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Text S1. Filtering of coefficients in CCPLS
In filtering step (i), CCPLS calculates p-values for Wf(T,?)C of each component c, which is an
element of WJSIT,’:) and is obtained by PLS regression modeling. The p-values are calculated by #-tests
of factor loadings (Yamamoto et al., 2014), which correspond to the p-values of the Pearson
correlation coefficient calculated by
(m) (m) (m)_
corr (Xgm), tgm)) -t (N )
\/var(xﬁm))\/var(tgm))
(m) ((m)Y) _ _yaug™ /(N -1)

o (Yh e )=\/var(yﬁm))\/var(u$;m)) ’

where corr() and var() denote calculations of a Pearson correlation coefficient and its variance,

respectively. The vectors Xgm) and y}(lm) are preprocessed scores of neighboring cell type f and
preprocessed expression values of HVG h of cells i within cell type m. The vectors tﬁm) and
ugm) are scores of c-th component obtained by PLS regression modeling. These p-values are false
discovery rate (FDR)-adjusted as qgrcn) and q}(lrfcl) by the Benjamini-Hochberg (BH) method,
respectively (Benjamini and Hochberg, 1995). CCPLS filters out the coefficient Wf(ﬁl)c whose

adjusted p-values q}? or q,(:rcl) are greater than or equal to @ and then returns the coefficient

w'(rél})l = chél(hrflc) as follows:
;(}Tlnc) = wf(r,':)c iqu(f"cl) <a Vq,(:cl) <a
W;(,TC) =0 otherwise '

In this study, we set a to 0.05.

In filtering step (ii), CCPLS filters out the statistically non-significant coefficient w;(m) by using a
non-parametric test. CCPLS uses the coefficients Wgr}?) which are statistically non-significant genes
in all the neighboring cell types f in the step (i) as a null distribution. For each neighboring cell
type f, CCPLS calculates the adjusted p-values q;‘(hm) by the BH method (Benjamini and

Hochberg, 1995). For each neighboring cell type f, CCPLS filters out the coefficient wi™ whose

fh
adjusted p-values q;(hm) are greater than or equal to a and then returns W;"}Sm) as follows:
(m) (m) e 1(m)
wiy™ = wi o ifqe < a
w/™ =0 otherwise

fh



Text S2. Additional descriptions of datasets

S2.1 Simulated dataset

We prepared the cell type label vector L by substituting cell types A-D into the cell type label
vector of the seqFISH+ real dataset as follows:
® A:L5eNeuron
® B: L6 eNeuron
® (:Olig
® D: The other nine cell types

In section 3.1, we assigned the correspondence between the estimated and predefined highly
variable gene (HVG) clusters based on whether greater than half of genes had estimated coefficients
corresponding to each flag in the following table, respectively. We assigned clusters to the group

“others” if they were not assigned to any of the predefined clusters.

Neighboring cell Flag of predefined Flag of predefined Flag of predefined Flag of predefined
type cluster 1 cluster 2 cluster 3 cluster 4

A Significant Not significant Not significant Not significant

B Not significant Significant Not significant Not significant

C Significant Not significant Significant Not significant

D Not significant Not significant Not significant Not significant

For Giotto findICG, we assigned HVG cluster 1 if the sender cell type was “A” or “C,” and HVG
clusters 2-4 if the sender cell type was “B,” “C,” or none-detected, respectively.

For CCPLS and Giotto findICG, based on these assignments, we calculated the adjusted Rand
index, precision, and recall for each HVG cluster. We calculated Pearson correlation coefficients
from estimated coefficients not divided according to each assignment. We also calculated the index

of variance proportion (VP) as follows:

A
1 var (xi,fwéh))
VP =

1.
var (xi,fwf(’ﬁ) + ocei,h)

S2.2 SeqFISH+ real dataset
In section 3.2, we assigned the contributor cell types, which were the common neighboring cell

types for each HVG cluster. If the coefficient vector wgm)

was significant in more than half of
genes relative to the neighboring cell type f, we assigned it as the contributor cell type.

We performed Gene Ontology (GO) enrichment analysis of biological processes for each HVG
cluster. If the distinct HVG clusters within the same cell type had the same contributor cell types, the
genes were merged. We performed a hypergeometric test and extracted the significant GO terms with
adjusted p- values less than 0.05 based on the BH method (Benjamini and Hochberg, 1995). We

selected background genes whose raw expression values were greater than 0 within each cell type.



Table S1. Computational methods for spatial transcriptome data

Effect of
neighboring MIMO
Method Reference cell types system  Descriptions
CCPLS This study Consider Consider Estimation of regulation on highly variable genes by multiple
neighboring cell types based on PLS regression modeling.
Giotto Dires et al., 2021b Consider Not Estimation of genes influenced by neighboring cell type
findICG consider based on spatial permutation test.
Giotto Dires et al., 2021b Consider Not Estimation of genes influenced by neighboring cell type
spatCellCellcom consider based on permutation test.
SptialDE Svensson et al., 2018 Not Not Estimation of spatially variable genes based on Gaussian
consider consider process regression modeling of spatial gene expression.
TrendSceek Edsgérd et al., 2018 Not Not Estimation of spatially variable genes based on marked point
consider consider process modeling of spatial gene expression.
SPARK-X Zhu et al., 2021 Not Not Estimation of spatially variable genes based on spatial kernels
consider consider and non-parametric modeling of spatial gene expression.
Giotto Dries et al., 2021b Not Not Estimation of spatially variable genes based on enrichment
BinSpect consider consider analysis of spatially high expression cells after binarization.
Giotto Dries et al., 2021b Not Not Estimation of spatially variable genes by silhouette score
SilhouetteRank consider consider per gene based on spatial distribution of two cells.
SVCA Arnol et al., 2019 Not Not Estimation of spatial variance sources of individual gene based
consider consider on Gaussian process regression modeling of spatial gene expression.
SpaGCN Huetal., 2021a Not Not Estimation of spatial domain and genes expression patterns
consider consider based on graph convolutional network analysis.
MEFISTO Velten et al., 2022 Not Not Estimation of spatial gene expression patterns based on
consider consider factor analysis.
MISTy Tanevski et al., 2022 Not Not Estimation of gene-gene relationships from different spatial

consider consider views: intrinsic, local niche view, the broader, tissue view, or others.
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Figure S1. Evaluation using the simulated datasets across parameters. (a) Schematic illustration of the
simulation settings with the changed parameters. Note that condition 3 corresponds to the condition in
Figure 2. (b) Performance indexes in each condition. The value of each index is indicated along the y-axis,
while each condition is arranged along the x-axis grouped within each wmax value. The color indicates the
index type. (c) Variance proportion in each condition. The variance proportion is indicated along the
y-axis, while each condition is arranged along the x-axis grouped within each wmax value.
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Figure S2. Evaluation using the noise derived from gamma distribution. (a) Schematic illustration of the
simulation settings with the changed parameters. Note that we only replaced the Gaussian noise with the
noise derived from gamma distribution compared with the Figure 2 and Figure S1. (b) Performance index-
es in each condition. The value of each index is indicated along the y-axis, while each condition is
arranged along the x-axis. The color indicates the index type. (c) Variance proportion in each condition.
The variance proportion is indicated along the y-axis, while each condition is arranged along the x-axis
grouped within each wmax value.



Y coordinate

Apllication to the seqFISH+ real dataset:

Spatial distribution of Mag expression in OPC
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Figure S3. Spatial distribution of Mag expression in Oligodendrocyte Precursor cells (OPCs). The shapes
indicate cell types. The color in the circles indicates values of Mag expression.



Application to the seqFISH+ real dataset:

Number of genes detected by Giotto findICG
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Figure S4. Comparison between Giotto findICG and CCPLS in the seqFISH+ real dataset. Note that no
down-regulated genes were found for CCPLS (Fig. 3¢ and Fig. S6).



Apllication to the seqFISH+ real dataset:

GO “glial cell diffentiation”

CCPLS Giotto findICG

Figure S5. Number of overlaps between genes of GO “glial cell differentiation”, genes detected by
CCPLS, and genes detected by Giotto findICG. Note that we extracted genes in Oligodendrocytes Precur-

sor Cells (OPCs) up-regulated by astrocytes, Oligodendrocytes (Olig), or OPCs as to CCPLS and Giotto
findICG in this venn diagram.



Apllication to the seqFISH+ real dataset:

Color of heatmap: coefficient
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Figure S6. Heat map generated by CCPLS of all the cell types in the seqFISH+ real dataset. Rows and
columns correspond to neighboring cell types and highly variable genes (HVGs), respectively. The color
of the heat map indicates the coefficient. The heatmap of oligodendrocyte precursor cells (OPCs) is the
same as that shown in Figure 3c.



Application to the seqFISH+ real dataset:
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Figure S7. Bipartite graph generated by CCPLS of all the cell types in the seqFISH+ real dataset. The width of
each edge indicates the averaged coefficients in each combination of highly variable gene (HVG) clusters and

neighboring cell types. The bipartite graph of oligodendrocyte precursor cells (OPCs) is as the same as that
shown in Figure 3d.



Application to the seqFISH+ real dataset:
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Figure S8. Contributor cell type in the seqFISH+ dataset. The color of the heat map corresponds to the binary
value indicating whether the neighboring cell type is a contributor cell type or not. Red and blue indicate the
contributor and non-contributor cell types, respectively. Rows and columns correspond to cell types and
highly variable gene (HVG) clusters, respectively.



Application to the seqFISH+ real dataset:
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Apllication to the Seq-Scope real dataset:

Spatial distribution of Gpx1 expression in B cell-Immature
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Figure S10. Spatial distribution of Gpx/ expression in B cell-Immature. The shapes indicate cell types.

The color in the circles indicates values of Gpx/ expression.



Application to the Seqg-Scope real dataset:
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Figure S11. Comparison between Giotto findICG and CCPLS in the Seq-Scope read dataset.



Apllication to the Seq-Scope real dataset:

GO “epithelial cell development”

CCPLS Giotto findICG

Figure S12. Number of overlaps between genes of GO “epithelial cell development”, genes detected by
CCPLS, and genes detected by Giotto findICG. Note that we extracted genes in immature B cell up-regu-
lated by IgA B cell as to CCPLS and Giotto findICG in this venn diagram.



Application to the Seq-Scope real dataset:

Color of heatmap: coefficient
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Figure S13. Heat map generated by CCPLS of all the cell types in the Seq-Scope real dataset. Rows and
columns correspond to neighboring cell types and highly variable genes (HVGs), respectively. The color
of the heat map indicates the coefficient. The heatmap of the immature B cell is the same as that in

Figure 4c.
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Application to the Seq-Scope real dataset
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(HVG) clusters and neighboring cell types. The bipartite graph of the immature B cell is the same as that

width of each edge indicates the averaged coefficients for each combination of highly variable gene
in Figure 4d.

Figure S14. Bipartite graph generated by CCPLS of all the cell types in the Seq-Scope real dataset. The



Application to the Seqg-Scope real dataset:

Red: contributor cell type Blue: non-contibutor cell typ Row: neighboring cell type Column: HVG cluster

I B cell-1eG I [ Bcell-Immature | | DCSC |

B cell-IgA B cell-IgA B cell-IgA

B cell-IgG B cell-IgG B cell-IgG

B cell-Immature B cell-Immature B cell-Immature

DCSsC DCSC DCSC
Fibroblast Fibroblast Fibroblast
Macrophage Macrophage Macrophage
Paneth-like Paneth-like Paneth-like

Smooth.Muscle Smooth.Muscle Smooth.Muscle

Stem Stem Stem

I Fibroblast I Macrophage I I Paneth-like I

B cell-IgA B cell-IgA B cell-IgA

B cell-IgG B cell-IgG B cell-IgG

B cell-Immature B cell-Immature B cell-Immature

DCsC DCSC DCsC

Fibroblast Fibroblast Fibroblast

Macrophage Macrophage Macrophage

Paneth-like Paneth-like Paneth-like

Smooth.Muscle Smooth.Muscle Smooth.Muscle

Stem Stem Stem

3 4 5 6 7 8 9 10 11 12 13 14
I Smooth Muscle I Stem
B cell-IgA B cell-IgA
B cell-IgG B cell-IgG

B cell-Immature B cell-Immature

DCSC DCSC
Fibroblast Fibroblast
Macrophage Macrophage
Paneth-like Paneth-like

Smooth.Muscle Smooth.Muscle

Stem Stem

Figure S15. Contributor cell type in the Seq-Scope dataset. The color of the heat map corresponds to the
binary value indicating whether the neighbor cell type is a contributor cell type or not. Red and blue indicate
the contributor and non-contributor cell types, respectively. Rows and columns correspond to cell types and
highly variable gene (HVG) clusters, respectively.



Application to the Seq-Scope real dataset:

Row: GO term  Column: gene count  Color of bar graph: adjusted p-value

| B cell-Immature |

Results of GO enrichment analysis in the B.cell-Immature HVG cluster 2 padjust

‘ 003952102

one-carbon metabolic process|

o
~
N
o

Results of GO enrichment analysis in the B cell-mmature HVG cluster 4

epithelial cell development

response to oxidative stress

apoptotic signaling pathway padjust
cellular response to

o0
oxidative stress

chemical homeostasis | oo

008

negative regulation of
apoptotic signaling pathway
onse to

oxygen-containing compound

cellular chemical homeostasis {

|||||‘||

o
5
N
3
@
8

| Fibroblast |

Results of GO enrichment analysis in the Fibroblast HVG cluster 5

adjust
regulation of anatomical pad
structure size

002083601

regulation of cellular
component size

o
@

| Stem |

Results of GO enrichment analysis in the Stem HVG cluster 10

translation padjust

peptide biosynthetic process

regulation of lymphocyte.
migration

| DCSC |

Results of GO enrichment analysis in the DCSC HVG cluster 1 padjust

negative regulation of viral
process oo1a0816s
[ 2 1 6

Macrophage |

Results of GO enrichment analysis in the Macrophage HVG cluster 1 p-adjust

cellular response to glucose
starvation ootasasss
0 z 4 5

Results of GO enrichment analysis in the Macrophage HVG cluster 3

positive regulation of cell padjust
morphogenesis involved in osi0
differentiation o0i2
o0u
positive regulation of oo
dendrite morphogenesis
00 25 50 75 100
Results of GO enrichment analysis in the Macrophage HVG cluster 6 padust
protein localization to
chromatin oox0zss
[ 1 2 3

Figure S16. Gene Ontology (GO) enrichment of all the cell types in the Seq-Scope real dataset.



