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1 Derivation of the dynamics of small perturbations1

In this section, we provide a derivation of the linear dynamics of small perturbations, which2

is the foundation of our approaches to rank species sensitivities to perturbations. Let us consider3

the most general form of a population dynamics model for a given species i within a community4

with S species (Case, 2000):5

dNi

dt
= fi(N), (S1)

where Ni is the abundance of species i, N = [N1, ..., NS ]> is the vector of abundances of all6

species, and fi (fi: RS → R) is the function describing how the growth rate of species i depends7

on the abundances of all species. Note that fi also depends on a set of parameters, which we8

consider to be fixed over time. We can write equation (S1) for all species in the community9

as dN
dt = f(N), where dN

dt = [dN1
dt , ...,

dNS
dt ]> and f : RS → RS . See below (Section 3) for some10

examples of population dynamics models of this form.11

In this study, we are interested in ranking species according to their sensitivity to perturba-12

tions, that is, how much their abundance trajectories are expected to change after some time13

following a small random wiggle on abundances. Then, let us consider a random pulse perturba-14

tion p that changes N into Ñ (i.e., Ñ = N + p). Now, we can write the Taylor expansion of dÑ
dt15

around N (Strogatz, 2018):16

dÑ

dt
= f(N) +

∂f

∂Ñ

∣∣∣
Ñ=N

· (Ñ−N) +O(p>p), (S2)

where ∂f
∂N = J is the Jacobian matrix of partial derivatives with jij = ∂fi

∂Nj
. If p is small, we can17

approximate its dynamics by taking just the linear term (i.e., ignoring higher-order terms):18

dÑ

dt
= f(N) +

∂f

∂Ñ

∣∣∣
Ñ=N

· (Ñ−N)

dN

dt
+
dp

dt
=

dN

dt
+ J|Ñ=N · p

dp

dt
= J|Ñ=N · p. (S3)

Thus, as it is known (Boyce et al., 2017, Kuptsov & Parlitz, 2012, Mease et al., 2003, Strogatz,19

2018, Vallejo et al., 2017), the dynamics of a small perturbation p can be approximated by the20

linear equation above called the tangent dynamics of dN
dt . Note that we have not assumed the21

existence of an equilibrium here (i.e., N∗ for which f(N∗) = 0) and, therefore, equation (S3) is22

valid irrespective of whether N is close to equilibrium or not.23

2 Derivation of analytical expected sensitivity24

Here we derive the expected value (E(si); Box 1 in the main text) of the sensitivity si (equa-

tion (1) in the main text) of species i to small perturbations (p) affecting species abundances

(N). We assume that p(t) follows a distribution with mean zero and covariance matrix Σt. We
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assume a distribution with mean zero because unbiased perturbations are the most uninforma-

tive way to consider how perturbations may impact a community. In most of our perturbation

analyses, we assume that p(t) follows a multivariate normal distribution (i.e., p(t) ∼ N (0,Σt)),

but this assumption is not necessary for the derivation below. The linearized dynamics of a

small perturbation is given by dp
dt = Jp (see Section 1) (Boyce et al., 2017, Eckmann & Ruelle,

1985, Mease et al., 2003, Strogatz, 2018). We can obtain the solution for this linear system as

p(t + k) = eJkp(t), where eA =
∑∞

i=1
1
i!A

i is the exponential of matrix A (Arnoldi et al., 2018,

Boyce et al., 2017). By defining M = eJk, we can compute the expected value of p(t+ k):

E[p(t+ k)] = E[Mp(t)]

= ME[p(t)]

= 0. (S4)

Thus, p(t+ k) also follows a distribution with mean zero. In the special case where p(t) follows25

a normal distribution, p(t + k) also follows a normal distribution because Mp(t) is a weighted26

sum of normal distributions.27

Because pi(t) and pi(t + k) have mean zero, the sensitivity of species i can be approximated28

by the ratio of the variance of pi(t+ k) and the variance of pi(t):29

〈si〉 =
1
n

∑n
j=1 p

(j)
i (t+ k)2

1
n

∑n
j=1 p

(j)
i (t)2

=
Var[pi(t+ k)]

Var[pi(t)]
, (S5)

where Var[pi(t)] = σ2i,t is the ith diagonal element of Σt. Assuming that σ2i,t is the same for

every species i, we can ignore it for the purpose of ranking species sensitivities and focus only on

Var[pi(t+ k)]. We can obtain Var[pi(t+ k)] by computing the covariance matrix of p(t+ k):

Σt+k = E[p(t+ k)p(t+ k)>]

= E[(Mp(t))(Mp(t))>]

= ME[p(t)p(t)>]M>

= MΣtM
>. (S6)

Therefore, we define the expected sensitivity of species i at time t as: E(si) = Var[pi(t + k)] =30

σ2i,t+k, where σ2i,t+k is the ith diagonal element of Σt+k. Note that we can normalize E(si) by31

dividing it by
∑S

i=1 σ
2
i,t+k, which has been shown to correspond to the expected magnitude of32

p(t+k) (i.e., E[||p(t+k)||2]) (Arnoldi et al., 2018). Although this normalization does not change33

the order of E(si) values, it allows us to interpret the normalized E(si) as the relative contribution34

of species i to the expected magnitude of p(t+ k).35

In addition to knowing J, knowledge of Σt and k is required to compute E(si). In our main36

set of perturbation analyses, we compute E(si) using the true value of k used to evolve perturbed37

abundances but do not use the true value of Σt. Specifically, we set Σt = I, where I is the identity38
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matrix. We test the robustness of the expected sensitivity ranking under uncertainty in k and39

Σt in three different ways. First, we compute E(si) using Σt = I when σ2i,t varies over time and40

across species (i.e., normally distributed perturbations with a variance proportional to relative41

species abundances; Fig. S10). Second, we compute E(si) using k = 1 when k varies over time42

(i.e., k inversely proportional to the time scale of the dynamics; Fig. S13). Third, we compute43

E(si) as described above for our main set of analyses but add 100% of normally distributed noise44

to Σt and k at each point in time (Fig. S14).45

3 Synthetic time series from population dynamics models46

To test whether expected sensitivities (E(si); Box 1 in the main text) and species alignments47

with the leading eigenvector (|v1i|; Box 2 in the main text) can accurately rank species sensitivities48

to perturbations (〈si〉, equation (2) in the main text), we perform perturbation analyses using49

synthetic time series. We generate synthetic time series using five different population dynamics50

models with the generic form: dN
dt = f(N), where f : RS → RS is a nonlinear function. Here, we51

present the equations, parameter values and references for each model.52

The first model contains two species and depicts the interactions between a predator (species53

1) and its prey (species 2), producing a limit cycle (Yodzis, 1989) (Fig. S5):54

dN1

dt
= kN1

( aN2
2

1 + ahN2
2

)
− dN1

dN2

dt
= rN2

(
1− N2

K

)
−N1

( aN2
2

1 + ahN2
2

)
, (S7)

where k = 0.5 a = 0.002, h = 4, d = 0.1 r = 0.5, and K = 100.55

The second model contains three species and depicts a food chain with a primary producer56

(species 1), a primary consumer (species 2), and a secondary consumer (species 3), producing57

chaotic dynamics (Hastings & Powell, 1991, Upadhyay, 2000) (Fig. 1 in the main text and S5):58

dN1

dt
= rN1

(
1− N1

K

)
− a1N1N2

1 + b1N1

dN2

dt
= −sN2 + hN1N2 −

a2N2N3

1 + b2N2

dN3

dt
= −lN3 + nN2N3, (S8)

where r = 4.3, K = 50, a1 = 0.1, b1 = 0.1, a2 = 0.1, b2 = 0.1, s = 1, h = 0.05, l = 1, and59

n = 0.03.60

The third and fourth models have the general form of the classic Lotka-Volterra model (Case,61

2000):62

dNi

dt
= Ni

(
ri +

S∑
j=1

aijNj

)
(S9)
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where ri is an element of the vector r representing the intrinsic growth rate of species i and aij is63

an element of the interaction matrix A representing the interaction effect of species j on species64

i. The third model contains three species (S = 3) and produces chaotic dynamics between two65

prey and one predator (Gilpin, 1979) (Fig. S5) with the following values for ri and aij :66

r =


1

1

−1

 , A =


−0.1 −0.1 −1

−0.15 −0.1 −0.1

0.5 0.05 0


The fourth model contains four competitor species (S = 4) and also produces chaotic dynamics67

(Vano et al., 2006) (Fig. S5) with the following values for ri and aij :68

r =


1

0.72

1.53

1.27

 , A =


−1 −1.09 −1.52 0

0 −1 −0.44 −1.36

−2.33 0 −1 −0.47

−1.21 −0.51 −0.35 −1


Finally, the fifth model depicts a 5-species food web with two secondary consumers (species69

1 and 2), two primary consumers (species 3 and 4), and one primary producer (species 5) also70

generating chaotic dynamics (Deyle et al., 2016) (Fig. S5):71

dN1

dt
= ν1λ1

N1N3

N3 +N∗3
− ν1N1

dN2

dt
= ν2λ2

N2N4

N4 +N∗4
− ν2N2

dN3

dt
= µ1κ1

N3N5

N5 +N∗5
− ν1λ1

N1N3

N3 +N∗3
− µ1N3

dN4

dt
= µ2κ2

N4N5

N5 +N∗5
− ν2λ2

N2N4

N4 +N∗4
− µ2N4

dN5

dt
= N5

(
1− N5

K

)
− µ1κ1

N3N5

N5 +N∗5
− µ2κ2

N4N5

N5 +N∗5
, (S10)

where ν1 = 0.1, ν2 = 0.07, λ1 = 3.2, λ2 = 2.9, N∗3 = 0.5, N∗4 = 0.5, µ1 = 0.15, µ2 = 0.15,72

κ1 = 2.5, κ2 = 2, N∗5 = 0.3, and K = 1.2.73

For each model, we numerically integrate the dynamics using a Runge-Kutta method with a74

time step of 0.05 and obtain a time series with 10,000 points. Then, we sample equidistant points75

obtaining a final multivariate time series with 500 points ({N(t)}, t = 1, ..., 500). Note that with76

this protocol we obtain time series that fully sample the attractor of each model and have a size77

similar to the empirical time series used here (Fig. S5). Also note that by sampling equidistant78

points we test the robustness of the S-map to infer E(si) and |v1i| under the typical low sampling79

frequency of empirical time series.80
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4 Perturbation analyses81

For each synthetic time series, we perform random perturbations on abundances to compute82

species sensitivities (〈si〉; equation (2) in the main text). We apply n = 300 random pulse83

perturbations p to the abundance vector N at each point in time: Ñ = N+p. We perform these84

perturbations in three different ways. First, we assume perturbations are normally distributed85

around N and use pi(t) ∼ N (µ = 0, σ2 = r2) (Fig. 1C, D in the main text). Second, we86

assume perturbations are uniformly distributed around N and apply p(t) such that Ñ is uniformly87

distributed inside a hypersphere of radius r centered in N. Third, we assume normally distributed88

perturbations with a variance proportional to relative species abundances, such that: pi(t) ∼89

N (µ = 0, σ2 = N ′i(t)r
2), where N ′i(t) = Ni(t)∑S

i=1Ni(t)
. Note that in this last scenario we relax90

our assumption that the variance of pi(t) is fixed over time and equal for every species. For all91

types of perturbation, we set r to be 15% of the mean standard deviation of species abundances:92

r = 0.15 1
S

∑S
i=1 σNi , where σNi is the standard deviation of Ni for the whole time series. The93

results for normally distributed perturbations are presented in the main text, whereas the results94

for the other perturbation types are shown in Figs. S9 and S10.95

After applying perturbations, we numerically integrate model f for k time steps using each96

perturbed abundance vector Ñ as well as the unperturbed abundance vector N as initial condi-97

tions. Then, we compute 〈si〉 using the initial (i.e., time t) and final (i.e., time t+ k) perturbed98

and unperturbed abundances (equation (2) in the main text). Because dN
dt (i.e., time scale) can99

greatly vary across state space, impacting how perturbations grow over time, we set k to be100

inversely proportional to the mean absolute percent change between Ni(t+ 1) and Ni(t). Specif-101

ically, we use k =
[
1
S

∑S
i=1

∣∣∣Ni(t+1)−Ni(t)
Ni(t)

∣∣∣]− 1
2
. Thus, k increases as the percent change decreases102

and we use a square root to damp the large variability in time scale found for most models. We103

also perform these analyses using a fixed value of k (k = 1 or k = 3) for all points in the time104

series (Figs. S11 and S12). Note that k = 3 can be considered a long time period for some105

models, allowing us to test the robustness of our approaches for longer periods of time.106

5 Inference of Jacobian matrix with the S-map107

We perform the S-map using the rEDM package in R to sequentially infer the Jacobian matrix108

(J) through time using only past time-series data in order to compute expected sensitivities (E(si))109

and species alignments with the leading eigenvector (|v1i|). The S-map is a locally weighted state-110

space regression method that can be used to infer the time-varying Jacobian matrix of a dynamical111

system (Cenci et al., 2019, Deyle et al., 2016, Sugihara, 1994). Given a time series ({N(tk)},112

k = 1, ..., T ), we can fit a linear regression of the following form to each point: Ni(tk + 1) = ci0 +113 ∑S
j=1 cijNj(tk). Note that cij = ∂Ni(tk+1)

∂Nj(tk)
is an approximation of the Jacobian element jij at time114

tk. The S-map consists of performing this linear regression locally for a given target point N(t∗)115

by giving a stronger weight to points that are closer to it in state space. This is done by finding a116

solution for c in b = Ac, where bk = wkNi(tk + 1), akj = wkNj(tk), wk = exp
[
− θ ||N(tk)−N(t∗)||

d

]
,117
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and d = 1
T

∑T
k=1 ||N(tk) −N(t∗)||. Thus, b ∈ RT contains the abundances at tk + 1 weighted118

by the relative distance of each point to the target point, A ∈ RT×(S+1) is the weighted data119

matrix of abundances at tk, and c ∈ RS+1 estimates the ith row of the Jacobian matrix at time120

tk as well as an intercept term. We obtain the solution for c via singular value decomposition121

(Deyle et al., 2016), which is equivalent to the ordinary least squares solution (Cenci et al., 2019).122

Importantly, the parameter θ tunes how strongly the regression is localized around the target123

point and is typically selected using leave-one-out cross-validation (LOOCV) (Cenci et al., 2019).124

For each of the five synthetic time series, we fit the S-map sequentially to infer J for each125

point in time, which is then used to compute E(si) and |v1i|. To do so, we assign half of the126

time series (i.e., {N(t)}, t = 1, ..., 250) as a training set to select the optimal θ (θ̂) via LOOCV127

by using the S-map to forecast species abundances (Cenci et al., 2019). Then, we use θ̂ to fit the128

S-map over the whole training set and infer E(si) and |v1i| at the last point in the training set129

(i.e., t = 250) to rank 〈si〉 values (computed via the perturbation analyses). Next, we add a new130

point to the training set, remove its first point, and repeat the LOOCV and ranking procedures131

until the end of the time series. Note that we keep the size of the training set fixed after each132

update (e.g., t = 2, ..., 251 for the first update), controlling for the effects of time series length133

on the performance of the S-map. Also note that we can only infer the coefficients of J up to a134

constant (Cenci & Saavedra, 2019), so we only consider the direction of v1 and the relative value135

of λ1 through time.136

Recent improvements of the S-map have been developed to deal with observational and process137

noise as well as with communities with a large number of species (Cenci et al., 2019, Chang et al.,138

2021). Here, we find that the classic S-map as described above (Deyle et al., 2016, Sugihara,139

1994) already provides a very good inference of expected sensitivities (E(si); Box 1 in the main140

text) and eigenvector alignments (|v1i|; Box 2 in the main text). In addition to the performance141

shown in Fig. 3, we show that the classic S-map allows us to accurately predict the order of142

species sensitivities (〈si〉) when normalizing species abundances (Fig. S15), when using shorter143

time series (Fig. S16), when adding observational noise to the time series (Fig. S17), or when the144

model has a stochastic component (i.e., process noise; Fig. S18). Our analyses with short and145

noisy time series are described in the next section (see Section 6). We believe that combining146

our ranking approaches with recent developments of the S-map (Cenci et al., 2019, Chang et al.,147

2021) to deal with large amounts of noise or with communities with a large number of species is148

an exciting direction for future research.149

6 Analyses with short and noisy synthetic time series150

In our analyses with synthetic time series reported in the main text, we infer the Jacobian151

matrix (J) and, therefore, expected sensitivities (E(si)) and eigenvector alignments (|v1i|) using152

time series with 250 points and without noise. These conditions, however, are rarely observed153

in empirical time series, which are typically much shorter and contaminated with noise (Cenci154
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et al., 2019, Sugihara, 1994). In this section, we describe additional analyses with short and noisy155

synthetic time series.156

To test the robustness of our ranking approaches (i.e., using E(si) or |v1i| to rank 〈si〉 over157

time) with shorter time series, we perform the S-map using a smaller training set. Instead of158

using 250 points (e.g., t = 1, ..., 250 in the first training set) as described in the previous section,159

we use only 100 points (e.g., t = 1, ..., 100 in the first training set) to train the S-map and infer160

E(si) and |v1i| at the last point in the training set to predict species sensitivities (〈si〉). Fig. S16161

shows that our results remain similar to the results in Fig. 3B, which use 250 points.162

We also verify the performance of our ranking approaches inferred with the S-map under163

scenarios of observational noise. To do so, we use the same synthetic time series and perturbation164

analyses as reported in the main text but add normally distributed noise to the time series used to165

train the S-map. That is, for each species i and time t in the training set, we transform Ni(t) into166

Ni(t) +N (µ = 0, σ2 = [δNi(t)]
2), where δ = 0.1 (i.e., 10% of observational noise). Then, we use167

the noisy time series to infer E(si) and |v1i| with the S-map and predict the order of 〈si〉 at each168

point in time. The middle column in Fig. S5 shows the attractors for each population dynamics169

model with observational noise. Fig. S17 shows that, although the mean rank correlation (ρ̄)170

can decrease for some models, our results remain similar to the results in Fig. 3B, which do not171

contain noise.172

We also perform analyses with synthetic time series with process noise. To do so, we generate173

synthetic time series using a modified version of our population dynamics models (equations174

(S7), (S8), (S9), and (S10)). In particular, we transform each deterministic population dynamics175

model dN
dt = f(N) into a model with a stochastic component: dN = f(N)dt + g(N)dW , where176

f(N) is the original deterministic part, g(N) is the stochastic part, and W is a Wiener process.177

We use the simplest form of stochasticity, which consists of independent process noise for each178

species. That is, g(N) is a diagonal matrix with Niδ as the diagonal elements, where δ = 0.03.179

We then use the stochastic version of the models to generate the synthetic time series but use180

the deterministic version (i.e., δ = 0) to evolve perturbed points over time in our perturbation181

analyses (see Section 4). Finally, we inferred our ranking approaches with the S-map using the182

synthetic time series with process noise to predict the order of 〈si〉 over time. The right column183

in Fig. S5 shows the attractors for each population dynamics model with process noise. Fig. S18184

shows that, although the mean rank correlation (ρ̄) can decrease for some models, our results185

remain similar to the results in Fig. 3B.186

7 Forecast analyses with empirical time series187

We apply our ranking approaches to two empirical time series. Both time series contain188

four interacting variables (hereafter species) and have been shown to exhibit non-equilibrium189

dynamics for long periods of time (Benincà et al., 2015, 2009). The first time series has 251190

points and reports the percentage of cover of barnacles, mussels, crustose algae, and bare rock191
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in a pristine rocky intertidal site sampled monthly for 20 years (Benincà et al., 2015) (Fig.192

4A in the main text). The second time series has 794 points and reports the abundance of193

picocyanobacteria, nanoflagellates, rotifers, and calanoid copepods in an experimental mesocosm194

sampled twice a week for 7 years (Benincà et al., 2009) (Fig. S21). Because both time series195

report species abundances on the same scale and unit, we do not normalize species abundances196

before performing the S-map in order to preserve properties of the Jacobian matrix (e.g., sign of197

Jacobian coefficients (Song & Saavedra, 2021); but see Fig. S25).198

For each time series, we test the hypothesis that the order of species sensitivities (E(si))199

and species alignments with the leading eigenvector (|v1i|) should predict the order of species200

standardized forecast errors (εi; equation (4) in the main text). To do so, we fit the S-map to201

compute both rankings and use a Long Short-Term Memory (LSTM) neural network (James202

et al., 2021) to forecast species abundances. Specifically, for each time series, we assign 70%203

of the data as the training set and sequentially infer the Jacobian matrix with the S-map by204

moving the training set forward while keeping its size fixed as described in the previous section.205

In addition, we independently train the LSTM neural network on the training set and forecast206

the abundances of all species for τ = 3 steps ahead (Cenci et al., 2020). Note that we normalize207

species abundances to mean zero and unit standard deviation before training the LSTM neural208

network. Then, we move the training set forward keeping its size fixed, fit the S-map and train the209

LSTM neural network in the new training set, and forecast abundances for τ = 3 steps ahead until210

we reach the end of the time series. Thus, for each time t in the test set (i.e., last 30% of points in211

the time series), we obtain E(si), |v1i| and εi for each species and compute the rank correlation ρ212

between them. Note that neither the S-map nor the LSTM neural network use information from213

abundances outside the current training set for inference and forecasting, respectively. Finally,214

we perform a randomization test to verify whether the mean rank correlation over the test set (ρ̄)215

is significantly greater than zero. For each empirical time series and for each ranking approach,216

we shuffle εi values across species for each point in the test set and compute ρ̄ 1,000 times to217

obtain a p-value. We also perform these analyses using τ = 2 (Fig. S22) as well as using 60%218

and 50% of points in the training set (Figs. S23 and S24).219

8 Forecast analyses with synthetic time series220

In the previous section, we describe our analyses using empirical time series to test the hy-221

pothesis that species showing higher forecast errors (εi) at a given time are also more sensitive to222

perturbations (i.e., have a higher value of E(si) or |v1i|). Here, we describe similar analyses using223

the five synthetic time series generated from population dynamics models (see Section 3). In these224

analyses, we compute an average forecast error (ε̄i) for each species by trying to forecast species225

abundances with the LSTM neural network under perturbations (Cenci et al., 2020, James et al.,226

2021). First, we separate a given synthetic time series into a training set (first half of the time227

series) and a test set (second half of the time series). Then, we add 10% of observational noise228

to the training set (see Section 6) and use it to infer the Jacobian matrix with the S-map and229
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to forecast species abundances with the LSTM at the last point in the training set. Following230

the analyses of the previous section, we forecast species abundances for τ = 3 steps ahead and231

then move the training set forward by keeping its size fixed and repeat the inference and forecast232

procedures until the end of the time series. For each time t in the test set, we compute an average233

forecast root-mean-square error (RMSE) under perturbations for each species i as:234

ε̄i =
1

n

n∑
j=1

√
[Ñ

(j)
i (t+ τ − 1)− N̂i(t+ τ − 1)]2, (S11)

where n is the number of perturbed abundances (n = 300), Ñi
(j)

(t+ τ − 1) is the jth perturbed235

abundance of species i at time t + τ − 1, and N̂i(t + τ − 1) is the forecast of the abundance of236

species i at time t + τ − 1. Thus, we compute the average forecast error of each species for n237

potential perturbed abundances that could have been observed at a given point in time. Note238

that perturbed abundances are obtained from our perturbation analyses (see Section 4).239

We then use the inferred expected sensitivity (E(si)) and eigenvector (|v1i|) rankings as well240

as our alternative indicators (i.e., ∆Ni(t) or −Ni(t)) to predict the order of average forecast errors241

(ε̄i) over the test set. Note that this analysis follows closely our analyses of predicting the order242

of species sensitivities (〈si〉) described in the main text. Fig. S19 shows the results for these243

analyses as the Spearman’s rank correlation (ρ) between a given ranking (E(si), |v1i|, ∆Ni(t), or244

−Ni(t)) and ε̄i over the test set. The figure shows that, for all models expected for the model with245

4 competitor species, E(si) and |v1i| show, on average, a positive rank correlation with ε̄i (Fig.246

S19). Furthermore, the figure shows that this is not the case for ∆Ni(t) and −Ni(t) (Fig. S19).247

Therefore, this analysis illustrates that species forecast errors can be related to our measures of248

sensitivity to perturbations under synthetic time series.249

9 Leading eigenvector and direction of greatest perturbation ex-250

pansion under equilibrium dynamics251

We now explain how the leading eigenvector of the Jacobian matrix J (see Section 1) points252

in the direction of greatest expansion of small perturbations under equilibrium dynamics. Under253

equilibrium dynamics and for sufficiently small perturbations, J evaluated at the equilibrium N∗254

is constant. Thus, we can obtain the general solution of the linear differential equation (S3) as255

(Boyce et al., 2017, Strogatz, 2018):256

p(t+ k) =

S∑
i=1

cie
λikvi, (S12)

where λi is the ith eigenvalue of J (λS ≤ ... ≤ λ1) associated with eigenvector vi, and the257

constants ci depend on the initial condition p(t) =
∑S

i=1 civi. We use λi and vi to denote the258

real parts of the ith eigenvalue and eigenvector, respectively. Under equilibrium dynamics, λi < 0259

for all i implies a stable equilibrium, whereas λi > 0 for any i implies an unstable equilibrium260
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(Strogatz, 2018). Note that, without loss of generality, we can set t = 0 for the initial condition.261

Also note that the solution for p(t + k) can only be described by equation (S12) if J has S262

distinct eigenvalues and, therefore, a set of S linearly independent eigenvectors. We propose263

that given a sufficient amount of time k, eλ1k will become much larger than subsequent terms264

(i.e., eλ2k, ..., eλSk) and, therefore, equation (S12) can be approximated using only the leading265

eigenvalue and its associated leading eigenvector:266

p(t+ k) ≈ c1eλ1kv1. (S13)

Therefore, after a sufficient time k, perturbed abundances p will be located closely to the line267

spanned by v1.268

It is important to note that the time k required for c1e
λ1kv1 to approximate p(t+k) depends269

on all eigenvalues and eigenvectors. For example, if λS < ... < λ2 < 0 < λ1 and eigenvectors are270

orthogonal to each other, then the time k for c1e
λ1kv1 to approximate p(t+k) is expected to be be271

small (see first scenario in Section 13 and Fig. S1). Importantly, this is the scenario we expect to272

observe in chaotic non-equilibrium dynamical systems that typically have directions of expansion273

(i.e., unstable manifold) and contraction (i.e., stable manifold) at each point along an attractor274

(Eckmann & Ruelle, 1985, Strogatz, 2018). On the other hand, if more than one eigenvalue is275

positive or if eigenvectors are not orthogonal, then the time k for c1e
λ1kv1 to approximate p(t+k)276

is expected to be large (see second scenario in Section 13 and Fig. S2).277

In addition, it is also important to consider the case of complex eigenvalues and eigenvectors.278

In this case, the real solution approximated using only λ1 and v1 is given by (Boyce et al., 2017):279

280

p(t+ k) ≈ c1p1 + c2p2, (S14)

where c1 and c2 are constants and p1 and p2 are the two linearly independent real solutions given

by:

p1 = eak[u cos (bk)− z sin (bk)]

p2 = eak[u sin (bk) + z cos (bk)], (S15)

where λ1 = a + ib, λ2 = a − ib is the pair of leading complex eigenvalues and v1 = u + iz,281

v2 = u− iz is the pair of leading complex eigenvectors. Thus, in this case the solution p(t+ k) is282

oscillatory. However, we can see that if the imaginary parts of the leading eigenvalue and leading283

eigenvector (b and z) are not too strong, then their real parts (a and u) still inform us about the284

magnitude and direction of greatest expansion of perturbations, respectively (see third scenario285

in Section 13 and Fig. S3). Finally, we note that b (and therefore z) is zero for the majority286

of points in three out of five synthetic time series that we analyze (predator-prey (2 sp): 47.7%;287

food chain (3 sp): 69.1%; food web (3 sp): 81.6%; competitors (4 sp): 26.4%; and food web (5288

sp): 95.2%). To keep a simple notation, we use λi and vi throughout the text to refer to the real289
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part of the ith eigenvalue and eigenvector, respectively.290

10 Leading Lyapunov vector and direction of greatest perturba-291

tion expansion under non-equilibrium dynamics292

In this study, we focus on non-equilibrium attractors such as limit cycles or chaotic attractors293

(Fig. S5). By “non-equilibrium dynamics” we refer to trajectories of a deterministic dynamical294

system (e.g., population dynamics model) that do not settle to an equilibrium point. A large295

literature on nonlinear dynamics has shown that local Lyapunov exponents and their associated296

Lyapunov vectors determine how a (hyper)sphere of small perturbations at a given state N297

deforms into a (hyper)ellipsoid after sufficient time (Eckmann & Ruelle, 1985, Kuptsov & Parlitz,298

2012, Mease et al., 2003, Strogatz, 2018, Vallejo et al., 2017). Let li (lS ≤ ... ≤ l1) and wi denote299

the ith local Lyapunov exponent and vector, respectively. If at time t we apply S perturbations300

with a small norm ||pi(t)|| = δ (i = 1, ..., S) in the directions of wi (i.e., pi(t)
δ = wi), then after301

some time k, ||pi(t+k)|| ≈ ||pi(t)||elik denotes the length of the ith principal axis of the ellipsoid302

(Kuptsov & Parlitz, 2012, Mease et al., 2003, Strogatz, 2018, Vallejo et al., 2017). As we have303

mentioned in Section 1, under non-equilibrium dynamics small perturbations evolve according to304

dp
dt = Jp. If J is constant through time, as is the case when it is evaluated at an equilibrium305

point, it has been shown that Lyapunov vectors (w1, ...,wS) are equivalent to the eigenvectors306

of J (v1, ...,vS) and Lyapunov exponents (lS ≤ ... ≤ l1) are equivalent to the eigenvalues of J307

(λS ≤ ... ≤ λ1) (Kuptsov & Parlitz, 2012, Mease et al., 2003). Nevertheless, when J is not constant308

through time, it is necessary to incorporate information on all J matrices along a trajectory to309

estimate li and wi. The problem with this approach, however, is that it requires information310

beyond time t in order to detect the directions of perturbation expansion/contraction at time t311

and therefore is not useful for real-world applications. Thus, the question is whether the leading312

eigenvector can be used as a proxy for the leading Lyapunov vector to detect the direction of313

greatest expansion of small perturbations under non-equilibrium dynamics.314

Here we specify the conditions under which the leading eigenvector v1 is a good approximation315

to the leading Lyapunov vector w1. On the one hand, we hypothesize that when the rate of change316

of the system (dNdt ) is large, the Jacobian matrix J changes rapidly and v1 approximates w1 only317

for a small time k. Note that, under these circumstances, only a small amount of time is required318

for c1e
λ1kv1 to approximate p(t+ k) (equation (S13)). On the other hand, we hypothesize that319

when dN
dt is small, J changes slowly and v1 approximates w1 for a larger time k. Note that,320

under this scenario, a larger amount of time is required for c1e
λ1kv1 to approximate p(t + k).321

Therefore, the leading eigenvector must show a higher accuracy in detecting the direction of322

greatest perturbation expansion when the amount of time k for which perturbations evolve is323

inversely proportional to the current rate of change of the system. Note that we set k to be324

inversely proportional to the rate of change of the system in our main perturbation analyses (see325

Section 4; Fig. 3 in the main text), but also perform perturbation analyses using fixed values of326
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k (see Section 4; Figs. S11 and S12).327

To verify how well the leading eigenvector v1 approximates the leading Lyapunov vector w1,328

we compute w1 for all points in each time series generated by each of the five population dynamics329

models used in this study (see Section 3). Although computing the complete set of Lyapunov330

vectors is a more complicated procedure (Ginelli et al., 2007, Kuptsov & Parlitz, 2012), computing331

just w1 (i.e., direction of greatest perturbation expansion) is straightforward (Vallejo et al., 2017).332

Specifically, we compute w1 by applying a small perturbation p at time t and evolving the original333

dynamics (dNdt = f(N)) and the tangent dynamics (dpdt = Jp) simultaneously for k time steps.334

Then, p will rotate over time to the direction of w1 while expanding at a rate given by the leading335

Lyapunov exponent (l1) (Kuptsov & Parlitz, 2012, Mease et al., 2003, Vallejo et al., 2017). For336

the convergence of p to w1 to be faster, we follow standard methods (Vallejo et al., 2017) and337

choose p to be a vector with a small norm r in the direction of v1. Specifically p = r v1
||v1|| , where338

we set r to be 5% of the mean standard deviation of species abundances: r = 0.05 1
S

∑S
i=1 σNi .339

For each point in time, we use the same value of k as used in our perturbation analyses (i.e., k is340

inversely proportional to the local rate of change of the dynamics as described in Section 4. The341

leading Lyapunov vector at time t can then be estimated as w1 = p(t+ k), whereas the leading342

Lyapunov exponent can be calculated as l1 = 1
k log

(
||p(t+k)||
||p(t)||

)
. To verify how aligned v1 is with343

w1, we compute the absolute value of the cosine of the angle between v1 and w1 at each point344

in time. Thus, if v1 indeed points in the direction of w1, we expect that only the magnitude345

and not the direction of p will change after k time steps. In this case, the growth rate of the346

magnitude of p is given by l1. To benchmark the observed alignment between v1 and w1, we347

repeat the procedure above but choose p to be a vector with norm r and a random direction at348

each point in time. We use this analysis to compare the alignment between v1 and w1 (expected349

to be high) with the alignment of a randomly chosen vector p(t) and p(t + k) (expected to be350

low). We find v1 to be highly aligned with w1 (i.e., absolute value of cosine close to 1) for all351

five synthetic time series (left boxplots in Fig. S4). In contrast, when the initial perturbation352

(p(t)) has a random direction instead of the direction of v1, we find it to be poorly aligned with353

p(t+ k) (right boxplots in Fig. S4).354

11 From direction of greatest perturbation expansion to ranking355

species sensitivities356

Now, we show how we can rank species sensitivities based on the direction of greatest pertur-357

bation expansion approximated by the leading eigenvector. We define the sensitivity of species i358

to a single perturbation p from time t to t+k as the squared difference between its perturbed and359

unperturbed abundance in relation to the initial squared difference caused by the perturbation360

(equation (1) in the main text):361

si =
[Ñi(t+ k)−Ni(t+ k)]2

[Ñi(t)−Ni(t)]2
=
pi(t+ k)2

pi(t)2
. (S16)

13



Note that under equilibrium dynamics, we can just change Ni to N∗i and the derivation below

remains the same. Let us first consider the numerator of the equation above by substituting the

approximated solution of the linearized dynamics (equation (S13)) into it:

pi(t+ k)2 ≈ [c1e
λ1kv1i]

2

≈ c21e2λ1kv2
1i, (S17)

where v2
1i corresponds to the square of the ith element of v1. Thus, c21e

2λ1k represents the total362

amount of expansion, which depends on λ1, k, and c1 via the initial condition. Note, however,363

that this term is the same for every species i. Therefore, the values of pi(t+k)2 across species can364

be ranked using |v1i|, which follows the same order as v2
1i. We use |v1i| instead of v2

1i because it365

has a clear geometric interpretation as the alignment of v1 with the coordinate axis corresponding366

to species i in state space. That is, if ||v1|| = 1, then |v1i| is equivalent to the absolute value367

of the cosine of the angle αi between v1 and ei: |v1i| = | cosαi| = |v1ei|, where ei is the ith368

standard basis vector.369

So far, we have only considered species sensitivities to a single perturbation p. We now370

consider multiple perturbations at time t (p(t)), which follow a given distribution with mean zero371

and covariance matrix Σt. For a set of n randomly perturbed abundances, we can define the372

sensitivity of species i from time t to t + k as the average squared difference between a set of n373

randomly perturbed abundances and its unperturbed abundance in relation to the initial average374

squared difference (equation (2) in the main text):375

〈si〉 =
1
n

∑n
j=1[Ñ

(j)
i (t+ k)−Ni(t+ k)]2

1
n

∑n
j=1[Ñ

(j)
i (t)−Ni(t)]2

=
1
n

∑n
j=1 p

(j)
i (t+ k)2

1
n

∑n
j=1 p

(j)
i (t)2

. (S18)

By focusing on the numerator, we can see that 1
n

∑n
j=1 p

(j)
i (t+k)2 = E[c21e

2λ1kv2
1i] = e2λ1kv2

1iE[c21],376

since e2λ1k and v2
1i are constants. The expectation E[c21] will depend on the distribution of initial377

conditions, but will affect the sensitivity of all species by the same amount. Finally, we note378

that because pi(t) has mean zero, the denominator of equation (S18) is a constant given by the379

variance of pi(t) (i.e., the ith diagonal element σ2i,t of Σt; Section 2). Thus, if σ2i,t is the same for380

every species i, the denominator of equation (S18) will not affect the order of 〈si〉 values and we381

can use |v1i| to rank species sensitivities. However, we keep this denominator in our definition382

of 〈si〉 to control for distinct variances across species in one of our perturbation analyses (see383

Section 4).384

12 Connection between expected sensitivity and eigenvector ap-385

proaches386

Here, we show a connection between our measures of expected sensitivity (E(si); Box 1 in

the main text) and alignment with the leading eigenvector (|v1i|; Box 2 in the main text) under
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two simplifying assumptions. First, we assume that all species are affected by perturbations with

the same variance and there is no covariance among species pairs (i.e., the covariance matrix

of perturbations Σt is the identity matrix I). Second, we assume that the Jacobian matrix

J at time t is symmetric (i.e., J = J>). Although these assumptions may not be fulfilled in

natural communities, they allow us to obtain a first insight into the connections between E(si)

and |v1i|. Using these assumptions, we can write the following equation for the covariance matrix

of perturbations at time t+ k (Section 2):

Σt+k = eJkΣte
J>k

= eJkeJk

= eJk+Jk

= eJ2k, (S19)

where eA is the exponential of a given matrix A and we have used the fact that if A and B387

commute then eAeB = eA+B. Now, we can write the eigendecomposition of Σt+k as:388

Σt+k = VeΛ2kV>, (S20)

where V is the matrix containing the eigenvectors of J (vi) as column vectors and Λ is the diagonal

matrix containing the eigenvalues of J (λi). Note that we have used the property that A and eA

share the same eigenvectors and that if λi is an eigenvalue of A, then eλi is the corresponding

eigenvalue of eA. The expected sensitivity of species i is defined as the ith diagonal element of

Σt+k (σ2i,t+k; Section 2), which gives us:

E(si) = σ2i,t+k

=
S∑
j=1

v2
jie

λj2k

≈ v2
1ie

λ12k, (S21)

where vji is the jth element of vi and in the last step we used the fact that, given a sufficient389

amount of time k, eλ12k will become much larger than eλ22k, ..., eλS2k and will dominate the390

expression. Thus, the order of E(si) values will follow closely the order of |v1i| values under the391

assumptions considered here. Finally, note that the final expression in equation (S21) is very392

similar to what we obtained in equation (S17) as an explanation of how we can use |v1i| to rank393

species sensitivities to a given perturbation (si).394

13 Illustrations with Lotka-Volterra dynamics at equilibrium395

To illustrate how expected sensitivities (E(si); Box 1 in the main text) and alignments with396

the leading eigenvector (|v1i|; Box 2 in the main text) are able to rank species according to their397
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sensitivity to perturbations (〈si〉), we use the classic Lotka-Volterra model (equation (S9)) under398

equilibrium dynamics. For this model, the vector of species abundances at equilibrium is given399

by: N∗ = −A−1r. While the focus of our study is on non-equilibrium dynamics, our goal here is400

simply to show the performance of these two proposed methods under three simple scenarios of401

equilibrium dynamics. Our results for non-equilibrium dynamics are described in the main text.402

We use three different scenarios of the Lotka-Volterra dynamics with S = 3 species. For403

all scenarios we choose a combination of r and A giving the following feasible (i.e., positive404

abundances for all species) equilibrium: N∗ = [1, 1, 1]>. Note that for this feasible equilibrium,405

the Jacobian matrix evaluated at N∗ is given by: J = diag(N∗)A = A. For each scenario, we406

compute the eigenvalues (λi) and eigenvectors (vi) of J as well as expected sensitivities (E(si))407

using k = 0.1, 0.2, 0.3, 0.4, and 0.5. We then perform 2,000 normally distributed perturbations408

p to N∗ (i.e., pi ∼ N (µ = 0, σ2 = r2) with r = 0.05) and evolve each perturbed abundance over409

time according to equation (S9) for k = 0.5 time steps. Finally, we compute species sensitivities410

(〈si〉) at t = 0.1, 0.2, 0.3, 0.4, and 0.5 using all perturbed abundances at those time points.411

The first scenario (Fig. S1) consists of the following parameter values of the Lotka-Volterra412

model:413

r =


1

1

1

 , A =


1 −2 0

0 −1 0

0 2 −3


The eigenvalues of J show that the feasible equilibrium for this system is a saddle point: λ1 = 1414

(unstable manifold), λ2 = −1, and λ3 = −3 (stable manifolds). The order of expected sensitivities415

is given by E(s3) < E(s2) < E(s1), which corresponds exactly to the order of species sensitivities416

(〈si〉) for all times (Fig. S1B, C). The order of eigenvector alignments is given by |v13|, |v12| < |v11|417

and corresponds closely to the order of species sensitivities, but cannot distinguish species 2 and418

3 (Fig. S1B, C). Note that expected sensitivities depend on the time step k, whereas eigenvector419

alignments do not.420

The second scenario (Fig. S2) consists of the following parameter values:421

r =


−4.5

17.5

7

 , A =


4 0.5 0

0.5 −10 −8

0 −8 1


The eigenvalues of J show that the feasible equilibrium is again a saddle point: λ1 = 5.2, λ2 =422

4.0 (unstable manifolds), and λ3 = −14.2 (stable manifold). However, this scenario is more423

challenging than the previous one for our ranking approaches because there are two (instead424

of one) directions of perturbation expansion. The order of expected sensitivities is given by425

E(s2) < E(s1) < E(s3), which corresponds exactly to the order of species sensitivities from k = 0.2426

to k = 0.5 (Fig. S2B, C). The order of eigenvector alignments is given by |v11| < |v12| < |v13|427

and provides a reasonable match to the order of species sensitivities (Fig. S2B, C).428
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Finally, the third scenario (Fig. S3) consists of the following parameter values:429

r =


5

−1

−7

 , A =


−4 −3 2

−2 1 2

5 2 0


For this scenario, the leading eigenvalue of J is complex and therefore indicate oscillatory dy-430

namics: λ1 = 2.0 + 0.7i, λ2 = 2.0 − 0.7i, and λ3 = −7.0 + 0i. This scenario is also challenging431

for our ranking approaches due to this oscillatory behavior. Note, however, that the imaginary432

part of the leading eigenvalue is small compared to the real part. The order of expected sen-433

sitivities is given by E(s1) < E(s3) < E(s2), which corresponds exactly to the order of species434

sensitivities from k = 0.3 to k = 0.5 (Fig. S3B, C). The order of eigenvector alignments is given435

by |v13| < |v11| < |v12| and provides a reasonable match to the order of species sensitivities (Fig.436

S3B, C).437
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Figure S1. First scenario of Lotka-Volterra dynamics at equilibrium (see Section 13) showing how ex-
pected sensitivities (E(si)) and alignments with the leading eigenvector (|v1i|) can rank species sensitivi-
ties to perturbations (〈si〉). (a) Perturbed abundances (Ñ = N∗ + p; 2,000 gray points) at time k = 0.4
projected onto the planes of species 1 and 2 (left), species 1 and 3 (middle), and species 2 and 3 (right).
(b) Jacobian matrix (J) and its eigenvalues (λi) and leading eigenvector (v1) for this Lotka-Volterra sys-
tem (top). The order of expected sensitivities (computed using different values of k) and eigenvector
alignments (bottom). (c) Species sensitivities computed using the perturbed abundances (gray points in
(a)) at different points in time (i.e., for different values of k). In this scenario, the expected sensitivity
ranking is more accurate than the eigenvector ranking.
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Figure S2. Second scenario of Lotka-Volterra dynamics at equilibrium (see Section 13) showing how
expected sensitivities (E(si)) and alignments with the leading eigenvector (|v1i|) can rank species sen-
sitivities to perturbations (〈si〉). (a) Perturbed abundances (Ñ = N∗ + p; 2,000 gray points) at time
k = 0.4 projected onto the planes of species 1 and 2 (left), species 1 and 3 (middle), and species 2 and
3 (right). (b) Jacobian matrix (J) and its eigenvalues (λi) and leading eigenvector (v1) for this Lotka-
Volterra system (top). The order of expected sensitivities (computed using different values of k) and
eigenvector alignments (bottom). (c) Species sensitivities computed using the perturbed abundances
(gray points in (a)) at different points in time (i.e., for different values of k). In this scenario, the ex-
pected sensitivity ranking is more accurate than the eigenvector ranking.
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Figure S3. Third scenario of Lotka-Volterra dynamics at equilibrium (see Section 13) showing how ex-
pected sensitivities (E(si)) and alignments with the leading eigenvector (|v1i|) can rank species sensitivi-
ties to perturbations (〈si〉). (a) Perturbed abundances (Ñ = N∗ + p; 2,000 gray points) at time k = 0.4
projected onto the planes of species 1 and 2 (left), species 1 and 3 (middle), and species 2 and 3 (right).
(b) Jacobian matrix (J) and its eigenvalues (λi) and leading eigenvector (v1) for this Lotka-Volterra sys-
tem (top). The order of expected sensitivities (computed using different values of k) and eigenvector
alignments (bottom). (c) Species sensitivities computed using the perturbed abundances (gray points in
(a)) at different points in time (i.e., for different values of k). In this scenario, the expected sensitivity
ranking is more accurate than the eigenvector ranking.
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Figure S4. Alignments (i.e., absolute value of cosine of the angle) between the initial (p(t)) and fi-
nal (p(t + k)) perturbation vector for two directions of p(t) for the five population dynamics models
(see Section 10). Boxplots on the left correspond to p(t) in the direction of the leading eignevector (v1)
whereas boxplots on the right correspond to p(t) in a random direction. Note that p(t + k) converges
to the leading Lyapunov vector (w1) when p(t) is in the direction of v1. The figure shows that v1 is on
average much more aligned with w1 (left boxplots) than what is expected at random (right boxplots).
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Figure S5. Attractors in state space corresponding to each multivariate synthetic time series generated
from a population dynamics model (different rows; see Section 3) with a different type of noise (different
columns; see Section 6). Each plot shows the 500 points ({N(t)}, t = 1, ..., 500) generated by numeri-
cally integrating the indicated model and then sampling equidistant points. Note that we only show the
abundances of species 1, 2, and 3 for models with more than 3 species.
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Figure S6. Species sensitivities computed from our perturbation analyses (〈si〉; first column) as well
as expected sensitivities (E(si); second column) and eigenvector alignments (|v1i|; third column) in-
ferred from each synthetic time series (different rows) with the S-map over time. A bar in one of the
plots shows the values of the corresponding variable (i.e., 〈si〉, E(si), or |v1i|) across species. Note that
variables are rescaled to sum 1 across species to improve visualization but that this procedure does not
change the rankings. These results correspond to our main set of analyses with synthetic time series
shown in the main text (Fig. 3).
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Figure S7. Mean Spearman’s rank correlation over time (ρ̄) between species sensitivities to perturba-
tion (〈si〉) and four different approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change,
∆Ni(t); and abundance, −Ni(t)) as a function of the percentile of λ1 used to filter the time series. Each
point represents the ρ̄ value obtained using a given ranking approach after removing time series points
with a λ1 value lower than the indicated percentile of the λ1 distribution. The figure shows that, for
most models, the expected sensitivity and eigenvector rankings (yellow circles and blue triangles) be-
come more accurate (i.e., higher ρ̄) when we only use points with a high λ1. Note that we compute
E(si), |v1i|, and λ1 analytically for this figure. Also note that the values of ρ̄ for the 0th percentile are
exactly the same as the ones shown in Fig. 3A in the main text.
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Figure S8. Alignments (i.e., absolute value of cosine of the angle) between v1 inferred with the S-map
and v1 computed from the analytical Jacobian matrix (left boxplots) as well as alignments between two
randomly sampled vectors (right boxplots) for each of the five population dynamics models. Each box-
plot on the left shows the alignment values computed using the second half of each time series (i.e., last
250 points) for which the S-map was used to infer v1 (see Section 5). Each boxplot on the right shows
the alignment values computed using 250 pairs of vectors with random directions. The figure shows that
v1 inferred with the S-map is on average much more aligned with the analytical v1 than what is ex-
pected if their directions are sampled at random.
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Figure S9. Same as Fig. 3A in the main text, but performing uniformly distributed perturbations in-
stead of normally distributed perturbations (see Section 4). The figure shows the percentage of points
with a given rank correlation value (ρ, size of gray points) and the average rank correlation (ρ̄, horizon-
tal lines) between species sensitivities to perturbations (〈si〉) and four different approaches (expected
sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we com-
pute E(si) and |v1i| analytically for this figure. For this figure, perturbed abundances (Ñ) are uniformly
sampled inside a hypersphere of radius r centered in N, were r corresponds to 15% of the mean stan-
dard deviation of species abundances.
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Figure S10. Same as Fig. 3A in the main text, but performing normally distributed perturbations
with a variance proportional to relative species abundances instead of a fixed variance over time (see
Section 4). The figure shows the percentage of points with a given rank correlation value (ρ, size of
gray points) and the average rank correlation (ρ̄, horizontal lines) between species sensitivities to per-
turbations (〈si〉) and four different approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of
change, ∆Ni(t); and abundance, −Ni(t)). Note that we compute E(si) and |v1i| analytically for this
figure. For this figure, we sample perturbations to N(t) as: pi(t) ∼ N (µ = 0, σ2 = N ′i(t)r

2), where

N ′i(t) = Ni(t)∑S
i=1 Ni(t)

and were r corresponds to 15% of the mean standard deviation of species abundances.
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Figure S11. Same as Fig. 3A in the main text, but using k = 1 as the time step to integrate perturbed
and unperturbed abundances instead of k being inversely proportional to the mean absolute abundance
percent change (see Section 4). The figure shows the percentage of points with a given rank correlation
value (ρ, size of gray points) and the average rank correlation (ρ̄, horizontal lines) between species sen-
sitivities to perturbations (〈si〉) and four different approaches (expected sensitivity, E(si); eigenvector,
|v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we compute E(si) and |v1i| analyti-
cally for this figure. For this figure, we numerically integrate every perturbed (Ñ(t)) and unperturbed
abundance (N(t)) for k = 1 time step to compute 〈si〉.
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Figure S12. Same as Fig. 3A in the main text, but using k = 3 as the time step to integrate perturbed
and unperturbed abundances instead of k being inversely proportional to the mean absolute abundance
percent change (see Section 4). The figure shows the percentage of points with a given rank correlation
value (ρ, size of gray points) and the average rank correlation (ρ̄, horizontal lines) between species sen-
sitivities to perturbations (〈si〉) and four different approaches (expected sensitivity, E(si); eigenvector,
|v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we compute E(si) and |v1i| analyti-
cally for this figure. For this figure, we numerically integrate every perturbed (Ñ(t)) and unperturbed
abundance (N(t)) for k = 3 time steps to compute 〈si〉.
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Figure S13. Same as Fig. 3A in the main text, but using k = 1 as the time step to compute expected
sensitivities (E(si)) when the true time step used to integrate perturbed and unperturbed abundances is
inversely proportional to the mean absolute abundance percent change (see Section 2). The figure shows
the percentage of points with a given rank correlation value (ρ, size of gray points) and the average rank
correlation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉) and four different ap-
proaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)).
Note that we compute E(si) and |v1i| analytically for this figure. For this figure, we numerically inte-
grate every perturbed (Ñ(t)) and unperturbed abundance (N(t)) for a time step k that depends on the
local time scale of the dynamics, but always compute E(si) using k = 1.
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Figure S14. Same as Fig. 3A in the main text, but adding a normally distributed noise to k and Σt

at each point in time to compute expected sensitivities (E(si); see Section 2). The figure shows the per-
centage of points with a given rank correlation value (ρ, size of gray points) and the average rank cor-
relation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉) and four different ap-
proaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)).
Note that we compute E(si) and |v1i| analytically for this figure. For this figure, we perform the same
perturbation analyses as described for Fig. 3 (see Section 4), but add 100% of a normally distributed
noise to the true value of k and to Σt = I before computing E(si).
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Figure S15. Same as Fig. 3B in the main text, but normalizing the abundances of each species i
(Ni(t)) in the training set to mean zero and unit standard deviation before performing the S-map. The
figure shows the percentage of points with a given rank correlation value (ρ, size of gray points) and
the average rank correlation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉)
and four different approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and
abundance, −Ni(t)). Note that we infer the Jacobian matrix with the S-map using a moving training set
in order to compute E(si) and |v1i| for this figure.
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Figure S16. Same as Fig. 3B in the main text, but using a shorter training set with 100 instead of
250 points to perform the S-map (see Section 6). The figure shows the percentage of points with a given
rank correlation value (ρ, size of gray points) and the average rank correlation (ρ̄, horizontal lines) be-
tween species sensitivities to perturbations (〈si〉) and four different approaches (expected sensitivity,
E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we infer the Ja-
cobian matrix with the S-map using a moving training set in order to compute E(si) and |v1i| for this
figure.
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Figure S17. Same as Fig. 3B in the main text, but adding 10% of observational noise to the training
set before performing the S-map (see Section 6). The figure shows the percentage of points with a given
rank correlation value (ρ, size of gray points) and the average rank correlation (ρ̄, horizontal lines) be-
tween species sensitivities to perturbations (〈si〉) and four different approaches (expected sensitivity,
E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we infer the Ja-
cobian matrix with the S-map using a moving training set in order to compute E(si) and |v1i| for this
figure.
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Figure S18. Same as Fig. 3B in the main text, but generating each synthetic time series with the pop-
ulation dynamics model containing stochasticity (i.e., process noise; see Section 6). The figure shows the
percentage of points with a given rank correlation value (ρ, size of gray points) and the average rank
correlation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉) and four different ap-
proaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)).
Note that we infer the Jacobian matrix with the S-map using a moving training set in order to compute
E(si) and |v1i| for this figure.
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Figure S19. Similar to Fig. 3B in the main text, but here we compute the Spearman’s rank correlation
(ρ) between species average forecast errors under perturbations (ε̄i; see Section 8) and the four rank-
ing approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance,
−Ni(t)). The figure shows the percentage of points with a given ρ value (size of gray points) and the
average rank correlation (ρ̄, horizontal lines). Note that we infer the Jacobian matrix with the S-map
using a moving training set in order to compute E(si) and |v1i| for this figure. This figure illustrates
our hypothesis that species that are more sensitive to perturbations (i.e., high E(si) or |v1i|) tend to be
harder to forecast under perturbations (i.e., high ε̄i).
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Figure S20. Species standardized forecast root-mean-square error computed from our forecast analyses
(εi; first column; see Section 7) as well as expected sensitivities (E(si); second column) and eigenvec-
tor alignments (|v1i|; third column) inferred from each empirical time series (different rows) with the
S-map over time. A bar in one of the plots shows the values of the corresponding variable (i.e., εi, E(si),
or |v1i|) across species. Note that variables are rescaled to sum 1 across species to improve visualiza-
tion but that this procedure does not change the rankings. These results correspond to our main set of
analyses with empirical time series shown in the main text (Fig. 4).
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Figure S21. Same as Fig. 4A in the main text but for the empirical time series of marine plankton
species (Benincà et al., 2009) (see Section 7). Each panel shows the time series of the abundance of a
given species with points colored according to their expected sensitivity value (E(si)). We infer E(si) at
the last point in the training set with the S-map trained on a moving training set (gray region) contain-
ing (a) 70%, (b) 60%, or (c) 50% of the whole time series. In general, calanoids are the most sensitive
species followed by rotifers or picocyanobacteria depending on the point in time.
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Figure S22. Same as Fig. 4 in the main text but using τ = 2 steps ahead to forecast species abun-
dances and compute forecast errors (εi) instead of τ = 3 (see Section 7). Note that here we use k = 2
instead of k = 3 to compute expected sensitivities (E(si)). (a) Time series of a rocky intertidal commu-
nity containing four species with point color depicting their expected sensitivity value. (b) Rank corre-
lation (ρ) between εi and four different approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate
of change, ∆Ni(t); and abundance, −Ni(t)). Each panel shows the percentage of points with a given ρ
value (size of gray points) and the average of these values across the test set (ρ̄, horizontal lines) for a
given empirical time series. (c) Average correlation (ρ̄) between εi and the different ranking approaches
computed for points in the test set that have a λ1 value higher than a given percentile of the λ1 distri-
bution.
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Figure S23. Same as Fig. 4 in the main text but using 60% instead of 70% of the each empirical time
series as the moving training set (gray region in (a); see Section 7). (a) Time series of a rocky intertidal
community containing four species with point color depicting their expected sensitivity value (E(si)).
(b) Rank correlation (ρ) between εi and four different approaches (expected sensitivity, E(si); eigenvec-
tor, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Each panel shows the percentage of points
with a given ρ value (size of gray points) and the average of these values across the test set (ρ̄, horizon-
tal lines) for a given empirical time series. (c) Average correlation (ρ̄) between εi and the different rank-
ing approaches computed for points in the test set that have a λ1 value higher than a given percentile of
the λ1 distribution.
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Figure S24. Same as Fig. 4 in the main text but using 50% instead of 70% of the each empirical time
series as the moving training set (gray region in (a); see Section 7). (a) Time series of a rocky intertidal
community containing four species with point color depicting their expected sensitivity value (E(si)).
(b) Rank correlation (ρ) between εi and four different approaches (expected sensitivity, E(si); eigenvec-
tor, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Each panel shows the percentage of points
with a given ρ value (size of gray points) and the average of these values across the test set (ρ̄, horizon-
tal lines) for a given empirical time series. (c) Average correlation (ρ̄) between εi and the different rank-
ing approaches computed for points in the test set that have a λ1 value higher than a given percentile of
the λ1 distribution.
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Figure S25. Same as Fig. 4 in the main text but normalizing the abundances of each species i (Ni(t))
in the training set to mean zero and unit standard deviation before performing the S-map (see Section
7). Note that we always normalize abundances before the forecast analyses (i.e., LSTM neural network).
(a) Time series of a rocky intertidal community containing four species with point color depicting their
expected sensitivity value (E(si)). (b) Rank correlation (ρ) between εi and four different approaches
(expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Each
panel shows the percentage of points with a given ρ value (size of gray points) and the average of these
values across the test set (ρ̄, horizontal lines) for a given empirical time series. (c) Average correlation
(ρ̄) between εi and the different ranking approaches computed for points in the test set that have a λ1
value higher than a given percentile of the λ1 distribution.
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