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Abstract 

The identification and characterization of the structural sites which contribute to protein 
function are crucial for understanding biological mechanisms, evaluating disease risk, and 
developing targeted therapies. However, the quantity of known protein structures is rapidly 
outpacing our ability to functionally annotate them. Existing methods for function prediction 
either do not operate on local sites, suffer from high false positive or false negative rates, or 
require large site-specific training datasets, necessitating the development of new 
computational methods for annotating functional sites at scale. We present COLLAPSE 
(Compressed Latents Learned from Aligned Protein Structural Environments), a framework for 
learning deep representations of protein sites. COLLAPSE operates directly on the 3D positions 
of atoms surrounding a site and uses evolutionary relationships between homologous proteins 
as a self-supervision signal, enabling learned embeddings to implicitly capture structure-
function relationships within each site. Our representations generalize across disparate tasks in 
a transfer learning context, achieving state-of-the-art performance on standardized 
benchmarks (protein-protein interactions and mutation stability) and on the prediction of 
functional sites from the PROSITE database. We use COLLAPSE to search for similar sites across 
large protein datasets and to annotate proteins based on a database of known functional sites. 
These methods demonstrate that COLLAPSE is computationally efficient, tunable, and 
interpretable, providing a general-purpose platform for computational protein analysis.  
 
Keywords: Deep learning, structural informatics, functional site annotation, representation 
learning, protein structure analysis 
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1. Introduction 
 
The three-dimensional structure of a protein determines its functional characteristics and 
ability to interact with other molecules, including other proteins, endogenous small molecules, 
and therapeutic drugs. Biochemical interactions occur at specific regions of the protein known 
as functional sites. We consider functional sites that range from a few atoms which coordinate 
an ion or catalyze a reaction to larger regions which binds a cofactor or form a protein-protein 
interaction surface. The identification of such sites—and accurate modeling of the local 
structure-function relationship—is critical for determining a protein’s biological role, including 
our understanding of disease pathogenesis and ability to develop targeted therapies or protein 
engineering technologies. Significant effort has gone into curating databases to catalog these 
structure-function relationships, 1–3 but this cannot keep up with the rapid increase in proteins 
in need of annotation. The number of proteins of the Protein Data Bank (PDB) 4 increases each 
year, and AlphaFold 5 has added high-quality predicted structures for hundreds of thousands 
more. This explosion of protein structure data necessitates the development of computational 
methods for identifying, characterizing, and comparing functional sites at proteome scale.  
 
Many widely used methods for protein function identification are based on sequence. 
Sequence profiles and hidden Markov models built using homologous proteins 6–10 are often 
used to infer function by membership in a particular family, but these methods do not always 
identify specific functional residues and can misannotate proteins in mechanistically diverse 
families. 11 Additionally, structure and function are often conserved even when sequence 
similarity is very low, resulting in large numbers of false negatives for methods based on 
sequence alignment. 12,13 Approaches based on identifying conserved sequence motifs within 
families can help to address these issues. 14,15 However, these methods suffer from similar 
limitations as sequences diverge, resulting in high false positive and false negative rates, 
especially when the functional residues are far apart in sequence. 16 More generally, sequence-
based methods cannot capture the complex 3D conformations and physicochemical 
interactions required to accurately define a functional site or inform opportunities to engineer 
or mutate specific residues. 
 
Recently, methods have applied machine learning to predict function from sequence 17,18 or 
structure. 19 However, like profile-based methods, these lack the local resolution necessary to 
identify specific functional sites, and their reliance on non-specific functional labels such as 
those provided by Gene Ontology terms 20 often limits practical utility. 21 Machine learning 
approaches that focus on local functional sites are either specific to a particular type of site (e.g. 
ligand binding 22,23, enzyme active sites 24) or require building specific models for each 
functional site of interest, 25,26 which can be computationally expensive and demands sufficient 
data to train an accurate model.  
 
A major consideration for building generalizable machine learning models for protein sites is 
the choice of local structure representation. FEATURE, 27 a hand-crafted property-based 
representation, has shown utility for many functionally-relevant tasks. 25,28,29 However, 
FEATURE uses heterogeneous features (a mix of counts, binary, and continuous) which are 
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more difficult to train on and meaningfully compare in high dimensions. Additionally, FEATURE 
consists of radial features without considering orientation and does not account for interactions 
between atoms in 3D, leading to loss of information. 26 Deep learning presents an attractive 
alternative by enabling the extraction of features directly from raw data, 30 but the high 
complexity of deep learning models means that they require large amounts of labeled data. To 
address this, a paradigm has emerged in which models are pre-trained on very large unlabeled 
datasets to extract robust and generalizable features which can then be “transferred” to 
downstream tasks. 31,32 This approach has been successfully applied to learn representations of 
small molecules 33,34 and protein sequences, 17,35,36 but there are few examples of 
representations learned directly from 3D structure. Initial efforts focus on entire proteins rather 
than sites and operate only at residue-level resolution. 37,38 
 
We address these issues by developing COLLAPSE (Compressed Latents Learned from Aligned 
Protein Structural Environments), a framework for functional site characterization, 
identification, and comparison which (1) focuses on local structural sites, defined as all atoms 
within a 10 Å radius of a specific residue; (2) captures complex 3D interactions at atom 
resolution; (3) works with arbitrary sites, regardless of the number of known examples; and (4) 
enables comparison between sites across proteins. COLLAPSE combines self-supervised 
methods from computer vision, 39 graph neural networks designed for protein structure, 40,41 
and multiple sequence alignments of homologous proteins to learn 512-dimensional protein 
site embeddings that capture structure-function relationships both within and between 
proteins. 
 
Self-supervised representation learning refers to the procedure of training a model to extract 
high-level features from raw data using one or more “pretext tasks” defined using intrinsic 
characteristics of the input data. The choice of pretext task is critical to the utility of the learned 
representations. A popular class of methods involves minimizing the distance between the 
embeddings of two augmented versions of the same data point (for example, cropped and 
rotated views of the same image), thereby learning a representation that is robust to noise 
which is independent of the fundamental features of the original data. 39,42,43 Since function is 
largely conserved within a protein family even as sequences diverge, we draw an analogy 
between homologous proteins and augmented views of the same image. Specifically, we 
hypothesized that by pulling together the embeddings of corresponding sites in homologous 
proteins, we could train the model to learn features which capture the site’s structural and 
functional role. In this scheme, sequence alignments are used to identify correspondences 
between amino acids, which are then mapped to 3D structures to define the structural site 
surrounding each residue (Figure 1, Section 2.2). 
 
Pre-trained representations are typically used in one of two settings: (1) transfer learning, 
which leverages general representations to improve performance on problem-specific 
supervised tasks where access to labeled data is limited; and (2) extracting insights about the 
underlying data from the learned embedding space directly (e.g. via visualization or embedding 
comparisons). 44 In this paper, we illustrate the utility of COLLAPSE protein site in both settings. 
First, we demonstrate that COLLAPSE generalizes in a transfer learning setting, achieving 
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competitive or best-in-class results across a range of downstream tasks. Second, we describe 
two applications that demonstrate the power of our embeddings for protein function analysis 
without the need to train any downstream models: an iterated search procedure for identifying 
similar functional sites across large protein databases, and a method for efficiently annotating 
putative functional sites in an unlabeled protein. All datasets, models, functionality, and source 
code can be found in our Github repository (https://github.com/awfderry/COLLAPSE).  

 

2. Results 

2.1. Intrinsic evaluation of COLLAPSE embeddings 
 
To evaluate the extent to which COLLAPSE embeddings capture relevant structural and 
functional features, we embedded the environments of all residues in a held-out set consisting 
of proteins with varying levels of sequence similarity to proteins in the training set. First, we 
find that the degree of similarity between embeddings of aligned sites is correlated with the 
level of conservation of that site in the original MSA (Fig. 2a). Even at less than 30% 
conservation, aligned sites are significantly more similar on average than a randomly sampled 
background of non-aligned sites (𝑝 < 1 × 10!"#). 
 
We also confirmed that our embeddings capture local information at a residue-level resolution, 
meaning that neighboring environments can be effectively distinguished from each other. 
Indeed, the normalized cosine similarity between residue embeddings decreases between the 
residues in sequence increases (Fig. 2b). This effect generalizes even to proteins far away from 
the training set in sequence identity. Finally, among chains with a single fold according to CATH 
4.2 45 (𝑛 = 11,270), the top-level structural class can be distinguished clearly in protein-level 
embeddings, suggesting that secondary structure is a major feature captured by COLLAPSE (Fig. 
2c). Lower levels of the CATH hierarchy also cluster clearly in low-dimensional space (Fig. S1). 

2.2. Generalization across ATOM3D benchmarks 
 
To assess the utility of COLLAPSE embeddings in a transfer learning context, we use ATOM3D, a 
suite of benchmarking tasks and datasets for machine learning in structural biology. 46 We 
selected two tasks from ATOM3D which focus on protein sites: protein interface prediction 
(PIP) and mutation stability prediction (MSP). We evaluate performance compared to the 
ATOM3D reference models and to the task-specific GVP-GNN reported in Jing et al. (2021), 41 
which is state-of-the-art for all tasks. Table 1 reports the results both with and without task-
specific fine-tuning of the embedding model parameters. Without fine-tuning, COLLAPSE 
embeddings and a simple classifier achieve results comparable or better than the ATOM3D 
reference models trained specifically for each task. Fine-tuning improves performance further, 
achieving state-of-the-art on PIP and comparable performance to the GVP-GNN on MSP. 

2.3. Functional site prediction models 
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COLLAPSE embeddings can also be used to build high-precision functional site prediction 
models. We train prediction models for 10 functional sites defined by the PROSITE database, 14 
which identifies local sites using curated sequence motifs. On sites labeled true positive (TP) by 
PROSITE, COLLAPSE outperforms the analogous FEATURE models and perform comparably or 
better than task-specific 3DCNN models trained end-to-end, achieving greater than 86% recall 
on all sites at a threshold of 99% precision. PROSITE also provides false negatives (FNs; true 
proteins which are not recognized by the PROSITE pattern) and false positives (FPs; proteins 
which match the PROSITE pattern but are not members of the functional family). Table 2 
summarizes the number of correct predictions at the protein level relative to the total number 
identified by PROSITE. For all families, COLLAPSE correctly identifies a greater or equal number of 
FN proteins compared to FEATURE and 3DCNN classifiers. The improvement is notable in some 
cases, such as a 162.5% increase in proteins detected for IG_MHC, a 37.5% increase for 
ADH_SHORT, and a 17.6% increase for EF_HAND_1. For four of the seven proteins with FP data, 
we correctly rule out all FPs. For ADH_SHORT and EF_HAND_1, we perform 9.1% and 4.0% 
worse relative to 3DCNN, respectively, but this slight increase in FPs is not substantial relative 
to the improvement in FNs recovered for these families.  

2.4. Iterative search for functional sites across protein databases 
 
While COLLAPSE embeddings can be used to train highly accurate models for functional site 
detection, we can only train such models for those functional sites for which we have sufficient 
training examples. Another way to understand the possible function of a site is to analyze 
similar sites retrieved from a structure database. The set of hits retrieved by this search may 
contain known functional annotations or other information which sheds light on the query site. 
We use iterative COLLAPSE embedding comparisons to perform such a search across the PDB. 
We investigate the performance of this method on the PROSITE dataset while varying two 
parameters: the number of iterations and the p-value cutoff for inclusion at each iteration. The 
method generally achieves high recall and precision after 2–5 iterations at a p-value cutoff of  
5 × 10!$ to 5 × 10!% (Fig. 4; Fig. S4). Notably, when evaluating on the FN and FP subsets, our 
search method even outperforms the cross-validated models on some sites (e.g. IG_MHC, Fig. 
4a). However, the precision and recall characteristics vary widely across families; in some cases 
it predicts the same set of proteins as the trained model (e.g. TRYPSIN_HIS; Fig. 4b), while in 
others it performs worse (e.g. EF_HAND_1; Fig. 4c). Importantly, the method requires no 
training and is very efficient: runtime per iteration scales linearly with the size of the query set 
and with database size (Fig. S5).  

2.5. Protein structure annotation 
 
Our iterative search method assumes that a site of interest has already been identified. 
However, when a new protein is discovered and its structure is solved, the locations of 
functional sites are often unknown. By comparing local environments in the protein’s structure 
to those contained in databases of known functional sites, we can predict which sites are likely 
to be functional. Figure 5 shows two example annotations using a modified mutual best hit 
criterion against a reference database consisting of embeddings from PROSITE and the Catalytic 
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Site Atlas (CSA). First, we show the structure of meizothrombin, a precursor to thrombin and a 
trypsin-like serine protease with a canonical His-Asp-Ser catalytic triad. Our method correctly 
identifies all three residues as belonging to the trypsin-like serine protease family in PROSITE (Fig. 
5a). Hits against the CSA, which are more specific, also include closely homologous proteins 
such as C3/C5 convertase. The associated kringle domain is also identified by its characteristic 
disulfide bond. Second, we show the structure of beta-glucuronidase (Fig. 5b), a validation set 
protein which has no homologs in the training set. We correctly identify all four catalytic 
residues defined by the CSA (in yellow), as well as PROSITE signatures corresponding to the 
glycosyl hydrolases family 2, the family which contains beta-glucuronidase. 
 

3. Discussion 
 
The utility of COLLAPSE embeddings for functional analysis derives from several key features of 
the training algorithm. First, the use of homology as a source of self-supervision signal allows 
the model to learn patterns of structural conservation across proteins, imbuing the model with 
a biological inductive bias towards features that may be important to the protein’s function. 
Such patterns could in theory be learned by a model which sees each protein independently, 
but it would require much more data and training time to identify subtle signals across 
disparate proteins. While evolutionary data has proved crucial to the success of sequence-
based models, to our knowledge this is the first time sequence alignments have been used to 
direct the training of a structural model. Second, by focusing on local protein sites, our 
embeddings are more precise and flexible than models which aim to represent an entire 
protein. COLLAPSE embeddings can be used for arbitrary tasks on the level of single residues or 
even individual functional atoms, to detect important regions in proteins, and to identify 
functional relationships between proteins even if they are divergent in sequence or global fold. 
Moreover, by aggregating over multiple residues or entire proteins, site-specific embeddings 
can also be applied to domain-level or full-protein tasks. Finally, by using an atomic graph 
representation and a GVP-GNN encoder, COLLAPSE captures all inter-atomic interactions (in 
contrast to methods which operate at a residue level) and produces representations that are 
fully equivariant to 3D rotation and translation. 
 
As input to machine learning models, COLLAPSE embeddings generalize across tasks that 
require the model to learn different aspects of the protein structure-function relationship, 
including identifying protein-protein interactions, predicting stabilizing mutations, and 
classifying functional sites. On the PROSITE dataset of functional sites, we significantly 
outperform FEATURE, the closest analog to COLLAPSE as a protein structural site 
representation. We expect that substituting for COLLAPSE embeddings in other applications 
addressed by the FEATURE suite of methods 28,29,47 will also lead to improved performance.  
 
Pre-trained COLLAPSE embeddings also perform better than or comparable to end-to-end 
3DCNN models despite the use of a much simpler SVM classifier, demonstrating the 
effectiveness of the transfer learning paradigm. Additionally, we achieve higher sensitivity for 
detecting PROSITE false negatives than both FEATURE and 3DCNN baselines, regardless of which 
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baseline performs better on each site. This result suggests that by using our embeddings as 
input to machine learning tasks, we strike a balance whereby the models are robust to noise 
through the use of fixed embeddings while still capturing complex physicochemical features 
through the deep learning–based pre-training process.  
 
One of the most important aspects of COLLAPSE which sets it apart from task-specific machine 
learning tools is the ability to derive insights from the embedding space itself, without fitting 
any models. In these cases, the embedding distance provides a functionally relevant distance 
measure for comparing functional sites. We demonstrate this with our functional site search 
and annotation methods, both of which rely only on direct comparisons in the embedding 
space. Both are efficient, generalizable, and offer significance estimates which allow a user to 
tune the sensitivity and specificity of the results. For example, for discovery applications it may 
be desirable to optimize for sensitivity at the cost of more false positives, while prioritizing drug 
targets for experimental validation may require greater specificity. 
 
The choice of background distribution for computing empirical p-values is critical for accurate 
tuning of the significance threshold. For most general-purpose tasks, the non-redundant subset 
of the PDB used here is sufficient, but more specific applications may benefit from a different 
choice to improve statistical power (e.g. a distribution computed only from embeddings of a 
single residue type). We also note that the range of cosine similarities is relatively small (~0.9–
1.0) even for the background distribution, which we attribute to the use of mean pooling over 
atoms in the encoder’s graph aggregation step. A different choice of aggregation function may 
produce larger dynamic range across the embeddings. However, when normalized the 
comparisons are robust and locally specific at a resolution of one residue: less than 3% of 
neighboring environments would be considered significantly similar at 𝑝 = 1 × 10!%. 
 
The ability of iterative nearest-neighbor searches in the embedding space to identify known 
sites in PROSITE demonstrates that functional sites cluster meaningfully in the embedding space. 
The effect of changing input parameters (number of iterations and p-value cutoff) on the 
sensitivity and specificity of the results varies somewhat across functional families. In some 
cases (notably IG_MHC), this method achieves better sensitivity for FNs than even machine 
learning models trained using CV, while in others (EF_HAND_1, PROTEIN_KINASE_TYR) it cannot 
achieve this without a significant drop in precision. This is likely due to differences in structural 
conservation between sites, whereby sites which are more structurally heterogeneous are 
more difficult to fully capture using a query-based approach than a trained model which can 
learn to recognize diverse structural patterns. However, since training an accurate model 
requires access to a representative training dataset, which is not always available, we consider 
our search method to be a powerful complement to training site-specific models for the 
purpose of functional site identification when labeled data is scarce. We also note that while 
many methods enable structural search for full proteins 48,49 or binding sites, 29,50,51 ours is the 
first search tool specifically designed for arbitrary local structural sites. 
 
Functional annotation of novel protein structures is of great value to the structural biology and 
biochemistry communities, but there are few tools for doing so at the residue level. COLLAPSE 
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provides a method for residue-level annotation which is efficient and tunable, making it 
suitable for both screening and discovery purposes. As shown by the examples in Fig. 5, the 
method identifies known functional annotations while limiting false positives to closely related 
homologs, even when the input is not related to any protein in the training set (<5% sequence 
identity for beta-glucuronidase). Importantly, all predictions can be explained and cross-
referenced by rich metadata from the reference data sources, enhancing trust and usability. Of 
the PDBs returned for true positive sites in meizothrombin and beta-glucuronidase, 45.5% 
(20/44) and 87.5% (14/16), respectively, were not hits in a protein BLAST search with standard 
parameters, demonstrating the value of local structural comparisons for functional annotation. 
Additionally, the method is easy to update and extend over time via the addition of new 
sources of functional data, and reference databases can even be added or removed on a case-
by-case basis. 
 
COLLAPSE depends on the availability of solved 3D protein structures in the PDB. This restricts 
not only the number of homologous proteins that can be compared at each training step, but 
also the set of protein families which can even be considered—less than one third of 
alignments in the CDD contained at least two proteins with structures in the PDB. Including 
structures from AlphaFold Structure Database 52 would dramatically increase the coverage of 
our training dataset, but the utility of including predicted structures alongside experimentally 
solved structures in training or evaluation of machine learning models still needs to be 
evaluated. 53 A preliminary evaluation of our annotation method on the predicted structure for 
meizothrombin reveals high agreement with the corresponding PDB structure (Fig. S6) despite a 
root-mean-square deviation of 3.67 Å between the two structures, suggesting that COLLAPSE 
may already generalize to AlphaFold predictions for some proteins. 
 
In summary, COLLAPSE is a general-purpose protein structure embedding method for functional 
site analysis. We provide a Python package and command-line tools for generating embeddings 
for any protein site, conducting functional site searches, and annotating input protein 
structures. We also provide downloadable databases of embeddings for a non-redundant 
subset of the PDB and for known functional sites. We anticipate that as more data becomes 
available, these tools will serve as a catalyst for data-driven biological discovery and become a 
critical component of the protein research toolkit. 
 

4. Materials and Methods 

4.1. Training dataset and data processing 
 
COLLAPSE pre-training relies on a source of high-quality protein families associated with known 
structures and functions, as well as multiple sequence alignments (MSAs) in order to define site 
correspondences. We use the NCBI-curated subset of the Conserved Domain Database (CDD), 
54,55 which explicitly validates domain boundaries using 3D structural information. We 
downloaded all curated MSAs from the CDD (n=17,906 as of Sep. 2021) and filtered out those 
that contained less than two proteins with structures deposited in the PDB. After removing 
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chains with incomplete data or which could not be processed properly, this resulted in 5,643 
alignments for training, corresponding to 16,931 PDB chains (Fig. S2). We then aligned the 
sequences extracted from the ATOM records in each PDB chain to its MSA, without altering the 
original alignment, thus establishing the correct mapping from alignment position to PDB 
residue number. As a held-out set for validation, we select 1,370 families defined by PFAM 6 
which do not share a common superfamily cluster (as defined by the CDD) with any training 
family. We then bin these families based on the average sequence identity to the nearest 
protein in the training dataset and sample five families from each bin, resulting in 50 validation 
families with varying levels of similarity to the training data (Table S1). 

4.1.1. Definition of sites and environments 
 
In general, we define protein sites relative to the location of the relevant residues. Specifically, 
we define the environment surrounding a protein site as all atoms within 10 Å radius of the 
functional center of the central residue. The functional center is defined as the centroid of the 
functional atoms of the side chain as defined by previous work. 26,27 For residues with two 
functional centers (Trp and Tyr), during training one is randomly chosen at each iteration, and 
at inference time the choice depends on the specific application (i.e. if the function being 
evaluated depends on the aromatic or polar group; see Table S2). If the functional atom is not 
known (e.g. for annotating unlabeled proteins), we take the average over all heavy side-chain 
atoms. Protein-level embeddings are computed as the mean over all residue-level embeddings. 

4.1.2. Empirical background calculation 
 
To make comparisons more meaningful and to provide a mechanism for calculating statistical 
significance, we quantile-transform all cosine similarities relative to an empirical cosine 
similarity distribution. To compute background distributions, we use a high-resolution (<2.0 Å), 
non-redundant subset of the PDB at 30% sequence similarity provided by the PISCES server 56 
(5,833 proteins). We compute the embeddings of 100 sites from each structure, corresponding 
to five for each amino acid type, sampled with replacement. Exhaustively computing all 
pairwise similarities is computationally infeasible, so we sample 𝑛 = 50,000 pairs of 
environments and compute the cosine similarity of each. We performed this procedure to 
generate empirical similarity distributions (𝑆", . . . , 𝑆&) for the entire dataset and for each amino 
acid individually (Figure S3). Cosine similarities (𝑠) are then quantile-transformed relative to the 
relevant empirical cumulative distribution function: 
 

F(s) = 	
1
𝑛4𝟏𝑺𝒊(𝒔

&

*+"

 

 
The p-value for any embedding comparison is then defined as 1–𝐹(𝑠), or the probability that a 
randomly sampled pair of embeddings is greater than the pair in question. Amino acid–specific 
empirical backgrounds are used for functional site search and are aggregated into a single 
combined distribution for annotation. For the functional site–specific background used to filter 
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hits during annotation, we use an empirical background computed by comparing each 
functional site embedding to the embeddings of the corresponding amino acid in the 30% non-
redundant PDB subset.  

4.2. COLLAPSE training algorithm 
 
Each iteration of the COLLAPSE pre-training algorithm consists of the following steps, as shown 
in Fig. 1. We trained our final model using the Adam optimizer 57 with a learning rate of 1e-4 
and a batch size of 48 pairs for 1,200 epochs on a single TESLA V100 GPU. Model selection and 
hyperparameter tuning (e.g. environment radius, edge distance cutoff, learning rate schedule, 
pooling strategy, inclusion/exclusion of atoms) was evaluated using intrinsic embedding 
characteristics (see Section 2.1) and ATOM3D validation set performance (Section 4.3). 
 
Step 1. Randomly sample one pair of proteins from the MSA and one aligned position from each 
protein (i.e. there is not a gap in either protein). Map MSA column position to PDB residue 
number using the pre-computed alignment described in Section 2.2. Note that this step ensures 
that each epoch, a different pair of residues is sampled from each CDD family, effectively 
increasing the size of the training dataset by many orders of magnitude relative to a strategy 
which trains on individual proteins or MSAs. 
 
Step 2. Extract 3D environment around each selected residue (Section 4.1.1). Only atoms from 
the same chain are considered. Waters and hydrogens are excluded but ligands, metal ions, and 
cofactors are included.  
 
Step 3. Convert each environment into a spatial graph 𝒢 = (𝒱, ℰ). Each node in the graph 
represents an atom and is featurized by a one-hot encoding of the atom type 𝒱 ∈ 	 { carbon (C), 
nitrogen (N), oxygen (O), fluorine (F), sulfur (S), chlorine (Cl), phosphorus (P), selenium (Se), iron 
(Fe), zinc (Zn), calcium (Ca), magnesium (Mg), and “other” }, representing the most common 
elements found in the PDB. Edges in the graph are defined between any pair of atoms 
separated by than 4.5 Å. Following Jing et al. (2021), 41 edges between atoms (𝑖, 𝑗)	with 
coordinates (𝑥* , 𝑥,) are featurized using (1) a 16-dimensional Gaussian radial basis function 
encoding of distance 𝑟(||𝑥,	–	𝑥*||) and (2) a unit vector < 𝑥, 	–	𝑥* > encoding orientation. 
 
Step 4. Compute embeddings of each site. We embed each pair of structural graphs (𝒢", 𝒢.) 
using a pair of graph neural networks, each composed of three layers of Geometric Vector 
Perceptrons (GVPs), 40,41 which learn rotationally-equivariant representations of each atom and 
have proved to be state-of-the-art in a variety of tasks involving protein structure. 41,58 We 
adopt all network hyperparameters (e.g. number of hidden dimensions) from Jing et al. (2021). 
41 Formally, each GVP learns a transformation of the input graph into 512-dimensional 
embeddings of each node: 
 

𝑓(𝒢"; 	𝜃) 	→ 	 𝑧/ ∈ ℝ|𝒱"|	×	#". 
𝑓(𝒢.; 	𝜙) 	→ 	 𝑧3 ∈ ℝ|𝒱#|	×	#". 
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The final embedding of the entire graph is then computed by global mean pooling over the 
embeddings of each atom. While in principle, the two networks could be direct copies of each 
other (i.e. have tied parameters 𝜃 = 𝜙), we adopt the approach proposed by Grill et al (2020) 39 
which refers to the two networks as the online encoder and the target encoder, respectively. 
Only the online network parameters 𝜃 are updated by gradient descent, while the target 
network parameters 𝜙 are updated as an exponential moving average of 𝜃: 
 

𝜙	 ← 	𝜇𝜙	 +	(1– 𝜇)𝜙 , 
 

where 𝜇 is a momentum parameter which we set equal to 0.99. No gradients are propagated 
back through the target network. Intuitively, the target network produces a regression target 
based on a “decayed” representation, while the online network is trained to continually 
improve this representation over the course of training. The online network is used to generate 
embeddings for all downstream applications.  
 
Step 5. Compute loss and update parameters. The loss function is defined directly in the 
embedding space using the cosine similarity between the target network embedding 𝑧3 ∈ ℝ#". 
and the online network embedding 𝑧/ ∈ ℝ#". projected through a simple linear predictor 
network 𝑝𝑟𝑒𝑑(𝑧/) ∈ ℝ#".. To increase the signal-to-noise ratio and encourage the model to 
learn functionally relevant information, we weight the loss at each iteration by the sequence 
conservation 𝑤45&6	of that column in the original MSA (defined by the inverse of the Shannon’s 
entropy of amino acids at that position, ignoring gaps). To reduce bias in computing the 
conservation, we include all proteins in the alignment curated by CDD, even those without 
corresponding structures. As a result of this, the loss function is expressed as: 
 

ℒ = 𝑤45&6 ∙ [2	– 	2	 ∙
	á789:(<$),	<%ñ

||789:(<$)||#	∙	||<%||#
	] , where 

𝑤45&6 =
1

–∑ 𝑝*𝑙𝑜𝑔(𝑝*)*∈AA
 

 
Finally, we symmetrize the loss by passing each site in the input pair through both online and 
target networks and summing the loss from each. This symmetrized loss is then used to 
optimize the parameters of the online network using gradient descent. 

4.3. Benchmarking on ATOM3D tasks 
 
We evaluate COLLAPSE on two ATOM3D tasks concerned with local sites in one or more protein 
structures: protein interface prediction (PIP), and mutation stability prediction (MSP). We do 
not evaluate on residue identity (RES), which concerns predicting the identity of a masked 
central amino acid because the central amino acid of the environment is a key component of 
the COLLAPSE training procedure, resulting in almost perfect performance. See Townshend et 
al. 46 for details on dataset construction and reference architectures. Below we briefly describe 
each task and our fine-tuning procedure.  
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4.3.1 Protein Interface Prediction (PIP) 
 
The PIP dataset contains protein-protein interactions mined from the PDB and split by 30% 
sequence identity. The task is set up as a binary classification of whether or not a pair of 
residues, one from each interacting chain, are in contact in the bound interface. For each pair, 
we embed the environments around each residue separately and concatenate the embeddings. 
We then train a feed-forward neural network on the combined embeddings to predict whether 
the residues are in contact. We use one hidden layer with dimension 2048, followed by ReLU 
activation and dropout with 50% probability. 
 
4.3.2 Mutation Stability Prediction (MSP) 
 
The MSP dataset consists of pairs of wild-type and mutant protein complexes, split by 30% 
sequence identity. The task is set up as a binary classification of whether or not the 
introduction of the mutation increases or decreases the stability of the complex. Like PIP, we 
embed the environments around each residue in the pair, concatenate, and train a feed-
forward network to predict the binary outcome. 

4.4. Training site-specific models on PROSITE data 
 
We choose 10 sites presented in Torng et al. (2019), 26 selected because they are the most 
challenging to predict using FEATURE-based approaches. 25,26 For each functional site, we train 
a binary classifier on fixed COLLAPSE embeddings in five-fold nested cross-validation (CV). The 
classifiers are support vector machines (SVMs) with radial basis function kernels and weighted 
by class frequency. Within each training fold, the inner CV is used to select the regularization 
hyperparameter 𝐶	 ∈ 	 {0.1, 1, 10, 100, 1000, 5000} and the outer CV is used for model 
evaluation. To enable more accurate comparisons, we use the same dataset, evaluation 
procedures as Torng et al. (2019). 26 We benchmark against reported results for SVMs trained 
on FEATURE vectors (a direct comparison to our procedure) and 3D convolutional neural 
networks (3DCNNs) trained end-to-end on the functional site structures (the current state of 
the art for this task). We use PROSITE FN/FP sites as an independent validation of our trained 
models, using an ensemble of the models trained on each CV fold and the classification 
threshold determined above. A site is considered positive if the probability estimate from any 
of the five fold models is greater than the threshold. Some proteins contain more than one site; 
in these cases, the protein is considered to be positive if any sites are predicted to be positive. 

4.5. Iterated functional site search 
 
First, we embed the database to be searched against using the pre-trained COLLAPSE model. 
For the results presented in Section 2.4, we use the same PROSITE dataset used to train our 
cross-validated models to enable accurate comparisons. However, we also provide an 
embedding dataset for the entire PDB and scripts for generating databases for any set of 
protein structures. Then, we index the embedding database using FAISS, 59 which enables 
efficient similarity searches for high-dimensional data. For each site, we then perform the 
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following procedure five times with different random seeds in order to assess the variability of 
results under different query sites. The input parameters are the number of iterations 𝑛*B98  and 
the p-value cutoff for selecting sites at each iteration 𝑝4CB5DD. 
 

1. Sample a single site from the PROSITE TP dataset (to simulate querying a known 
functional site), generate COLLAPSE embedding, and add to query set. 

2. Compute effective cosine similarity cutoff 𝑠4CB5DD using the (1	– 	𝑝4CB5DD) quantile of the 
empirical background for the functional amino acid of the query site (e.g. cysteine for an 
EGF_1 site). 

3. Compare embedding(s) of query to database and retrieve all neighbors within 𝑠4CB5DD of 
the query. 

4. Add all neighbors to query set and repeat Step 3 𝑛*B98  times. Note that when there is 
more than one query point, neighbors to any point in the query are returned. 

5. Compute precision and recall of final query set, using PROSITE data as ground truth. 

4.6.  Protein site annotation 
 
Instead of a database of all protein sites, the annotation method requires a database of known 
functional sites. We use all true positive sites defined in PROSITE. For each pattern, we identify 
all matching PDBs using the ScanProsite tool 14 and extract the residues corresponding to all 
fully conserved positions in the pattern (i.e. where only one residue is allowed). The 
environment around each residue is embedded using COLLAPSE. We also embed all residues in 
the Catalytic Site Atlas (CSA), a curated dataset of catalytic residues responsible for an enzyme’s 
function. All data processing matches the pre-training procedure. The final dataset consists of 
25,407 embeddings representing 1,870 unique functional sites. 
 
The annotation method operates in a similar fashion to the search method, where each residue 
in the input protein is embedded and compared to the functional site database. Any residue 
that has a hit with a p-value below the pre-specified cutoff is returned as a potential functional 
site. To filter out false positives due to common or non-specific features (e.g. small polar 
residues in alpha-helices), we also remove hits which are not significant against the empirical 
distribution specific to that functional site (Section 4.1.2). This results in a modified mutual best 
hit criterion with two user-specified parameters: the residue-level and site-level significance 
thresholds. Along with each hit is the metadata associated with the corresponding database 
entry (PDB ID, functional site description, etc.) so each result can be examined in more detail. 
For the examples presented we remove all ligand atoms from the input structure to reduce the 
influence of non-protein atoms on the embeddings. 
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Figure 3. Performance of models trained on true positives from 10 PROSITE functional sites in 5-
fold cross-validation: COLLAPSE embeddings + SVM (blue), 3DCNN trained end-to-end (dark 
gray), and FEATURE vectors + SVM (light gray). Metric is the recall for all TP annotations at a 
threshold which produces 99% precision. COLLAPSE achieves better recall than FEATURE and 
better or comparable recall to the 3DCNN.  
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Tables 
 
Table 1. Performance of models trained on ATOM3D benchmark tasks. Comparisons are made 
with ATOM3D reference architectures (3DCNN, GNN, and ENN) as well as the GVP-GNN results 
reported in Jing et al. (2021) 41, which is state-of-the-art for these datasets. We report mean 
and standard deviation across three training runs. Numbers in bold indicate best performance 
on each task (within one standard deviation). 
 
Task (metric) COLLAPSE 

(fixed) 
COLLAPSE 

(fine-tuned) 
ATOM3D 
3DCNN 

ATOM3D 
GNN 

ATOM3D 
ENN 

GVP-GNN 

PIP (AUROC) 0.848 ± 
0.018 

0.881 ± 
0.004 

0.844 ± 
0.002 

0.669 ± 
0.001 

N/A 0.866 ± 
0.004 

MSP 
(AUROC) 

0.616 ± 
0.006 

0.668 ± 
0.018 

0.574 ± 
0.005 

0.621 ± 
0.009 

0.574 ± 
0.040 

0.680 ± 
0.015 

 
 
 
Table 2. Performance of models trained on PROSITE TP/TN on held-out PROSITE FP/FN 
annotations. Comparisons are made with FEATURE and 3DCNN numbers as reported in Torng et 
al. (2019) 26. Numbers in bold indicate best performance on each site. 
 

Site PROSITE label COLLAPSE FEATURE 3DCNN PROSITE total 
ADH_SHORT FN 11 8 7 14 

FP 30 33 33 33 
EF_HAND_1 FN 40 28 34 48 

FP 120 106 125 128 
EGF_1 FN 60 34 58 90 

FP 19 19 19 19 
IG_MHC FN 21 8 8 47 

FP 31 31 31 31 
PROTEIN_ 

KINASE_ST 
FN 269 264 268 271 

PROTEIN_ 
KINASE_TYR 

FN 3 3 3 3 
FP 14 20 20 20 

TRYPSIN_HIS FN 10 3 10 16 
FP 4 4 4 4 

TRYPSIN_SER FN 9 9 9 12 
FP 1 1 1 1 
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Supplementary Materials 

 

 

Figure S1. PCA of embeddings of single-domain proteins at lower levels of the CATH hierarchy: 
(a) architecture and (b) topology. 
 

 

Figure S2. Histogram of number of PDB structures per CDD family in training dataset. 
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Figure S3. Empirical cosine similarity distributions computed for each amino acid and the 
combined dataset. 
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Figure S4. Iterated functional site search performance per iteration for remaining PROSITE families 
with FP and FN annotations not shown in Figure 5: (a) EGF_1, (b) TRYPSIN_SER, (c) ADH_SHORT, 
and (d) PROTEIN_KINASE_TYR. 
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Figure S5. Runtime analysis for functional site search tool. Time per iteration as a function of (a) 
number of queries at the start of the iteration, colored by functional site, and (b) the size of the 
database searched against. 
 

 

 
 
 
  

Figure S6. Annotated structure of meizothrombin structure predicted by 
AlphaFold (gold; Uniprot ID P00735) superimposed on crystal structure 
(light blue; PDB ID 1A0H). Colors correspond to the predicted functional 
site, using the same colors as Fig. 5a.  
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Table S1. Pfam families selected for held-out validation set and 
corresponding sequence identity to nearest protein in CDD 
training set. 

Pfam family Average sequence 
identity to closest training 

set protein 
pfam02445 0.0949 
pfam04122 0.0790 
pfam00297 0.0865 
pfam01278 0.0774 
pfam18981 0.0789 
pfam07676 0.1115 
pfam01395 0.1435 
pfam09477 0.1652 
pfam13739 0.1053 
pfam10862 0.1411 
pfam04175 0.2349 
pfam01455 0.2550 
pfam00706 0.2787 
pfam05188 0.2837 
pfam09392 0.2749 
pfam03497 0.3162 
pfam00766 0.3052 
pfam01808 0.3068 
pfam04726 0.3846 
pfam08799 0.3117 
pfam14204 0.4270 
pfam01396 0.4638 
pfam00754 0.4271 
pfam08501 0.4856 
pfam14821 0.4063 
pfam03950 0.5293 
pfam08674 0.5456 
pfam03104 0.5529 
pfam13720 0.5515 
pfam19034 0.5873 
pfam02811 0.6217 
pfam02927 0.6709 
pfam09092 0.6313 
pfam00173 0.6495 
pfam00814 0.6327 
pfam03366 0.7891 
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pfam01017 0.7480 
pfam00654 0.7142 
pfam17855 0.7609 
pfam06628 0.7867 
pfam17136 0.8088 
pfam03931 0.8750 
pfam02511 0.8538 
pfam10431 0.8496 
pfam05001 0.8714 
pfam01412 1.0 
pfam07161 1.0 
pfam14324 1.0 
pfam00567 1.0 
pfam12124 1.0 

 

Table S2. Description of 10 PROSITE functional sites and definition of functional centers for each. 

Site name Description Target residue 
index in 
pattern 

Amino 
Acid 

Functional 
Atom 

EGF_1 EGF-like domain signature 1  10 CYS SG 
TRYPSIN_SER Serine proteases, trypsin 

family, serine active site  
6 SER OG 

RNASE_ 
PANCREATIC 

Pancreatic ribonuclease 
family signature  

2 LYS NZ 

EF_HAND_1 EF-hand calcium-binding 
domain 

1 ASP OD1 

IG_MHC Immunoglobulins and major 
histocompatibility complex 

proteins signature  

3 CYS SG 

PROTEIN_ 
KINASE_TYR 

Tyrosine protein kinases 
specific active-site signature  

5 ASP OD2 

TRYPSIN_HIS Serine proteases, trypsin 
family, histidine active site  

5 HIS NE2 

INSULIN Insulin family signature  2 CYS SG 
PROTEIN_ 
KINASE_ST 

Serine/Threonine protein 
kinases active-site signature  

5 ASP OD2 

ADH_SHORT Short-chain 
dehydrogenases/reductases 

family signature  

5 TYR OH 
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