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Abstract10

Recent studies suggest that the cross-sectional relationship between reading skills and11

white matter microstructure, as indexed by fractional anisotropy, is not as robust as12

previously thought. Fixel-based analyses yield fiber-specific micro- and macrostructural13

measures, overcoming several shortcomings of traditional DTI approaches. We ran a14

whole-brain analysis investigating whether fixel-derived metrics related to single-word15

reading skills in a large, open, quality-controlled data set of 983 children and16

adolescents ages 6-18. We also compared fixel metrics between participants with (n =17

102) and without (n = 570) reading disabilities. We found that the product of fiber18

density (FD) and cross-section (FC), or FDC, positively related to reading skills19

throughout the brain, especially in left temporoparietal and cerebellar white matter,20

but did not differ between groups. Exploratory analyses revealed that among metrics21

from other diffusion models - DTI, DKI, and NODDI - only orientation dispersion index22

(ODI) from NODDI was associated (inversely) with reading skills. Our findings further23

support the importance of left-hemisphere dorsal temporoparietal white matter tracts24

in reading. Additionally, our results suggest future DWI studies of reading should be25

designed to benefit from advanced diffusion models, include cerebellar coverage, and26

consider continuous analyses that account for individual differences in reading skill.27

28
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Introduction29

Many research efforts spanning multiple neuroimaging modalities have sought to yield30

insights into the neural bases of reading ability and disability (Vandermosten et al., 2012;31

Landi et al., 2013; Richlan et al., 2013). Among these studies are those that employ32

diffusion-weighted imaging (DWI) to study properties of anatomical connections in the33

brain. The most commonly reported measure of white matter microstructure is frac-34

tional anisotropy (FA). FA is a metric derived from the diffusion tensor imaging (DTI)35

model (Basser et al., 1994) that quantifies the degree to which water diffusion is direc-36

tionally dependent in each voxel (Hagmann et al., 2006; Basser and Pierpaoli, 1996). FA is37

high in white matter compared to gray matter and cerebrospinal fluid (CSF) due to pref-38

erential water movement along the axis of axons. Studies of white-matter microstruc-39

tural properties’ relationships to reading have primarily employed FA (for overviews, see40

Ben-Shachar et al. (2007); Vandermosten et al. (2012);Moreau et al. (2018);Meisler and41

Gabrieli (2022)). However, several factors confound the ability to draw meaningful inter-42

pretations from FA results (Farquharson et al., 2013; Riffert et al., 2014). As a metric43

defined on the voxel-level, FA is prone to partial volume effects, manifesting as reduced44

FA in regions where white matter borders gray matter or CSF (Vos et al., 2011). Due to45

the limited degrees-of-freedom in the tensor model, FA is artificially lower in regions of46

crossing fibers, affecting up to 90% of whitematter voxels (Behrens et al., 2007; Jeurissen47

et al., 2013). In addition to sensitivity to myelination, FA also tends to covary with other48

elements such as axonal diameter, density, permeability, and coherence (Beaulieu, 2009;49

Johansen-Berg and Behrens, 2013; Shemesh, 2018; Friedrich et al., 2020; Lazari and Lipp,50

2021), and information from DTI alone is not sufficient to gauge the individual contribu-51

tions of these features. Thus, FA has often been reduced to a nonspecific (and arguably52

inappropriate; see Jones et al. (2013)) term, "white matter integrity."53

Early cross-sectional studies of FA and reading skills seemed to converge towards a54

consensus of greater FA relating to better reading ability, particularly in left temporopari-55

etal white matter tracts that connect neocortical regions known to be important for lan-56

guage, such as the arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF) (Kling-57

berg et al., 2000; Ben-Shachar et al., 2007; Vandermosten et al., 2012). As tract seg-58

mentation algorithms became more robust and widely used, subsequent studies, em-59

powered to address tract-specific hypotheses, began describing previously unreported60

results. These included significant FA-reading relationships in different areas, such as61

commissural (Frye et al., 2008; Lebel et al., 2013), cerebellar (Travis et al., 2015; Bruck-62

ert et al., 2020), and right-lateralized bundles (Horowitz-Kraus et al., 2015), as well as63

regions where higher FA was associated with worse reading skills (Carter et al., 2009;64

Frye et al., 2011; Christodoulou et al., 2017). The inconsistency in past results are poten-65

tially driven by a variety of factors such as publication bias (Begg, 1994), small participant66

cohorts, inhomogeneous acquisition parameters, different covariates and reading mea-67

sures, variation in age groups, and different processing techniques (Moreau et al., 2018;68

Ramus et al., 2018; Schilling et al., 2021a,b). Few studies have sought to resolve these69

inconclusive results. A meta-analysis of whole-brain voxel-based studies found no re-70

gions where FA either varied with reading ability or was reduced in dyslexic, compared71

to typically reading, individuals (Moreau et al., 2018). Geeraert et al. (2020) used principal72
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component analysis to drawoutwhitematter structural indices from several scalarmaps,73

including metrics from DTI (such as FA) and neurite orientation dispersion and density74

imaging (NODDI; Zhang et al. (2012)), and found that variance in these measures were75

driven by age-related development, but not reading. Three large-scale cross-sectional76

studies using publicly available data sets found largely null associations between FA and77

reading skills in several tracts (Koirala et al., 2021;Meisler and Gabrieli, 2022; Roy et al.,78

2022).79

Despite the mixed empirical findings relating FA to variation in reading ability, it is80

reasonable to hypothesize that there ought to be such a brain structure-behavior cor-81

relate of reading ability. Reading involves the functioning of a widely distributed brain82

network (Cattinelli et al., 2013; Wandell and Yeatman, 2013; Murphy et al., 2019), and83

white matter tracts are conduits for information sent within this network (Ben-Shachar84

et al., 2007). Lesion-mapping analyses (Wang et al., 2020; Li et al., 2021) and clinical case85

studies (Epelbaum et al., 2008; Rauschecker et al., 2009) have demonstrated that white86

matter connections, primarily in the left hemisphere, are necessary for reading. Since87

myelin is a plastic structure that is shaped by learning and can modulate neuronal firing88

patterns (Fields, 2015; Xin and Chan, 2020), it is reasonable to suspect that functional89

variation, such as differences in reading ability, may be reflected by some white matter90

structural property (Ramus et al., 2018; Protopapas and Parrila, 2018, 2019). The largely91

null findings in higher-poweredmeta-analyses (Moreau et al., 2018) and large-scale stud-92

ies (Koirala et al., 2021;Meisler and Gabrieli, 2022; Roy et al., 2022) suggest that FA is not93

a specific enoughmetric to effectively capture this relationship in cross-sectional designs.94

More advanced diffusion models have yielded metrics that better reflect variance95

in reading skills. Sihvonen et al. (2021) found that connectometry from quantitative96

anisotropy modeling (Yeh et al., 2013) in multiple pathways covaried with better read-97

ing skill independently from phonological abilities. Quantitative anisotropy is less prone98

to artifacts from partial volume effects and crossing fibers (Yeh et al., 2016). Koirala et al.99

(2021) employed multiple diffusion models in children and concluded that lower orienta-100

tion dispersion and neurite density indices from NODDI modeling related to better read-101

ing abilities in several bilateral tracts, while FA was not associated with reading. Although102

not a DWI sequence, myelin water imaging (MWI) studies have suggested both positive103

(Beaulieu et al., 2020) and negative (Economou et al., 2022) associations of myelination104

with reading skill in children. Economou et al. (2022) also replicated null associations105

between FA and reading in their experimental cohort. These results collectively suggest106

that studies of reading (and perhaps other cognitive domains, see Lazari et al. (2021))107

should begin to move beyond traditional DTI modeling. However, NODDI metrics, being108

a voxel-level metric, cannot ascribe properties to particular fiber populations if multiple109

exist in a voxel. MWI acquisitions, while showing high specificity to variation in myelin,110

tend to have relatively long scan times (Alonso-Ortiz et al., 2015); one would also still111

need to collect a DWI scan if one wanted to associate MWI metrics with fiber bundles112

and properly account for MWI variation due to fiber orientations (Birkl et al., 2021). Col-113

lecting all of these data in children and clinical populations is challenging and not always114

practical.115

Subsequently, a DWI analytical paradigm was introduced that performs statistical in-116
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ferences on "fixels," or individual fiber populations within voxels, using a set of three117

fixel-derived metrics: fiber density (FD), fiber cross-section (FC), and their product (FDC)118

(Raffelt et al., 2015, 2017b). This framework is enabled by constrained spherical deconvo-119

lution (CSD) (Tournier et al., 2007), a data-driven approach for resolving fiber orientation120

distributions (FODs) in the presence of crossing fibers. Unlike other fiber-specific met-121

rics, such as quantitative anisotropy, fixel-based analyses can yield distinct micro- and122

macrostructural components. FD is a microstructural measure that reflects the intra-123

axonal volume fraction (Raffelt et al., 2012b; Genc et al., 2020), while FC is a macrostruc-124

tural measure related to the cross-sectional area of fiber bundles (Raffelt et al., 2017b).125

The product of FD and FC, or FDC, is therefore related to the total estimated intra-axonal126

volume and is sensitive to both white matter micro- and macrostructure. FDC is thought127

to reflect the capacity of white matter to relay information (Raffelt et al., 2017b).128

In addition to enabling investigations of thesemore specific fixel-derivedmetrics, fixel-129

based analyses (FBA) present several additional advantages compared to traditional FA130

whole-brain approaches (Dhollander et al., 2021b). Since FBAs operate on the level of131

fixels, and fixels are generated from FODs in white matter, FBAs are by nature restricted132

to white matter, thus mitigating effects of multiple comparison correction from redun-133

dant regions that often undermine whole brain voxel-based analyses. Spatial smoothing134

in FBAs is performed within local neighborhoods of white matter bundles informed by135

fixel connectivity (Raffelt et al., 2015). Thus, the signal in a given fixel is not influenced by136

different tissue classes or other fiber populations, in contrast to traditional voxel-based137

spatial smoothing which operates more indiscriminately.138

FBAs have been quickly adopted and used to investigate several clinical and devel-139

opmental populations (reviewed in Dhollander et al. (2021b)). However, they have not140

yet been used to examine reading abilities. With the increased specificity of FBAs, this141

approach might reveal fiber-specific biomarkers that are more sensitive to variation in142

reading abilities than FA or other tensor-derivedmetrics, providing valuable insights into143

the neural basis of literacy. In this study (Figure 1), we examined the relationship be-144

tween fixel metrics and single-word reading skill in a pediatric data set of 983 children145

ages 6-18 from the Healthy Brain Network biobank (Alexander et al., 2017). We addi-146

tionally looked for differences in fixel metrics between participants with (n = 102) and147

without reading disabilities (n = 570), using criteria based on diagnostic and standardized148

cognitive assessments. We employed generalized additive modeling (GAM) (Hastie and149

Tibshirani, 1990) to more flexibly model age-related variance given the wide age range150

of participants (Zhao et al., 2022; Bethlehem et al., 2022). Based on findings fromNODDI151

(Koirala et al., 2021), quantitative anisotropy (Sihvonen et al., 2021), and MWI (Beaulieu152

et al., 2020; Economou et al., 2022) studies, we hypothesized that we would see posi-153

tive associations between fixel-metrics and reading abilities in several tracts spanning154

both hemispheres, but especially the left arcuate fasciculus, left inferior fronto-occipital155

fasciculus, and cerebellar peduncles, as these tracts yielded significant relationships in156

multiple studies of advanced diffusion models and reading. However, since this was the157

first FBA involving reading skill, and one with considerably high statistical power, we took158

a more conservative approach and ran a whole-brain FBA. Using tract segmentation, we159

ascribed locations of significant results to bundles to guide future research efforts.160
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Figure 1. Top: Methodological overview of the paper, including both primary and secondaryanalyses. Bottom: Schematic depicting interpretations of changes in examined metrics.Depictions of bundles, axons, and neurites are not drawn to scale. Abbreviations: DWI - diffusionweighted imaging; DTI - diffusion tensor imaging; DKI - diffusion kurtosis imaging; NODDI -neurite orientation density and dispersion index; FA - fractional anisotropy; KFA - kurtosisfractional anisotropy; MD - mean diffusivity; MK - mean kurtosis; NDI - neurite density index; ODI -orientation dispersion index; FODF - fiber orientation distribution function; FD - fiber density; FC -fiber cross-section; FDC - fiber density and cross-section product.
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Results161

Participant Data162

The 983 participants who passed all inclusion, exclusion, and quality control criteria (Ta-163

ble 1) were divided into a Typically Reading (TR; n = 570) and Reading Disability group164

(RD; n = 102) based on diagnostic and standardized cognitive assessments (Figure 2; see165

Methods and Materials). 311 participants did not meet the criteria for either group, but166

were still included in the correlation analyses. The TR group, compared to the RD group,167

was older and had higher socioeconomic scores, brain volumes, verbal IQ, visuospatial168

IQ, reading scores, globally-averaged fixel metrics, and image quality (as indexed by the169

average neighbor correlation; see Yeh et al. (2019) for more information on this metric).170

The groups were matched in sex distribution (although the cohort as a whole was male-171

skewed), handedness, and average motion (mean framewise displacement). Reading172

scores and IQs were age-standardized composite indexes from the Tests of Word Read-173

ing Efficiency (TOWRE; Torgesen et al. (1999)) andWechsler Intelligence Scale for Children174

(WISC; Wechsler and Kodama (1949)), respectively. 17 participants were missing socioe-175

conomic information, and 93 participants did not haveWISC scores. Since these variables176

were not ultimately included in our statistical models, we did not exclude these partici-177

pants. Relationships between phenotypic and neuroimaging metrics, and differences in178

these measures between sites, can be found in the supplementary materials (Table S1;179

Figures S1 and S2).180

Metric All TR RD Effect Size
𝑛 983 570 102 -Sex [M / F] 617 / 366 355 / 215 59 / 43 𝜙 = 0.0235Age [years] 11.16 (0.10) 11.38 (0.14) 10.56 (0.27) d = 0.258∗Handedness [EHI] 61.78 (1.58) 62.19 (2.05) 62.91 (5.05) d = 0.015Handedness [L/A/R] 74 / 128 / 781 42 / 66 / 462 8 / 17 / 77 𝜙 = 0.047SES [Yrs. Parental Edu.] 17.63 (0.10) 18.13 (0.11) 16.93 (0.32) d = 0.429†ICV [cm3] 1540 (5.130) 1559 (6.735) 1501 (12.47) d = 0.370†WISC VSI 102.08 (0.552) 105.72 (0.714) 97.82 (1.497) d = 0.494†WISC VCI 104.61 (0.542) 109.26 (0.658) 98.18 (1.414) d = 0.750†TOWRE 97.93 (0.56) 109.49 (0.45) 70.48 (0.80) d = 3.74†Global FD 0.285 (6.26e-4) 0.287 (7.66e-4) 0.280 (2.53e-3) d = 0.337∗Global log(FC) 0.050 (2.15e-3) 0.059 (2.73e-3) 0.030 (5.92e-3) d = 0.455†Mean Motion 0.44 (7.89e-3) 0.44 (0.01) 0.44 (0.03) d = 4.27e-3Quality [Neighbor Corr.] 0.756 (1.58e-3) 0.760 (2.08e-3) 0.745 (5.17e-3) d = 0.291∗

Table 1. Phenotypic and neuroimaging summary statistics in all participants and within the tworeading proficiency groups. 17 and 93 participants were lacking socioeconomic and WISC scores,respectively, and were ignored for the corresponding rows. Values are listed as mean (standarderror of the mean). For group comparison effect sizes (right-most column), * denotes p < 0.05and † denotes p < 0.001. All t-tests were Welch’s t-tests. Abbreviations: TR - typically reading group;RD - reading disability group; EHI - Edinburgh Handedness Inventory; SES - socioeconomic status;ICV - intracranial volume; TOWRE - Tests of Word Reading Efficiency composite score,age-normalized; WISC VSI - Wechsler Intelligence Scale for Children visuospatial index,age-normalized; WISC VCI - Wechsler Intelligence Scale for Children verbal comprehension index,age-normalized; FD - Fiber density; FC - fiber cross-section. FD and FC are unit-less.
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Figure 2. Age-standardized TOWRE sub-scores of all participants. Each dot represents aparticipant, color-coded by group assignment. Dashed lines mark the score cut-offs for the tworeading proficiency groups. Since scores are discrete and not unique, some dots may overlapwith each other. Kernel density estimation plots along the perimeter show the distribution ofreading scores in each group. Abbreviations: TR - typically reading group; RD - reading disabilitygroup; TOWRE - Tests of Word Reading Efficiency.
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Continuous Analyses181

We ran a whole-brain fixel-based analysis testing whether the product of fiber density182

and fiber cross-section, or FDC, was associated with reading skills. We found widespread183

bilateral and commissural regions in which higher FDC was significantly related to bet-184

ter reading abilities (𝑞𝐹𝐷𝑅 < 0.05; Figure 3). Each tract produced by the segmentation185

software, TractSeg (Wasserthal et al., 2018a), contained significant fixels (Table 2). We186

defined effect size in each fixel as the difference in adjusted 𝑅2 values between the full187

model and a reduced model without the predictor of interest (TOWRE scores or group188

designations). The effect size of significant fixels varied up to a peak value of 0.034. Clus-189

ters of fixels with the largest effect sizes (Δ𝑅2
𝑎𝑑𝑗 > 0.03) were observed in left-hemisphere190

temporoparietal and cerebellar white matter. Tract segmentation intersections (Table 2)191

revealed that the temporoparietal cluster was most likely associated with the left arcu-192

ate fasciculus (AF), superior longitudinal fasciculus (SLF), ormiddle longitudinal fasciculus193

(MLF). These tracts largely overlapped (Figure S3). The cerebellar cluster was most likely194

associated with the left superior cerebellar peduncle (SCP). Homotopic clusters of sig-195

nificant fixels were observed in right-hemisphere temporoparietal and cerebellar white196

matter, but they reached smaller effect sizes than those in the left hemisphere. See the197

supplementary material for significant fixels colored by direction and beta values (Figure198

S4). Post-hoc exploration of FD and FC revealed diffuse associations of better reading199

skills with higher FC, as compared to fewer regions where higher FD was related to bet-200

ter reading (Figure S5). As expected, highest effect sizes of FDC were achieved in regions201

where FD and FC were both independently related with better reading.202

Group Analyses203

We did not find any significant differences in FDC between the TR and RD groups. Post-204

hoc exploration further revealed no differences in FD between the groups, but did yield205

regions where the TR group had higher FC in bilateral cerebellar tracts, bilateral anterior206

temporal lobe, and left fronto-parietal white matter (Figure S6).207
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Figure 3. Significant fixels (𝑞𝐹𝐷𝑅 < 0.05) for relating FDC to TOWRE scores, colored by effect size(Δ𝑅2
𝑎𝑑𝑗 ). Model confounds included a spline fit for age and linear fits for sex, site, neighborcorrelation, and log(ICV). Top and bottom panels are left and right hemispheres, respectively.Sagittal slices go from lateral-to-medial. Red arrows point to larger clusters of fixels in bilateraltemporoparietal and cerebellar white matter that were associated with higher effect sizes relativeto fixels in the rest of the hemisphere. The template FOD image was used as the backgroundimage.
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Tract N Fixels (𝑞𝐹𝐷𝑅 < 0.05) N Fixels (𝑞𝐹𝐷𝑅 < 0.001) Max Effect Size (Δ𝑅2
𝑎𝑑𝑗 )

AF 2705 / 1814 382 / 130 0.032 / 0.024ATR 88 / 309 0 / 0 0.018 / 0.015CA 337 0 0.0005CC_1 81 0 0.018CC_2 1614 0 0.018CC_3 286 0 0.013CC_4 1532 0 0.020CC_5 1132 0 0.014CC_6 1819 73 0.025CC_7 219 0 0.018CG 373 / 270 0 / 0 0.018 / 0.018CST 2113 / 1543 125 / 146 0.023 / 0.0.22FPT 3010 / 2788 342 / 358 0.026 / 0.025FX 328 / 263 10 / 10 0.024 / 0.024ICP 913 / 691 19 / 41 0.026 / 0.022IFOF 1164 / 780 55 / 0 0.024 / 0.018ILF 867 / 302 53 / 3 0.023 / 0.022MCP 2389 39 0.022
MLF 1661 / 623 185 / 28 0.032 / 0.001OR 547 / 356 26 / 0 0.023 / 0.017POPT 2264 / 1820 187 / 188 0.025 / 0.022
SCP 1585 / 1385 192 / 156 0.034 / 0.022SLF I 901 / 1293 38 / 81 0.021 / 0.022
SLF II 1150 / 1470 141 / 136 0.031 / 0.024
SLF III 846 / 604 222 / 57 0.032 / 0.024ST_FO 141 / 120 0 / 0 0.018 / 0.014ST_OCC 845 / 610 51 / 0 0.024 / 0.017ST_PAR 1458 / 1057 27 / 66 0.024 / 0.024ST_POSTC 1083 / 476 22 / 0 0.024 / 0.017ST_PREC 1462 / 503 37 / 0 0.027 / 0.016ST_PREF 770 / 619 0 / 0 0.018 / 0.015ST_PREM 117 / 114 0 / 0 0.018 / 0.017STR 705 / 359 0 / 0 0.017 / 0.014T_OCC 581 / 378 25 / 0 0.023 / 0.017T_PAR 1010 / 426 0 / 0 0.020 / 0.016T_POSTC 723 / 263 0 / 0 0.017 / 0.015T_PREC 1110 / 463 6 / 0 0.022 / 0.014T_PREF 739 / 579 0 / 0 0.019 / 0.015T_PREM 39 / 146 0 / 0 0.014 / 0.014UF 631 / 313 23 / 0 0.022 / 0.016

Table 2. Intersections of white matter tracts with significant fixels for correlations between FDCand reading skill. The number of fixels are present for two significance thresholds. For tracts thatexist bilaterally, results are given in the form of L / R. Tracts in which the maximum effect size(Δ𝑅2
𝑎𝑑𝑗 ) exceeded 0.03 are designated with a bold font. This only happened in the left hemisphere.Tract masks are not mutually exclusive, and nearby tracts likely overlapped to various degrees.Abbreviations for the tracts in bold are as follows: AF - arcuate fasciculus; MLF - middlelongitudinal fasciculus; SCP - superior cerebellar peduncles; SLF - superior longitudinal fasciculus.Please refer to Figure 3 of the TractSeg publication (Wasserthal et al., 2018a) for a full list of thetract abbreviations.
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Discussion208

In this study, we employed a method to study fiber-specific properties as they relate to209

single-word reading abilities and diagnoses of reading disabilities in children and ado-210

lescents. We hypothesized that fixel-based metrics would be sensitive to variation in211

reading abilities especially in the left arcuate fasciculus, left inferior fronto-occipital fasci-212

culus, and cerebellum. Unlike recent cross-sectional studies of fractional anisotropy that213

yielded few-to-no regions exhibiting significant FA-reading relationships or group differ-214

ences in FA (Moreau et al., 2018; Koirala et al., 2021; Economou et al., 2022;Meisler and215

Gabrieli, 2022; Roy et al., 2022), we found that higher FDC related to better single-word216

reading skills throughout the brain. However, FDC did not differ between those with and217

without reading disabilities. Although significant correlations were observed bilaterally,218

the strongest effect sizes were in the left hemisphere, and especially in temporopari-219

etal and cerebellar white matter. The tracts most likely associated with the regions of220

strongest correlations were the left-hemisphere AF, SLF, MLF, and SCP.221

It is encouraging that the fixel-based results highlighted left-hemisphere dorsal tem-222

poroparietal white matter, as its importance to reading and language has been well-223

established. The AF and SLF connect inferior frontal and temporoparietal gray matter224

regions that are essential for language and reading processing (Catani et al., 2005). Le-225

sion symptommapping studies have demonstrated that the AF and SLF are vital connec-226

tions in the reading network (Baldo et al., 2018; Li et al., 2021). These tracts, particularly227

in the left hemisphere, are associated with phonological processing skills (Yeatman et al.,228

2011), which are critical to reading (Vellutino and Scanlon, 1987) and impaired in dyslexia229

(SwanandGoswami, 1997). However, strongest effectswere not found in reading-related230

tracts projecting from the occipital lobe, such as the inferior fronto-occipital fasciculus231

(IFOF) and inferior longitudinal fasciculus (ILF). Longitudinal studies have suggested these232

ventral tracts are more associated with visual orthographic, as opposed to phonological,233

processing (Yeatman et al., 2012; Vanderauwera et al., 2018). Our results suggest that234

phonological skills, as opposed to lower-level visual and orthographic processing, may235

provide more of a bottleneck to single-word reading abilities in children. These results236

are supported by a large-scale longitudinal study finding that fractional anisotropy of the237

left AF, but not ILF, covaries with single-word reading skill over time (Roy et al., 2022). This238

notion is also consistent with a behavioral study demonstrating that orthographic skills239

aremore related with reading longer passages, as opposed to single words (Barker et al.,240

1992). Thus, fixel-based analyses of skills relating to reading longer texts might instead241

highlight ventral tracts. We also note that the MLF intersected with the significant fixel242

clusters. This tract has received less attention due to a lack of clear characterization of243

its structure and function. However, some clinical cases suggest that the left MLF may244

be associated with imparied verbal-auditory learning and comprehension (Latini et al.,245

2021), which could be relevant to reading abilities. We reiterate that the tract masks246

largely overlapped and should not be used to make definitive associations between fixel-247

location and bundles, especially because tracts were defined in template, as opposed to248

native, space.249

Our findings suggest that higher FDC in the superior cerebellar peduncles (SCP) is250

associatedwith better reading skills. Although the cerebellum is not commonly perceived251
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as a core hub in the reading network, theories of reading suggest the cerebellum has252

a role in fluent word recognition (Alvarez and Fiez, 2018; D’Mello et al., 2020; Li et al.,253

2022), and cerebellar deficits have been hypothesized as central impairments in dyslexia254

(Nicolson et al., 2001). In particular, the SCP contains efferent fibers that connect deep255

cerebellar nuclei to thalamic cortical regions. Previous studies suggest that fractional256

anisotropy of bilateral SCP inversely relates to reading skills (Travis et al., 2015; Bruckert257

et al., 2020). We did not find an inverse relationship between FDC and reading abilities,258

although one should not a priori expect fractional anisotropy and FDC to covary. Our259

findings suggest that the cerebellum should remain a focus in studies of reading skills,260

especially since it is often cropped out of MRI acquisitions.261

Our findings contribute to a growing list of cross-sectional studies suggesting that262

models more nuanced than the diffusion tensor better capture variance in reading skills263

(Koirala et al., 2021; Sihvonen et al., 2021; Economou et al., 2022). Unlikemany prior stud-264

ies we ran a whole-brain analysis instead of running statistics onmetrics averaged within265

tracts. This has important implications for interpreting results. Our whole-brain findings266

suggest a relationship between reading skills and FDC in fixel-specific regions shared267

across participants. However, this does not preclude the possibility of tract-averaged dif-268

fusion metrics relating to reading skills, even among areas that yielded few significant269

fixels. A disruption in white matter leading to a deficit in reading might happen at any lo-270

cation along a tract, and variance in such locations across participants could lead to null271

findings on a fixel-by-fixel level. Whole-brain analyses are also prone to stricter correc-272

tion for multiple tests. On the other hand, the spatial specificity achieved by whole-brain273

FBAs could be informative for speculating about the outcomes of white matter disrup-274

tions. White matter bundles do not only deliver signals from one end to the other; they275

branch off and synapse at multiple locations along its course. Thus, spatially specific dis-276

ruptions of signal could have different downstream effects, warranting a more nuanced277

approach. The difference in our approach could explain why we found fewer negative278

associations between orientation dispersion index from NODDI, as well as no significant279

negative associations with neurite density index, compared to Koirala et al. (2021).280

In our previous work (Meisler and Gabrieli, 2022), we correlated diffusion metrics281

with each TOWRE sub-test score individually. However, in the current study, we used282

the composite TOWRE measure as the phenotypic variable of interest. Our rationale in283

doing so is the same as in Sihvonen et al. (2021): A composite score is more stable, as284

it is more robust to variance due to temporary attention lapses which may only affect285

performance on one test. In addition, running fewer models mitigates the problem of286

multiple hypothesis testing. We acknowledge, however, that real word and pseudoword287

reading may rely on different skills. Pseudoword reading ability, for example, is consid-288

ered a more pure gauge of phonological processing skills, because the novelty of these289

nonwords precludes one from relying onmemorized representations. Given that the two290

sub-scores were highly correlated (Figure 2), we expect that models run on the individual291

sub-scores would have yielded similar results.292

While our correlation tests did yield significant findings for FDC, the analogous com-293

parison between typical and dyslexic groups did not. This could be in part due to fewer294

participants being included in the group analyses (total n = 672) compared to the con-295
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tinuous analyses (n = 983). It is also important to consider that collapsing participants296

into reading proficiency groups loses information about individual differences in read-297

ing ability. Group comparisons based on the same metric used in correlation analyses298

are inherently sacrificing statistical power from losing this individual variability. Although299

it is a worthwhile pursuit to investigate neurodevelopmental bases of dyslexia, which300

may be addressed by group comparisons, these questions may be better asked in pre-301

readers based on future reading outcomes (that is, comparing children who later do and302

do not develop typical reading skills). Studying pre-readers would rule-out concerns that303

findings are due to the consequences of developing typical or poor reading skills, as op-304

posed to the etiology (Protopapas and Parrila, 2018, 2019), which is a concern for studies305

of late-stage readers. There has not yet been a fixel-based analysis in pre-readers, but306

other studies have foundwhitemattermicrostructural alterations, largely in the left arcu-307

ate fasciculus, among pre-readers who have a genetic risk for dyslexia, lower pre-reading308

skills associated with risk for dyslexia, or future diagnoses of dyslexia (Saygin et al., 2013;309

Vandermosten et al., 2015; Langer et al., 2017; Vanderauwera et al., 2017; Wang et al.,310

2017; Yu et al., 2020).311

Our findings should be interpreted in the context of several limitations. First, it was312

not made available what specific criteria were used to diagnose reading disabilities. This313

is why we used stringent criteria based on clinical and cognitive assessments to define314

the RD group. Secondly, most participants in the Healthy Brain Network present with315

at least one psychological, learning, or neurodevelopmental disorder (Alexander et al.,316

2017). The diversity of the cohort, while perhaps more representative of a population,317

presentsmultiple phenotypic factors that could confound results. Tomaintain high statis-318

tical power and a diverse sample, we did not exclude participants based on the presence319

of other neurodevelopmental or learning disorders such as ADHD or specific language320

impairments. Next, since white matter bundles can have different shapes across partici-321

pants (Yeatman et al., 2011; Wassermann et al., 2011) and analyses are performed in a322

single template space, an effect in a region of fixels could be partially driven by global ge-323

ometric variations across participants. Similarly, the fixel-to-tract attributions should be324

cautiously interpreted, since our tracts were delineated on the FOD template of 38 par-325

ticipants, and tract segmentations tend to overlap (Schilling et al., 2022). The b-value of326

2000 s/mm2, while higher than the b-value of typical DTI acquisitions, is not exceptionally327

large compared to the spectrum of values typically employed in FBA. Thus, ourmeasures328

of FD, and therefore FDC as well, may have been partially undermined by contamina-329

tion from extra-axonal signal (Genc et al., 2020). FDC, while interpreted as a measure of330

the ability of white matter to relay information (Raffelt et al., 2017b), has not yet been331

extensively validated against histological measures. Finally, our study is cross-sectional332

and correlational. Thus, it cannot be used to make causal conclusions of white matter’s333

contributions to reading skills. We hope our work will inform future fixel-based investiga-334

tions using longitudinal, mediation, modeling, or prediction approaches that can warrant335

stronger claims.336
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Conclusion337

In the present study, we examined whether fixel-based metrics from 983 children and338

adolescents covaried with single-word reading abilities or were reduced among those339

with reading disabilities. We found that higher FDC related to better single-word reading340

abilities, but that FDC did not differ between children with and without reading disabili-341

ties. The strongest associations between FDC and reading aptitude were localized in left-342

hemisphere temporoparietal and cerebellar white matter, which is consistent with prior343

neuroanatomical studies of reading and literacy. The fixel-based analysis is a promising344

approach to investigating reading in future studies, capturing variance in reading skill345

when multiple other DWI-derived scalars fail to do so, and parameters of DWI acquisi-346

tions should be considered with this in mind.347

Methods and Materials348

Participants349

We downloaded preprocessed DWI and phenotypic data from 2136 participants across350

the first eight data releases of the Healthy Brain Network (HBN) project (Alexander et al.,351

2017). Phenotypic datawere accessed in accordancewith a data use agreement provided352

by the ChildMind Institute. PreprocessedDWI data were provided as part of the HBNPre-353

processed Open Diffusion Derivatives (HBN-POD2) data set (Richie-Halford et al., 2022).354

The Healthy Brain Network project was approved by the Chesapeake Institutional Review355

Board (now called Advarra, Inc.; https://www.advarra.com/). Informed consent was ob-356

tained from all participants ages 18 or older. For younger participants, written informed357

consent was collected from their legal guardians, and written assent was obtained from358

the participants. Detailed inclusion and exclusion criteria for the Healthy Brain Network359

data set are described in the project’s publication (Alexander et al., 2017). Of note, each360

participant was fluent in English, had an IQ over 66, and did not have any physical ormen-361

tal disorder precluding them from completing the full battery of scanning and behavioral362

examinations.363

Several behavioral and cognitive evaluations were collected as part of HBN. Relevant364

to this study, participants completed the Test of Word Reading Efficiency 2nd edition365

(TOWRE; Torgesen et al. (1999)). The TOWRE consists of two subtests, Sight Word Effi-366

ciency (SWE) and Phonemic Decoding Efficiency (PDE). For these tests, each participant is367

shown a list of either real words (SWE) or pronounceable non-words / pseudowords (PDE)368

and asked to read the items aloud as quickly as possible. Raw scores are based on the369

number of items read correctly within the 45-second time limit and are then converted370

to an age-standardized score (population mean = 100, standard deviation = 15). A com-371

posite TOWRE score is calculated as the mean of the standardized PDE and SWE scores.372

Most participants also completed the Edinburgh Handedness Inventory (EHI; Oldfield373

(1971)), Barratt Simplified Measure of Social Status (BSMSS; Barratt (2006)) and Wechsler374

Intelligence Scale for Children 5th edition (WISC;Wechsler and Kodama (1949)).375

After quality control (see Data Inclusion and Quality Control below), there were 983 par-376

ticipants ages 6-18 years old. We divided these participants into two groups based on377

diagnostic criteria and standardized reading scores (Figure 2). 102 participants were di-378
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agnosed with a "specific learning disability with impairment in reading" following the 5th379

edition of the Diagnostic and Statistical Manual for Mental Disorders (Edition et al., 2013)380

and scored ≤ 85 on both TOWRE subtests (age-standardized). These participants were381

placed in the reading disability (RD) group. 570 participants who were not diagnosed382

with a reading impairment and scored ≥ 90 on both TOWRE subtests (age-standardized)383

were placed in the typically reading (TR) group. The remaining 311 participants were384

not placed into either group, but were still included in the correlation analyses across all385

participants.386

Neuroimaging Acquisition387

Detailed scanner protocols for each site are published on the Healthy Brain Network388

projectwebsite (http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/File/mri/).389

Data were collected using either a 1.5T Siemens mobile scanner (Staten Island site) or a390

3T Siemens MRI scanner (sites at Rutgers University Brain Imaging Center, Cornell Brain391

Imaging Center, and the City University of New York Advanced Science Research Center).392

All participants were scanned while wearing a standard Siemens 32-channel head coil. A393

high-resolution T1-weighted (T1w) image was collected for all participants, with param-394

eters that slightly varied between sites. A diffusion kurtosis imaging scan was acquired395

with 1.8 mm isotropic voxel resolution, 1 b = 0 s/mm2 image, and 64 noncollinear direc-396

tions collected at b = 1000 s/mm2 and b = 2000 s/mm2. A pair of PEpolar fieldmaps were397

collected before the diffusion scan to quantify magnetic field susceptibility distortions.398

Neuroimaging Minimal Preprocessing399

Minimally preprocesseddatawas downloaded fromHBN-POD2andproducedbyQSIPrep400

(Cieslak et al., 2021) 0.12.1 (https://qsiprep.readthedocs.io/en/latest/), which is based on401

Nipype 1.5.1 (Gorgolewski et al., 2011, 2018) (RRID:SCR_002502). Many internal opera-402

tions of QSIPrep use Nilearn 0.6.2 (Abraham et al., 2014) (RRID:SCR_001362) and Dipy403

(Garyfallidis et al., 2014). The following two sections contain text from boilerplates dis-404

tributed by QSIPrep under a CC0 license with the expressed intention of being incorpo-405

rated into manuscripts for transparency and reproducibility. We made minor changes406

for succinctness and completeness.407

Anatomical Preprocessing408

The T1w image was corrected for intensity non-uniformity (INU) using N4BiasField409

Correction (Tustison et al., 2010) (ANTs 2.3.1), and used as T1w-reference throughout410

the workflow. The T1w-reference was then skull-stripped using antsBrainExtraction.sh411

(ANTs 2.3.1), using OASIS as target template. Brain tissue segmentation of cerebrospinal412

fluid (CSF), white-matter (WM) and gray-matter (GM)was performedon thebrain-extracted413

T1w using FAST (Zhang et al., 2001) (FSL 6.0.3:b862cdd5, RRID:SCR_002823). Additionally,414

in order to calculate intracranial volumes, we ran recon-all (FreeSurfer 6.0.1, RRID:SCR_001847;415

Dale et al. (1999); Buckner et al. (2004); Fischl (2012)) as part of sMRIPrep 0.8.1 (Esteban416

et al., 2021) to reconstruct brain surfaces.417
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Diffusion Image Preprocessing418

Denoising using dwidenoise (Veraart et al., 2016) was applied with settings based on de-419

veloper recommendations. Gibbs unringing was performed using MRtrix3’s mrdegibbs420

(Kellner et al., 2016). Following unringing, B1 field inhomogeneity was corrected using421

dwibiascorrect from MRtrix3 with the N4 algorithm (Tustison et al., 2010). After B1 bias422

correction, the mean intensity of the DWI series was adjusted so all the mean intensity423

of the b = 0 images matched across each separate DWI scanning sequence. FSL (version424

6.0.3:b862cdd5)’s eddywas used for headmotion correction and Eddy current correction425

(Andersson and Sotiropoulos, 2016). eddy was configured with a 𝑞-space smoothing fac-426

tor of 10, a total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A427

linear first level model and a linear second level model were used to characterize Eddy428

current-related spatial distortion. 𝑞-space coordinates were forcefully assigned to shells.429

Field offset was attempted to be separated from participant movement. Shells were430

aligned post-eddy. eddy’s outlier replacement was run (Andersson et al., 2016). Data431

were grouped by slice, only including values from slices determined to contain at least432

250 intracerebral voxels. Groups deviating by more than 4 standard deviations from the433

prediction had their data replaced with imputed values. Here, b = 0 fieldmap images434

with reversed phase-encoding directions were used along with an equal number of b435

= 0 images extracted from the DWI scans. From these pairs the susceptibility-induced436

off-resonance field was estimated using a method similar to that described in Anders-437

son et al. (2003). The fieldmaps were ultimately incorporated into the Eddy current and438

head motion correction interpolation. Final interpolation was performed using the jac439

method. The preprocessed DWI time-series were resampled to ACPC, and their corre-440

sponding gradient directions were rotated accordingly.441

Fixel-Based Analyses (FBA)442

Fixel Metric Calculations443

Comprehensive details of this pipeline have been described elsewhere (Raffelt et al.,444

2017b). Preprocessed DWI volumes and brainmasks were reoriented to the FSL standard445

orientation. The gradient table was correspondingly rotated withMRtrix3’s dwigradcheck.446

We then upsampled the DWI image and brain masks to 1.25 isotropic voxels. We ex-447

tracted only the highest diffusion shell (b = 2000 s/mm2, along with the b = 0 volumes) to448

proceed with estimating the constrained spherical deconvolution (CSD) fiber response449

functions and fiber orientation distributions (FODs), as to limit the influence of extra-450

axonal signal (Genc et al., 2020). Response functions for white matter, gray matter, and451

cerebrospinal fluid were estimated with MRtrix3’s unsupervised dhollander algorithm452

(Dhollander et al., 2016, 2019). For each tissue compartment, site-specific average fiber453

response functions were calculated (Raffelt et al., 2012b). Participant FODs for each tis-454

sue compartment were calculated using Single-Shell 3-Tissue CSD (SS3T-CSD) (Dhollan-455

der and Connelly, 2016) from MRtrix3Tissue (https://3Tissue.github.io), a fork of MRtrix3456

(J-Donald et al., 2019). FODs were normalized using log-domain intensity normalization457

(Raffelt et al., 2017a; Dhollander et al., 2021a).458

We then generated an unbiased study-specific FOD template, and warped individual459

participant FOD images to this template (Raffelt et al., 2011, 2012a). Due to the large460
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size of our participant cohort, we could not feasibly use all FOD images to generate a461

population template. To decide which participants were used to inform the template,462

we divided the age range of participants into 10 uniformly-spaced bins. In each age bin,463

we selected two males and two females. Within sex groupings, the participant in the TR464

and RD group with the highest quality control prediction score ("XGB score", see Richie-465

Halford et al. (2022)) was selected to be in the template. There were no females in the RD466

group among the two oldest age bins, so our template was composed of 38 participants.467

We implemented this method to make a robust template that was unbiased by sex and468

included representation from a wide range of ages and reading levels. All participant469

brain masks were warped to the template space. A whole-brain template-space analysis470

mask was calculated as the intersection of all of these warped masks, such that each471

region would contain data from all participants. Within this voxel-wise template mask, a472

whole-brain fixel-wise analysis mask was segmented from the FOD template.473

Participant fixels were segmented from their warped FODs (Smith et al., 2013), and474

then reoriented and mapped to the template space. Fiber density (FD) was calculated475

for each fixel by taking the integral of its corresponding FOD lobes (Raffelt et al., 2012b).476

Fiber cross-sections (FC) were also calculated for each fixel, informed by the geometric477

distortions needed to warp from native-to-template space (Raffelt et al., 2017b). The478

product of the two metrics was also calculated (FDC) (Raffelt et al., 2017b). We applied a479

log transform to FC so it would be normally distributed and centered around 0. FDC was480

calculated before this log transformation was applied.481

A whole-brain tractogram with 20 million streamlines was generated from the FOD482

template using seeds uniformly distributed across the template-space voxel-wise mask483

(Tournier et al., 2010). SIFT filtering (Smith et al., 2013) was applied to account for false484

positives in streamline generation (Maier-Hein et al., 2017), resulting in a pruned trac-485

togram with 2 million streamlines. This was used to create a fixel-to-fixel connectivity486

matrix. This connectivity data was used to inform spatial smoothing of FD, log(FC), and487

FDCmaps, such that smoothing at a given fixel only occurred within that fixel’s fiber pop-488

ulation, thus avoiding partial-volume effects or influences from crossing fibers (Raffelt489

et al., 2015).490

Tract Segmentation491

We extracted the three primary spherical harmonic peaks of the template FOD image492

within the voxel-wise brain mask (Jeurissen et al., 2013). These peaks were input to Tract-493

Seg 2.3 (Wasserthal et al., 2018a,b, 2019), a convolutional neural network-based tract494

segmentation and reconstruction pipeline that strikes a favorable balance between the495

subjectivity of manual delineation and objectivity of automated atlas-based tracking ap-496

proaches (Genc et al., 2020). We created tractograms for all 72 fiber-bundles produced497

by TractSeg. We generated 10000 streamlines per tract (up from the default of 2000) to498

reduce inter-run variability from the stochastic nature of reconstruction. From each set499

of fiber bundle streamlines, we created a corresponding fixel tract density map, which500

we binarized to create tract fixel masks.501
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Statistics502

We considered a diverse set of potential confounds to include in our statistical mod-503

els. These included age (Genc et al., 2018; Dimond et al., 2020), sex (Lyon et al., 2019;504

Kirkovski et al., 2020), handedness, socioeconomic status (SES) as indexed by the aver-505

age years of parental education from the BSMSS, visuospatial IQ index from theWISC (Ra-506

mus et al., 2018), globally-averaged fixel metrics (gFD, gFC), log-transformed intracranial507

volume (ICV) (Smith et al., 2019), and scanning site (Schilling et al., 2021b). We also con-508

sidered multiple quality covariates, including mean framewise displacement, and neigh-509

bor correlation (Yeh et al. (2019)). The machine-learning based quality score distribution510

from Richie-Halford et al. (2022) was skewed towards 1 and not normally distributed,511

and thus was not a good candidate confound. Since gFD and gFC are calculated within512

fixels, and fixels are only segmented inwhitematter, differences inwhitematter volumet-513

ric proportions should not influence global fixel-metrics. As exploratory analyses, we ran514

Spearman correlations between all continuous variables to inform our decision of model515

covariates and look for well-established trends in behavioral and neuroimaging metrics,516

validating the data collection procedures (Fig. S1).517

To run our statistical models, we used ModelArray 0.1.0 (Zhao et al., 2022). This R-518

based software package minimizes memory consumption to allow analysis of all partici-519

pants and enables generalized additive modeling (GAM) on fixel data, which is especially520

useful for cohorts with a wide age-range (Bethlehem et al., 2022). We ran two models521

for our primary analyses: a regression of FDC against the age-standardized TOWRE com-522

posite score, and a comparison of FDC between the TR and RD groups. We restrict our523

primary analyses to FDC based on recent guidance surrounding the control of false pos-524

itives in FBA (Smith et al., 2021), but we also ran analogous models for FD and log(FC) to525

explore the contributions of fibermicrostructure andmorphometry in a post-hoc fashion.526

Model confounds included a smooth spline fit for age and linear fits for sex, site, quality527

(neighbor correlation), and log(ICV). Log(ICV) was not included as a covariate for models528

related to FD (Smith et al., 2019). Categorical variables (group, sex, and site) were coded529

as factors, and continuous variables (TOWRE scores, neighbor correlation, age, and ICV)530

weremean-centered and rescaled to unit variance tomitigate concerns of multicollinear-531

ity and poor designmatrix conditioning. Effect sizes for the predictors of interest (TOWRE532

score or group label) were calculated as the difference in adjusted R2 coefficients (Δ𝑅2
𝑎𝑑𝑗 )533

between the full statistical model fit and the fit of a reduced model without the primary534

predictor variable. P-values were corrected across the brain using Benjamini-Hochberg535

FDR correction (Benjamini and Hochberg, 1995). To ascribe significant fixels to tracts, we536

intersected significant fixels (𝑞𝐹𝐷𝑅 < 0.05) and the binarized tract masks. We note that537

tract masks tended to overlap (Schilling et al., 2022), so a single fixel could be associated538

with multiple fiber bundles.539

We also ran similar models relating reading abilities with various scalar maps from540

diffusion tensor models, diffusion kurtosis models, and NODDI models. Details of these541

analyses are in the supplementary materials (Figure S7).542
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Data Inclusion and Quality Control543

We downloaded preprocessed DWI (Richie-Halford et al., 2022) and phenotypic data544

from 2136 participants across the first eight data releases of the Healthy Brain Network545

(HBN) project (Alexander et al., 2017). HBN-POD2 distributes a quality metric accompa-546

nying each image that predicts the probability that the image would pass manual expert547

quality review ("xgb_qc_score", or "dl_qc_score" if the former score was not available)548

(Richie-Halford et al., 2022). It ranges from0 (no chance of passing expert review) to 1 (im-549

age will definitely pass expert review). We excluded any participants with a quality score550

of less than 0.5. Twenty different DWI acquisition parameters were present across par-551

ticipants (Covitz et al., 2022; Richie-Halford et al., 2022). We only included participants552

who had images acquired with the most common acquisition parameters in their site553

("SITE_64dir_most_common"). We also excluded any participant who: 1) was outside ages554

6-18; 2) had missing basic demographic or TOWRE scores; or 3) failed FreeSurfer recon-555

struction. Based on these criteria, 986 participants advanced to the fixel-based analysis.556

Fiber response functions could not be obtained for two of these participants due to non-557

positive tissue balance factors. After registering the participant FODs to the template558

FOD, we overlaid each participant’s registered brain mask on top of the registered FOD559

image. This revealed 1 participant with an unsuccessful registration to template space560

who was excluded from analyses. Therefore, a total of n = 983 participants (570 TR, 102561

RD, 311 other) passed all quality control procedures and were included in subsequent562

analyses.563

Data and Code Availability564

Preprocessed neuroimaging data can be downloaded following directions from the HBN-565

POD2 manuscript (Richie-Halford et al., 2022), and phenotypic data can be collected fol-566

lowing directions on the Healthy Brain Network data portal (http://fcon_1000.projects.nitrc.567

org/indi/cmi_healthy_brain_network/index.html) after signing a data use agreement. All in-568

structions and code for further processing data and running the statistical models can569

be found at https://github.com/smeisler/Meisler_Reading_FBA. With minimal modification,570

the neuroimaging processing code should be able to run on most BIDS-compliant data571

sets using the SLURM job scheduler (Yoo et al., 2003). Some softwares we used were572

distributed as Docker (Merkel, 2014) containers, then compiled and run with Singularity573

3.9.5 (Kurtzer et al., 2017):574

• QSIPrep 0.15.3 (singularity build qsiprep.simg575

docker://pennbbl/qsiprep:0.15.3)576

• TractSeg 2.3 (singularity build tractseg.simg577

docker://wasserth/tractseg:master)578

• MRtrix3 3.0.3 (singularity build mrtrix.simg579

docker://mrtrix3/mrtrix3:3.0.3)580

• MRtrix3Tissue 5.2.9 (singularity build mrtrix3t.simg581

docker://kaitj/mrtrix3tissue:v5.2.9)582

• sMRIPrep 0.8.1 (singularity build smriprep.simg583

docker://nipreps/smriprep:0.8.1)584

• FSL 6.0.4 (singularity build fsl.simg585
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docker://brainlife/fsl:6.0.4-patched)586

We encourage anyone to use the latest stable releases of these softwares.587
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Supplementary Material957

Correlations Between Phenotypic and Neuroimaging Metrics958

Testing for pairwise correlations between phenotypic and neuroimaging metrics of inter-959

ests yielded several expected findings that validated the data collection procedures (Fig-960

ure S1). These included: 1) a stronger positive link between reading skill and verbal IQ961

compared to the association between reading skill and visuospatial IQ; 2) an association962

between higher SES status and higher measures of intelligence; 3) a negative correlation963

between image quality andmotion; 4) a strong coupling between ICV and global FC; 5) an964

association between better reading and larger brain volumes (Ramus et al., 2018); and 6)965

a negative association between age andmotion, suggesting that older children are more966

compliant in the scanner. What was less expected however, was how much more vari-967

ance in the global fixel metrics was captured by neighbor correlation compared to mean968

motion, considering that both are interpreted as image quality metrics. This may sug-969

gest that including only average motion as a covariate will not entirely control for image970

quality in statistical models.971

Phenotypic Differences by Site972

We ran one-way ANOVAs to look for site-wise differences in continuous phenotypic and973

neuroimaging variables. If the ANOVA was significant (p < 0.05), we ran post-hoc Tukey974

tests to determine the nature of these differences (Table S1; Figure S2).975

Metric F-statistic CBICvs. CUNY
t-stat

CUNYvs. RU
t-stat

RUvs. SI
t-stat

CBICvs. RU
t-stat

CUNYvs. SI
t-stat

CBICvs. SI
t-stat

Age 2.30 - - - - - -EHI 0.12 - - - - - -SES 10.67∗ - - 2.81 3.53 3.51 3.72ICV 19.47∗ -2.24 5.01 - 6.50 4.05 3.23WISC VCI 8.06∗ - - - 4.72 - -WISC VSI 9.31∗ - - - 5.17 - -TOWRE 2.30 - - - - - -gFD 152.8∗ -9.63 - 1.30 -1.97 1.04 4.30gFC 4.04∗ - - 2.11 2.09 2.79 2.84Motion 35.83∗ - - -5.17 -8.11 -4.47 -7.61Neighbor Corr. 11.59∗ -5.82 5.24 - - 2.99 -
Table S1. ANOVA results for site-wise comparisons between phenotypic and neuroimagingmetrics. Group comparison columns list significant t-statistics. * denotes p < 0.05 for the ANOVAbetween all sites. Post-hoc t-tests were only run if the between-sites ANOVA was significant. Onlysignificant t-statistics (p < 0.05) are shown in the table. A positive t-statistic denotes Site 1 > Site 2.
Abbreviations: EHI - Edinburgh Handedness Inventory; SES - socioeconomic status; ICV -intracranial volume; TOWRE - Tests of Word Reading Efficiency composite score, age-normalized;WISC VSI - Wechsler Intelligence Scale for Children visuospatial index, age-normalized; WISC VCI -Wechsler Intelligence Scale for Children verbal comprehension index, age-normalized; gFD -globally-averaged fiber density; gFC - globally-averaged fiber cross-section.
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Figure S1. Correlations between continuous phenotypic and neuroimaging variables. Correlationcoefficients are reported as Spearman’s 𝜌. p-values were FDR Benjamini-Hochberg adjustedacross tests. * - p < 0.05; ** - p < 0.001; *** - p < 1e-5. Abbreviations: TOWRE - Tests of WordReading Efficiency composite score, age-normalized; WISC VSI - Wechsler Intelligence Scale forChildren visuospatial index, age-normalized; WISC VCI - Wechsler Intelligence Scale for Childrenverbal comprehension index, age-normalized; SES - socioeconomic status; ICV - intracranialvolume; N Corr - neighbor correlation; gFD - globally-averaged fiber density; gFC -globally-averaged fiber cross-section.
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Figure S2. ANOVA results for site-wise comparisons between phenotypic and neuroimagingmetrics. Only metrics associated with a significant between-sites ANOVA (p < 0.05) are plotted. *denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 1e-03, and **** denotes p < 1e-04.
Abbreviations: SES - socioeconomic status; ICV - intracranial volume; WISC VSI - WechslerIntelligence Scale for Children visuospatial index, age-normalized; WISC VCI - WechslerIntelligence Scale for Children verbal comprehension index, age-normalized; N Corr - neighborcorrelation; gFD - globally-averaged fiber density; gFC - globally-averaged fiber cross-section.

FBA Additional Figures and Secondary Analyses976

We note that exploratory fixel-based analyses reported in the supplementary materials977

are not corrected for multiple-comparisons.978

DTI, DKI, and NODDI Correlation Analyses979

WeusedQSIPrep version 0.15.3 to run the dipy_dki (Henriques et al., 2021) and amico_noddi980

(Daducci et al., 2015) reconstructionpipelines on thepreprocesseddata. From the dipy_dki981

pipeline, we collected fractional anisotropy (FA), mean diffusivity (MD), kurtosis fractional982

anisotropy (KFA), and mean kurtosis (MK). From amico_noddi, we collected the neurite983

density index (NDI - synonymous with intracellular volume fraction or ICVF) and orienta-984

tion dispersion index (ODI). We resampled and warped these scalar maps to the 1.25mm985

isotropic template space, and then mapped the voxel values to fixels. While each fixel in986

a voxel is initially assigned the same value, spatial smoothing is still applied on the fiber987

population level. We then used ModelArray to run models relating each of these met-988

rics to the composite age-standardized TOWRE scores. Similar to the primary analyses989

of FDC, model confounds included a spline fit for age and linear fits for sex, site, qual-990

ity (neighbor correlation), and log(ICV). The only metric that yielded significant findings991

was ODI, which was inversely related to reading skills in bilateral temporoparietal and992

cerebellar regions (Figure S7). The peak effect size (Δ𝑅2
𝑎𝑑𝑗 ) achieved was 0.023.993
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Figure S3. Plots of the set of tracts in which the strongest effect sizes (Δ𝑅2
𝑎𝑑𝑗 > 0.03) were achievedfor relating FDC to TOWRE scores. All tracts were in the left hemisphere. Sagittal slices go fromlateral-to-medial. Tracts were segmented from and are plotted on top of the FOD template.
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Figure S4. Significant fixels (𝑞𝐹𝐷𝑅 < 0.05) relating FDC to TOWRE scores, colored by the betaestimates (top) and direction (bottom; Red - LR, Green - AP, Blue - SI). Model confounds includeda spline fit for age and linear fits for sex, site, neighbor correlation, and log(ICV). Only the lefthemisphere is shown. Sagittal slices go from lateral-to-medial. The template FOD image was usedas the background image.
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Figure S5. Significant fixels (𝑞𝐹𝐷𝑅 < 0.05) relating fiber cross-section (FC; top), and fiber density(FD; bottom) to TOWRE scores, colored by direction (Red - LR, Green - AP, Blue - SI). Modelconfounds included a spline fit for age and linear fits for sex, site, and neighbor correlation.Additionally, FC included an additional regressor for log(ICV). Only the left hemisphere is shown.Sagittal slices go from lateral-to-medial. Red arrows point to larger clusters of significant fixels intemporoparietal and cerebellar white matter that overlapped with significant results in the mainFDC analysis. The template FOD image was used as the background image.
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Figure S6. Significant fixels (𝑞𝐹𝐷𝑅 < 0.05) for group differences in fiber cross-section between theTR and RD groups. The top panel is colored be beta coefficients (positive indicates TR > RD), andbottom panel is colored by direction (Red - LR, Green - AP, Blue - SI). Model confounds included aspline fit for age and linear fits for sex, site, neighbor correlation, and log(ICV). Only the lefthemisphere is shown. Sagittal slices go from lateral-to-medial. The template FOD image was usedas the background image.
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Figure S7. Significant fixels (𝑞𝐹𝐷𝑅 < 0.05) relating orientation dispersion index (ODI) to TOWREscores, colored by direction (Red - LR, Green - AP, Blue - SI). Model confounds included a spline fitfor age and linear fits for sex, site, neighbor correlation, and log(ICV). Top and bottom panels areleft and right hemispheres, respectively. Sagittal slices go from lateral-to-medial. Red arrowspoint to larger clusters of significant fixels in bilateral temporoparietal and cerebellar whitematter. The template FOD image was used as the background image.
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