
with selection coe�cients s� 1 (which are not unusual in simulations where evolutionary parameters need
to be rescaled for computational feasibility).

We join previous authors in arguing that supervised machine learning can be a powerful strategy for
estimating population genetics parameters. Since evolutionary history in nature is hard to know, and there
are still few cases of ground-truth knowledge of selective sweeps or demographic history, such methods
typically rely on simulated training data. We argue that this family of methods belongs to the transfer learning
paradigm, where a model is trained on a source domain of data before being applied to a di�erent but related
target domain (Weiss et al., 2016). Importantly, these methods need to address the possibility of negative
transfer: if the source and target domains are too dissimilar, results in the target domain might be misleading
(Rosenstein et al., 2005). In this work, we considered three selective sweeps in Drosophila melanogaster to be
labeled data in the target domain and used them as controls in order to test the performance of the method a
posteriori. Formal transfer learning algorithms are available where performance on the target domain is used
to inform the training process in the source domain (Weiss et al., 2016). These algorithms have the advantage
of being able to quantify negative transfer as well. We anticipate that they will become more prevalent in the
�eld as the amount of labeled evolutionary data increases and evolutionary simulation software continues
to improve. Tools for model interpretation of machine learning output, both model-agnostic (Ribeiro et al.,
2016) and speci�c to neural networks (Olah et al., 2018), are also available and can be used to improve
interpretation of results.

We tested the performance of our method under a highly idealized evolutionary model of a panmictic
population of constant size. However, the �exibility of the SLiM simulation framework used for generating
the training data allows simulations to be tailored for any speci�c organism and evolutionary scenario.
Demographic history, population structure, or any aspect of mating or life history can be easily incorporated
in SLiM, which also provides direct support for the growing set of standardized evolutionary models
implemented in the stdpopsim library (Adrion et al., 2020). Strategies to make simulations even more realistic
could include varying levels of dominance and models of older sweeps sampled some time after �xation, as
both factors can a�ect sweep signatures (Hart�eld & Bataillon, 2020; Przeworski, 2002). Training data could
also be simulated to incorporate missing data and sequencing error. Even further customization could be
achieved by tailoring simulations to the speci�c locus of interest, given that mutation and recombination
landscape variation, background selection, presence of nearby genes, and recurrent sweeps can all a�ect
sweep signatures and interact with each other in ways that are often hard to predict.

The question arises of how much tailoring of simulations to do. Is it ideal to create a highly customized
dataset with �xed parameters that are known about the population and locus of interest, or is it better to train
the model with a more general parameter distribution? In practical applications, the precise evolutionary
parameters of a study population are often fraught with considerable uncertainty. It has therefore been
suggested that evolutionary parameters should be tuned to maximize the �t of the used summary statistics
to those observed in the real data (Garud et al., 2021). An alternative approach is to model evolutionary
parameters as random variables in the training data to account for uncertainty and to allow the the model to
learn about a more generalizable distribution of scenarios. For instance, in this work, we have opted to train
a single model with a distribution of partial sweep frequencies, rather than training one model per locus
with data containing only the speci�c partial frequency (if known) of the sweep in question. Similarly, if one
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wants to estimate the selection coe�cient of a sweep one presumes to be an SGV soft sweep, it is unknown
if it were best to use a method trained on only such sweeps, or if it is better to still include other sweep
types in training, as we have done here. Choosing which approach to take likely requires a trade-o�: a more
general training dataset can be more di�cult to train on and have noisier estimates, but it is presumably
more robust to over�tting than a highly tailored one with �xed parameters, especially if there is uncertainty
about the true parameter values. One systematic way of guiding the choice is to treat this question as a
problem of hyperparameter tuning (Abu-Mostafa et al., 2012), choosing the set of simulation parameters
that maximizes performance on an independent validation dataset.

Supervised learning is a tool that we believe should be easily available and widely applicable by the
�eld of population genetics. The approach we developed in this work serves that purpose by introducing a
forward simulation framework that can be intuitively customized and extended to �t a study organism or
locus of interest and then used as training data for a model capable of inferring any given sweep parameter
of the simulations. Our models inferred selection coe�cient and sweep type, but supervised learning is
a general framework and other parameters of evolutionary interest can be inferred from data following
the same approach. We thus hope that our framework can contribute to lowering the technical barrier of
parameter inference in population genetics.
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Supporting Figure 1: Site-frequency spectrum of neutral simulations and empirical data. The y-axis counts
the number of segregating sites in one megabase, averaged across the genome for the empirical data and
across simulations for the simulated data.
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Supporting Figure 2: Sweep signatures of hard sweeps averaged over 100 simulations, with �ve out of 21
subwindow sizes shown for compactness. The y-axis shows normalized statistic values as described in the
main text.
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Supporting Figure 3: CNN learning curves of the machine learning models.
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Supporting Figure 4: Validation performance of two models of binary classi�cation: A model to distinguish
hard from soft sweeps (panels A and B) and a model to distinguish RNM from SGV soft sweeps (panels C and
D). (E) Performance validation by subset of summary statistic. Each row is a separate scenario with only the
statistics marked with an “x” on the left panel included in training. The baseline scenario with all statistics is
highlighted in red.
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Supporting Figure 5: Performance of machine learning models when applied to sweeps not in the middle of
the window. (A) Selection coe�cient estimation. (B) Accuracy of sweep mode inference.
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Supporting Figure 6: CNN learning curves of the machine learning models trained on partial sweeps.
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Supporting Figure 7: Signatures of selective sweeps at three control loci in Drosophila melanogaster. Five
subwindow sizes out of 21 are shown for compactness. CHKov1 and Cyp6g1 have valleys of heterozygosity at
more than one subwindow resolution, while Ace displays a large valley of heterozygosity extending beyond
the boundaries of the analyzed region. This could be because the evolutionary scenario at Ace was more
complex than a single sweep, possibly involving several sweeps in the surrounding region.
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Supporting Figure 8: The method always assumes there is a selective sweep at the center of the focal genomic
region. We applied the trained models to simulated and empirical regions free of sweeps to test how it
performs under violation of this central assumption. Simulation validations were done with a dataset of 5000
neutral coalescent simulations. Empirical validations were done with windows taken from the 2L, 2R, 3L, and
3R chromosomes of the DGRP2 dataset. (A) Selection strength inference. Both models detect very narrow
ranges of “selection strength” for neutral simulated windows with modes near the smallest training value of
0.01, the expected guess for a region with no true selection. The empirical genome-wide estimates have
wider distributions. In both cases, the model trained on partial sweeps infers a higher selection strength than
the one trained on �xed sweeps. The weakest sweeps are the only data in the training dataset of the �rst
model that resemble neutral and empirical windows, but those regions might resemble incomplete sweeps
with higher selection strength in the second model’s training dataset. It’s worth noting that genome-wide
windows of D. melanogaster are not seen as equivalent to neutral simulated windows, presumably because
the D. melanogaster genome does not show signatures of classic neutrality due to density of positive and
background selection (Andolfatto, 2007; Comeron, 2014; Li & Stephan, 2006). (B) Sweep mode inference.
The model trained on �xed sweeps classi�es both neutral simulated windows and the genome-wide data as
soft sweeps from recurrent de novo mutation, as they are are the sweeps with the most genetic diversity
that it knows about. The model trained on partial sweeps, in contrast, �nds RNM sweeps for simulated
windows but splits its genome-wide results between soft sweeps from RNM and SGV. Because samples of
partial sweeps have higher genetic diversity than ones of �xed sweeps, the model has learned to di�erentiate
between the modes of soft sweep even in the face of high heterozygosity. All in all, the parameter estimates
made by our method are explainable even under violation of the central assumption of a selective sweep in
the center of the window.
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Statistic Lower bound Upper bound
SNP count 0 4216
π 0.00 0.0106
Tajima’s D −3.00 3.00
Haplotype count 0 205
H1 0.00 1.00
H12 0.00 1.00
H2/H1 0.00 1.00

Supporting Table 1: Bounds used to normalize raw values of summary statistics.

Subwindow size (kb) Covered (kb)
1 11

1.253 13.783
1.570 17.270
1.967 21.637
2.464 27.104
3.088 33.968
3.869 42.559
4.847 53.317
6.074 66.814
7.610 83.710
9.535 104.885

11.946 131.406
14.968 164.648
18.754 206.294
23.498 258.478
29.441 323.851
36.888 405.768
46.219 508.409
57.909 636.999
72.557 798.127
90.909 999.999

Supporting Table 2: Subwindow sizes used to capture di�erent resolutions of data.

CNN GBT
Selection coe�cient, all (RMSE) 0.11 0.135

Selection coe�cient, hard sweeps (RMSE) 0.088 0.102
Selection coe�cient, RNM sweeps (RMSE) 0.081 0.097
Selection coe�cient, SGV sweeps (RMSE) 0.149 0.187

Sweep mode (accuracy) 80.8 % 80.5 %

Supporting Table 3: Validation of convolutional neural networks (CNN) compared to Gradient-boosted trees
(GBT). RMSE=Root mean squared error.
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