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Supplemental Note S1: EVE model captures viral protein mutant fitness effects 

In this work, we use the deep unsupervised sequence model EVE as the fitness 
component of EVEscape, based on its prior state-of-art performance at predicting the 
effects of viral protein mutation18. We validate EVE's performance on viral proteins 
and specifically on the SARS-CoV-2 Spike by (1) comparing to a broader set of viral 
protein DMS experiments, (2) examining EVE performance compared to recently 
published sequence models at predicting SARS-CoV-2 RBD mutation effects, and (3) 
examining sites of disagreement between EVE predictions and SARS-CoV-2 RBD 
DMS experiments.

We evaluated EVE model performance by comparing to high-throughput fitness 
experiments—deep mutational scans (DMSs)—of the effects of mutations on SARS-
CoV-2, HIV and influenza viral function (Table S2)51–59 EVE generally outperforms 
linear site-independent and EVmutation models19 in predicting viral protein mutant 
effects (Figure S6, Figure S7). Despite the limited natural sequence diversity 
available for the coronavirus family, especially prior to the pandemic, EVE predictions 
for SARS-CoV-2 RBD are correlated with observed experimental phenotypes such 
as expression and binding to the ACE2 human cellular receptor in yeast-display and 
mammalian cell-surface expression systems54,55 – pre-pandemic EVE predictions are 
superior to or on par with other published unsupervised sequence models19,21,22

(Figure 3B, Figures S6-S8). In the yeast-display assay, a subset of RBD sites in the 
expression assay tolerate mutations that are predicted as deleterious by EVE (red 
rectangle in Figure S8A). Several of these positions are in contact with non-assayed 
domains of the Spike protein, or with other Spike subunits in the trimer assembly, 
suggesting that they are important for full Spike expression but non-essential for 
RBD folding in the yeast-display system. EVE predictions are better correlated with 
ACE2 binding quantified using a full Spike mammalian cell display assay55, perhaps 
because this assay readout combines expression with receptor binding (Figure S6-
S7). As a whole, EVE’s predictive performance on viral replication experiments and 
our analysis of model correspondence with RBD biochemical protein assays 
suggests that EVE captures a combination of the varied constraints on viral protein 
function. EVE predictions may also complement DMS studies that focus on 
biochemical protein assays by incorporating information about non-assayed 
constraints. 
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Figure S1: EVEscape performance is robust across data thresholds. a) Distribution of 
escape thresholds from bootstrapping 8 antibodies 1000 times and fitting a gamma distribution 
to each sample for Bloom and Xie RBD escape data (left) and gamma distributions to select 
Flu and HIV escape thresholds (right). b) Maximum escape values (over set of antibodies with 
PDB structures) for each mutation vs. the minimum distance to an antibody—most escape 
mutations (to the right of dashed line) are within 5Å of an antibody. For HIV, this is true for the 
mutations that do not involve loss of glycosylation. c) Impact of choice of RBD expression and 
ACE2 binding thresholds (dashed line uses thresholds chosen by Bloom escape papers and 
our paper) on AUPRC (normalized by “null” model – fraction of observed escapes) and # of 
mutations considered as escape. d) Impact of choice of escape threshold on RBD (Bloom and 
Xie data separated), Flu, and HIV AUPRC (normalized) and # of escape mutations (dashed 
line uses escape threshold chosen by our paper). 
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Figure S2: EVEscape performance on escape DMS data is generalizable across viruses. 
Precision-Recall (with AUPRC normalized by “null” model) (a) and AUROC (b) of predicting 
DMS escape mutations, for SARS-CoV-2 RBD, Flu H1, and HIV Env. 
Note: The “null” model AUPRC is equivalent to the fraction of observed escapes, and therefore 
AUPRC values are not comparable between viral proteins with different fractions of escape 
mutations (i.e. RBD and HIV Env). The fraction of observed escapes in the DMS experiments 
are 0.19 for RBD, for 0.015 for Flu, and 0.006 for HIV – Flu and HIV data examined far fewer 
antibody and sera samples (Table S4). 
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Figure S3: EVEscape RBD performance is robust to antibody and sera samples and 
improves with more available data for validation. Precision-Recall (with AUPRC normalized 
by “null” model) (a) and AUROC (b) of predicting RBD DMS escape mutations, for Bloom and 
Xie antibodies and Bloom sera. c) Comparison of model performance (AUROC) between data 
available in September 2020 with the first escape DMS study (10 antibodies)2 and data 
available at present (338 antibodies, 55 sera samples). 
Note: The “null” model AUPRC is equivalent to the fraction of observed escapes, and therefore 
AUPRC values are not comparable between data samples with different fractions of escape 
mutations (i.e. Bloom sera vs. Bloom antibodies, Table S4). The fraction of observed escapes in 
the DMS experiments are 0.17 for Bloom Ab, for 0.06 for Xie Ab, and 0.003 for Bloom sera. 
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Figure S4: Almost all EVEscape predicted escape sites have escape mutations or 
are in antibody footprints. Density of site-averaged EVEscape for SARS-CoV-2 full 
Spike (left) and RBD (right) shows success of EVEscape at distinguishing sites with 
observed escape mutations, as well as sites in known antibody epitopes, from sites with 
no evidence of antibody binding or escape. 
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Figure S5: Fitness and accessibility model components separate escape mutants and 
antibody epitopes from other mutations. a) Density of standard-scaled EVEscape 
components differ for SARS-CoV-2 RBD escape (and antibody epitopes) and non-escape 
mutations. b) Incorporating pandemic sequences in EVE training data results in a greater 
distinction between escape and non-escape mutations with high EVE scores. c) WCN and 
EVE predictions provide similar information about the location of Spike epitopes as 
represented in antibody-Spike crystal structures in RCSB PDB. d) Sites with either high 
accessibility or high EVE fitness predictions have a greater percentage of escape mutants. 
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Figure S6: Comparisons of EVE DMS predictions to other sequence-based model 
predictions. a) EVE predictions are correlated with a broad range of viral surface protein 
DMS experiments surveying protein replication and function, including SARS-CoV-2 RBD 
and Mpro. b) Site-averaged EVE predictions have similar correlations with site-averaged 
SARS-CoV-2 RBD DMS experiments as DCA mutability21. c) EVE predictions have higher 
correlations with Flu H1, HIV Env, and SARS-CoV-2 RBD DMS experiments than 
grammaticality22.
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Figure S7: Predictions of viral protein DMS fitness experiments. Scatterplots of viral 
protein fitness DMS against independent, EVmutation, and EVE model predictions. 
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Figure S8: EVE captures structural constraints beyond RBD expression assay. a) Site-
averaged EVE scores predict several sites that tolerate mutants in the yeast-display RBD 
expression assay to be deleterious (red box)–many of these mutants are located at the 
interface between RBD and the rest of Spike protein. Sites in the red box in scatterplot are 
shown as spheres on the Spike structure (PDB: 7CAB).  b) The mammalian-cell RBD 
expression and ACE2 binding experiments are highly correlated, likely due to the alternate 
FACS-binning strategy and metric used for this ACE2 binding experiment55. EVE predictions 
are correlated with both measures. 

b

Low EVE

High EVE



WCN RSA

a

b

Figure S9: Antibody accessibility metrics distinguish between sites with escape 
mutants and known antibody epitopes and other sites. a) WCN and RSA values 
visualized on the SARS-CoV-2 Spike structures show different distributions, particularly in 
the RBD (PDB: 7BNN), as WCN captures protrusion from the core structure. 
b) Distributions of RSA and WCN (standard-scaled) illustrates the success of accessibility 
at distinguishing between sites with escape mutations or within antibody epitopes and sites 
with neither - SARS-CoV-2 RBD (top) and full Spike (bottom).
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Figure S10: Charge-hydrophobicity metric captures residue dissimilarity relevant 
for loss of antibody binding. a) Within-site point biserial correlations between residue 
dissimilarity metrics and SARS-CoV-2 DMS escape data at escape sites (sites with 3-17 
escape mutations). More sites have a higher correlation for our charge-hydrophobicity 
metric than charge or hydrophobicity alone, BLOSUM62, residue size, or EVE latent 
space (L1) distance. b) Within-site correlations at RBD escape sites increase when 
considering only mutations where fitness is maintained (passes Bloom lab’s RBD 
expression and ACE2 binding cutoffs) c) Within-site correlations between residue 
dissimilarity and escape increase when more antibodies have escape mutations at that 
site. d) Within-site correlations between residue dissimilarity and escape increase when 
more mutations escape at site (and there can be no correlation with binarized escape 
when every mutation escapes).
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Figure S11: Incorporating glycosylation in EVEscape improves performance on HIV Env. 
Precision-Recall (with AUPRC normalized by “null” model – fraction of observed escapes) (a) 
and AUROC (b) of EVEscape and EVEscape+Gly predicting DMS escape mutations for SARS-
CoV-2 RBD, Flu H1, and HIV Env. c) Scatterplot of HIV Env maximum escape at each mutation 
vs. EVEscape predictions with and without glycosylation. Hue indicates mutations that cause 
cause loss of glycosylation. The majority of HIV Env escape mutations involve glycosylation 
loss, and EVEscape+Gly performs better on these mutations. 
Note: In the limited HIV Env dataset examining 8 antibodies, 50% of all escape mutations are 
likely due to removal of a glycan11. The effects of glycosylation changes may not be reflected in 
the SARS-CoV-2 Spike experiments as these experiments were conducted in a yeast system 
with different surface glycan types4. While SARS-CoV-2 Spike (22 glycosylation sites) and Flu 
H1 (up to 11 glycosylation sites) are much less extensively glycosylated than HIV Env (up to 30 
glycosylation sites), some glycosylation changes in these proteins facilitate escape31–34. 



Figure S12: EVEscape prediction of escape mutants to antibodies with 
varying sarbecovirus breadth and neutralization potency. WCN predicts less 
escape for broad antibodies with lower neutralization (left). While EVE also predicts 
less escape for antibodies with broad sarbecovirus binding breadth, EVE does not 
distinguish between neutralizing and non-neutralizing broad antibodies (right). 



Figure S13: EVEscape enrichment in regions of SARS-CoV-2 Spike. RBD (particularly 
receptor binding motif (RBM)) and N-terminal domain (NTD) have significantly enriched 
average EVEscape scores, relative to a distribution of 500 random contiguous regions of 
the same length from full Spike (left).  The RBM is significantly enriched within the RBD 
(from full Spike model), relative to 100 contiguous regions of the same length in the RBD 
(right). 
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Figure S14: EVEscape anticipates SARS-CoV-2 frequent mutations/VOCs and is 
more predictive than EVE alone. a) All mutations with observed antibody escape from 
DMS experiments that are observed in GISAID (>1000 times) have high EVEscape scores. 
Of observed mutations without experimental escape, EVEscape better captures mutations 
of very high frequency. b) EVEscape is more predictive than EVE alone at capturing 
frequent VOC mutations in full Spike. VOC mutations with high EVE scores and lower 
EVEscape scores (i.e., A222V and T547K) are known to impact structure and to not escape 
sera neutralization. Mutations with the highest EVEscape but low EVE scores (i.e., R190S 
and R408S) are in hydrophobic pockets that may promote antibody binding46-48. c) VOCs 
have high EVEscape scores compared to random mutations at the same mutation depth, 
particularly Delta and Omicron. 
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RBD
(+ pandemic data) RBD Spike 

(+ pandemic data) Spike

SARS-CoV-2 1398 1 1751 1

SARS-CoV-1 38 24 34 23

Other SARS-like 113 101 115 99

MERS 308 265 316 259

Betacoronavirus 1 (OC43) 610 416 675 394

Alphacoronavirus 1 0 0 529 175

229E 0 0 142 95
NL63 0 0 70 47

HKU1 64 27 65 27

HKU15 0 0 216 141

Avian coronavirus 0 0 4142 581

Porcine epidemic diarrhea virus 0 0 2388 1440

Other coronavirus 255 175 561 347

Other/unknown 0 0 2 0

Total 2786 1009 11006 3629

Table S1: Taxa of sequences in Spike and RBD training alignments. RBD and Spike 
without pandemic data are the primary alignments used throughout this paper. 



Virus Protein Study Strain Alignment Assay variable N ρIndependent ρEVmutation ρEVE

Influenza H1
Doud 201657 A/WSN/1933 A0A2Z5U3Z0_9INFA_b0.1 replication 10317 0.45 0.45 0.53

Wu 202058 H1 (strain) A0A6H1V8E8_9PLVG_Y3
73S_b0.1 replication 10317 0.36 0.37 0.36

HIV Env

Haddox 201851
BG505 A0A192B1T2_9HIV1_b0.1 replication 12388 0.48 0.41 0.48

BF520 ENV_HV1B9_S364P-
M373R_b0.1 replication 12502 0.48 0.43 0.49

Roop 202052 BG505 A0A192B1T2_9HIV1_b0.1 replication (human cells)
12483

0.48 0.44 0.49

replication (rhesus cells) 12483 0.43 0.40 0.44
Duenas-Decamp 

201653 BG505 A0A192B1T2_9HIV1_b0.1 replication 375 0.37 0.42 0.38

SARS-
CoV-2

Spike 
RBD

Starr 202054

Wuhan-Hu-1 P0DTC2_321-
541_b0.3_pre2020.a2m

yeast expression (RBD) 3798 0.36 0.33 0.45

ACE2 binding 3802 0.23 0.16 0.26

Chan 202155

human cell expression 
(full Spike) 3458 0.33 0.32 0.45

ACE2 binding 3458 0.31 0.30 0.42

Mpro Flynn 202256 Wuhan-Hu-1 nsp5-
YP_009725301_b0.1.a2m

yeast growth 5741 0.58 0.60 0.60

Table S2: Experimental details and EVE, EVmutation, and independent model 
performance (spearman correlations) for DMS fitness experiments.



PDB ID Description

SARS-CoV-2 Spike 6VXX Spike (closed state)

6VYB Spike (open state)

7CAB Spike (closed state with higher 
sequence coverage)

7BNN Spike (open state with higher 
sequence coverage)

Flu H1 1RVX 1934 H1 Hemagglutinin (similar to 
Bloom DMS sequence) 

HIV Env 5FYL
BG505 SOSIP.664 Env (prefusion)
Trimer structure created using structural symmetry 

in Pymol (adapted from Dingens et al.)11

7TFO BG505 SOSIP.664 Env (CD4-bound 
open state)

Table S3: PDB structures capturing diverse protein conformations used for surface 
accessibility calculations.  



Papers Assay Details # of 
Mutations

# of Escape 
Mutations 

(using 
thresholds 
from our 
paper)

# of  
Antibodies/ 

Sera
Alignment 

SARS-CoV-2 
RBD

(Wuhan-Hu-1)

Bloom Lab 
(antibodies):
Dong 20211

Greaney 20212

Greaney 20214

Greaney 20215

Starr 20216

Starr 20217

Tortorici 20218

Starr 20219

FACS-based 
yeast display 
screening of 

antibody 
binding 

3819 635 91 P0DTC2_321-
541_b0.3_pre2020.a2m

Bloom Lab 
(sera): 

Greaney 20213

Greaney 20214

Greaney 20215

FACS-based 
yeast display 
screening of 
sera binding

3819 15 55
P0DTC2_321-

541_b0.3_pre2020.a2m

Xie Lab: 
Cao 202212

MACS-based 
yeast display 
screening of 

antibody 
binding 

3819 227 247
P0DTC2_321-

541_b0.3_pre2020.a2m

Flu H1 
(A/WSN/1933) Doud 201810

Screening viral 
cell entry in 

the presence 
of antibodies

10735 161 6 I4EPC4_t0.99_b0.1.a2m

HIV Env
(BG505)

Dingens
201911

Screening viral 
cell entry in 

the presence 
of antibodies

12730 76 8 Q2N0S5_20-
709_b0.1_t0.99.a2m

Table S4: Escape DMS data used for EVEscape validation.  


