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Abstract 

Deep language models (DLMs) provide a novel computational paradigm for how the brain processes natural 

language. Unlike symbolic, rule-based models described in psycholinguistics, DLMs encode words and their 

context as continuous numerical vectors. These “embeddings” are constructed by a sequence of layered 

computations to ultimately capture surprisingly sophisticated representations of linguistic structures. How does 

this layered hierarchy map onto the human brain during natural language comprehension? In this study, we used 

ECoG to record neural activity in language areas along the superior temporal gyrus and inferior frontal gyrus while 

human participants listened to a 30-minute spoken narrative. We supplied this same narrative to a high-

performing DLM (GPT2-XL) and extracted the contextual embeddings for each word in the story across all 48 

layers of the model. We next trained a set of linear encoding models to predict the temporally-evolving neural 

activity from the embeddings at each layer. We found a striking correspondence between the layer-by-layer 

sequence of embeddings from GPT2-XL and the temporal sequence of neural activity in language areas. In 

addition, we found evidence for the gradual accumulation of recurrent information along the linguistic processing 

hierarchy. However, we also noticed additional neural processes that took place in the brain, but not in DLMs, 

during the processing of surprising (unpredictable) words. These findings point to a connection between language 

processing in humans and DLMs where the layer-by-layer accumulation of contextual information in DLM 

embeddings matches the temporal dynamics of neural activity in high-order language areas. 

Significance statement 

Deep language models transformed our ability to model language. Recent studies connected 

these neural nets based models to the human representation of language. Here, we show a 
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striking similarity between the sequence of representations induced by the model and the 

brain encoding of language over time during real-life comprehension.  

Introduction 

Deep language models (DLMs) provide an alternative computational framework for how the 

human brain processes natural language (1–4). Classical psycholinguistic models rely on rule-

based manipulation of symbolical representations embedded in hierarchical tree structures (5, 

6). In sharp contrast, DLMs encode words and their context as continuous numerical vectors—

i.e. embeddings. These embeddings are constructed via a sequence of non-linear 

transformations across layers to yield the sophisticated representations of linguistic structures 

needed to produce language (7–10).  

Recent research has begun identifying shared computational principles between the way the 

human brain and DLMs represent and process natural language. In particular, several studies 

have used contextual embeddings derived from DLMs to successfully model human behavior 

as well as neural activity measured by fMRI, EEG, MEG, and ECoG during natural speech 

processing (1, 2, 11–15). Furthermore, recent studies have shown that similarly to DLMs, the 

brain incorporates prior context into the meaning of individual words (2, 3, 16–18), 

spontaneously predicts forthcoming words (1), and computes post-word-onset prediction error 

signals (1, 13, 19, 20). In this study, we focus on the internal sequence of non-linear 

transformations of the embeddings across layers within DLMs in relation to the internal 

processing of words in natural language in the human brain. How do these embeddings change 

across layers, and how do the layerwise sequence of transformations map onto the processing 

hierarchy of natural language in the human brain? 

Recent work in natural language processing (NLP), has identified certain trends in the 

properties of embeddings across layers in DLMs (21–23). Embeddings at early layers most 

closely resemble the static, non-contextual input embeddings (24) and best retain the original 

word order (25); in contrast, embeddings are thought to become progressively more context-

specific and sensitive to long-range linguistic dependencies among words across layers (23, 

26). Embeddings at the final layers are typically specialized for the training objective (next-

word prediction in the case of GPT2–3) (7, 8). These properties of the embeddings emerge 

from the conjunction of the architectural specifications of the network, the predictive 

objective, and the statistical structure of real-world language (1, 27).  

In this study, we investigated how the layered structure of DLM embeddings maps onto the 

temporal dynamics of neural activity in language areas during natural language 

comprehension. Naively, we may expect the layerwise embeddings to roughly map onto a 

cortical hierarchy for language processing (similarly to the mapping observed between 

convolutional neural networks and the primate ventral visual pathway (28, 29). In such a 
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mapping, early language areas will be better modeled by embedding extracted from early 

layers of DLMs, whereas higher-order areas will be better modeled by embeddings extracted 

from later layers of DLMs. Interestingly, studies that examined the layer-by-layer match 

between DLM embeddings and brain activity using fMRI have observed that intermediate 

layers tend to provide the best fit across many language ROIs (3, 15, 30, 31). These findings do 

not support the hypothesis that DLMs capture the processing sequence of words in natural 

language in the human brain. 

In contrast, using ECoG recording with the superior spatiotemporal resolution, we report that 

the human brain’s internal temporal processing of spoken narrative matches the internal 

sequence of non-linear layerwise transformations in DLMs. The contextual embedding for each 

word in the narrative was extracted from all 48 layers in a specific DLM (GPT2-XL (7, 8)). Next, 

we compared the internal sequence of embeddings across the layers of GPT2-XL for each word 

to the sequence of neural responses recorded via ECoG in human participants. We first 

replicated the finding that intermediate layers best predict cortical activity. However, the 

improved temporal resolution of our ECoG recordings revealed a remarkable alignment 

between the layerwise DLM embedding sequence and the temporal dynamics of cortical 

activity during natural language comprehension. For example, within the inferior frontal gyrus 

(IFG; i.e. Broca’s area) we observed a temporal sequence of encoding where earlier layers yield 

peak encoding performance earlier in time relative to word onset, and later layers yield peak 

encoding performance later in time. This finding suggests that the sequence of transformation 

across layers in DLMs maps onto a temporal accumulation of information in high-level 

language areas. Furthermore, we found evidence for the gradual accumulation of recurrent 

information along the linguistic processing hierarchy. These findings point to a strong 

connection, with crucial differences, between the way the human brain and DLMs code natural 

language.  

Results 

We collected electrocorticographic (ECoG) data from 9 epilepsy patients while they listened to 

a 30-minute audio podcast (“Monkey in the Middle”, NPR 2017). In prior work (1), we used 

embeddings from the final hidden layer of GPT2-XL to predict brain activity and found that 

these contextual embeddings outperform static (i.e. non-contextual) embeddings (see also (3, 

16)). In this paper, we expand our analysis by modeling the neural responses for each word in 

the podcast using contextual embeddings extracted from each of the 48 hidden layers in 

GPT2-XL (Fig. 1A). We focus on four areas along the ventral language processing stream (32–

34): middle superior temporal gyrus (mSTG, n = 28 electrodes), anterior superior temporal 

gyrus (aSTG, n = 13), inferior frontal gyrus (IFG, n = 46), and the temporal pole (TP, n = 6). We 

selected electrodes previously shown to have significant encoding performance for static 

(GloVe) embeddings (corrected for multiple tests). Finally, given that prior studies have 
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reported improved encoding results for words that are correctly predicted by DLMs (1, 2), we 

separately model the neural responses for correct predictions (i.e., where GPT2-XL’s top-1 

next-word predictions were correct; n = 1709) versus incorrect predictions. To ensure that we 

only analyze incorrect predictions and to match the statistical power across the two analyses, 

we defined incorrect predictions as cases where all top-5 next-word predictions were incorrect 

(n = 1808) (see Figs. S1–3 for analyses of all words combined).  

For each layer and each lag (25 ms shifts relative to word onset), we fit a linear regression 

model using 90% of the words and predict brain activity in the remaining 10% of the words (10-

fold cross-validation). We evaluate the performance of our model by correlating our predicted 

neural responses for each word with the actual neural responses (Fig. 1A–B). The analysis is 

repeated for each lag, ranging from -2000 ms before word onset (0 ms) to +2000 ms after word 

onset. We color-coded the encoding performance according to the index of the layer from 

which the embeddings were extracted, ranging from 1 (red) to 48 (blue; Fig. 1A). To better 

visualize the temporal dynamic across layers, we scaled the encoding performance to peak at 1 

(Fig. 1B, right panel). To evaluate our procedure on specific regions of interest (ROIs), we 

average the encodings for the electrodes in the relevant ROIs before scaling. 
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Figure 1. Layerwise encoding models. (A) We extracted the neural signal for each specific electrode before and 

after each word onset (denoted lag 0). The words and the neural signals were split into training and test sets 

comprising non-overlapping subsets of words for 10-fold cross-validation. The neural signal is averaged over a 200

ms rolling window with incremental shifts of 25 ms. For each word in the story, a contextual embedding is 

extracted from each layer of GPT-2 (for example, layer 1, red). The dimensionality of the embeddings is reduced 

to 50 using PCA. For each lag and each electrode, we used linear regression to estimate an encoding model that 

predicts the neural signal from the word embeddings. In order to evaluate the linear model, we used the 50-

dimensional weight vector estimated from the training set to predict the neural signal of the words in the left-out 

test set from the corresponding embeddings. We evaluated the performance of the model by computing the 

correlation between the predicted neural signal and the actual neural signal of the words in the test set. (B) This 

process was repeated for lags ranging from -2000 ms to +2000 ms relative to word onset using the embeddings 

from each of the 48 hidden layers of GPT2-XL. We then rescaled the performance of the encoding model for each 

layer to one by normalizing the peak performance; this allows us to more easily visualize the temporal dynamics 

of encoding performance across layers. 

 

0 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.11.499562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499562
http://creativecommons.org/licenses/by-nd/4.0/


We start by focusing on neural responses for correctly predicted words in electrodes at the 

inferior frontal gyrus (IFG; Broca’s area; N = 46), a central region for semantic and syntactic 

linguistic processing (1, 4, 35–39).  

The peak correlation of the encoding models in the IFG was observed for the intermediate 

layer 22 (Fig. 2B; for other ROIs and predictability conditions, see Supp. Fig. 1). This 

corroborates recent findings from fMRI (3, 15, 18) where encoding performance peaks for 

intermediate layers, yielding an inverted U-shaped curve across layers (Fig. 2B). This inverted 

U-shaped pattern holds for all language areas (Fig. S1), suggesting that the layers of the model 

do not naively correspond to different cortical areas in the brain. 

The fine-grained temporal resolution of ECoG recordings, however, suggests a more subtle 

dynamic pattern. All 48 layers yield robust encoding in the IFG, with encoding performance 

near zero at the edges of the lag window (-2000 ms and 2000 ms) and increased performance 

around word onset. This can be seen in the combined plot of all 48 layers (Fig. 2C; for other 

ROIs and predictability conditions see Supp. Fig. 2) and when we plot individually selected 

layers (Fig. 2D, layers 5, 25, 45). A closer look at the encoding results over lags (time) for each 

layer revealed an orderly dynamic in which the peak encoding performance for the early layers 

(e.g., layer 5, red, in Fig. 2D) tends to precede the peak encoding performance for intermediate 

layers (e.g., layer 25, green), which are followed by the later layers (e.g., layer 45, blue). To 

visualize the temporal sequence across lags we normalized the encoding performance for each 

layer by scaling its peak performance to 1 (Fig. 2E; for other ROIs and predictability conditions 

see Supp. Fig. 3). The layerwise encoding models in the IFG tend to peak in an orderly 

sequence over time. To quantitatively test this claim, we correlated the layer index (1–48) with 

the lag that yielded the peak correlation (Fig. 2F). The analysis yielded a strong significant 

positive Pearson correlation of 0.85 (p<10e-13; similar results were obtained with Spearman 

correlation; r = .80). Lastly, we also conducted a non-parametric analysis where we permuted 

the layer index 100,000 times (keeping the lags that yielded the peak correlations fixed) while 

correlating the lags with these shuffled layer indices. Using the null distribution, we computed 

the percentile of the actual correlation (r=0.85) and got a significance of p<10e-5. Together, 

these results suggest that, for correct predictions, the sequence of internal transformations 

across the layers in GPT2-XL matches the sequence of internal transformations across time 

within the IFG. 
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Figure 2. Temporal dynamics of layerwise encoding for correctly predicted words in IFG. (A). We recorded 

from 46 electrodes in the inferior frontal gyrus (IFG) that show positive encoding for word embeddings (GLoVe). 

(B) For each electrode in the IFG, we performed an encoding analysis for each hidden layer (1-48) at each lag (-

2000 ms to 2000 ms). We then averaged encoding performance across all electrodes in the IFG to get a single 

mean performance value for each lag and layer. We color-coded these encoding performance values according to 

the index of the layers from which the embeddings were extracted (red to blue). The peak encoding performance 
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across lags for each layer at each electrode was averaged across electrodes and color-coded from early layers 

(red) to late layers (blue). Significance was assessed using bootstrap resampling across electrodes (see Materials 

and Methods). (C ) Average correlation across electrodes for each layer at lags ranging from -2000 ms to +2000 

ms relative to word onset (lag 0). (D) Encoding performance for layers 5, 25, and 45 demonstrates the layerwise 

shift of peak performance across lags. (E) Scaled encodings. Each layer encoding peak was scaled to 1. The 

colored dots mark the peaked encoding lag for each layer. The results show that the deeper the layer is in the 

model, the later its encoding model peaks (see the sequence from red to blue along the x-axis). (F) Scatter plot of 

the lag that yields peak encoding performance as a function of the index of layers. 

Next, we compared the temporal encoding sequence across three additional temporal 

language ROIs (Fig. 3), starting with mSTG (near early auditory cortex) and moving up along 

the ventral linguistic stream to aSTG and TP. We did not observe obvious evidence for a 

temporal structure in the mSTG (r =-.24). This suggests that the temporal dynamic observed in 

IFG is regionally specific and does not take place in the early stages of the neural processing 

hierarchy. In addition to the IFG, we found evidence for the same orderly temporal dynamic in 

aSTG (r = .92, p<10e-20) and TP (r = .93, p<10e-22). Similar results were obtained with 

Spearman correlation (mSTG r = -.24, p=.09; aSTG r=.55, p=.9; IFG r=.79, p<10e-11; TP r=.95, 

p<10e-21), demonstrating that the effect is robust to outliers. Following our procedure for the 

IFG we conducted permutation tests by shuffling the layers order that yielded the following p-

values: p<.02 (mSTG), p<10e-5 (aSTG, IFG). Furthermore, the width of the temporal sequence 

gradually increases as we proceed along the ventral linguistic hierarchy (see the increase in 

steepness of the slopes across language areas in Fig. 3). This was tested using Levene’s test 

which yielded significant differences between the standard deviations of lags that yield 

maximal correlations for the different layers in the mSTG and aSTG (F = 48.1, p<.01), as well as 

between the aSTG and TP (F = 5.8, p<.02). The largest temporal separation across layer-based 

encoding models was seen in TP, with more than a 500 ms difference between the peak for 

layer 1 (around -100 ms) and the peak for layer 48 (around 400 ms). 
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Figure 3. Temporal hierarchy along the ventral language stream for correctly predicted words. Scaled 

encoding for ROIs along the ventral language processing stream, from the middle superior temporal gyrus 

(mSTG) to the anterior superior temporal gyrus (aSTG), inferior frontal gyrus (IFG), and the temporal pole (TP). 

The results reveal a temporal sequence of layer-based encoding in all language areas besides mSTG. Furthermore,

the processing timescales (slop of lag-difference across layers) increased along the ventral linguistic hierarchy 

from mSTG to aSTG to IFG and TP.  

The temporal correspondence described so far was observed for words the model accurately 

predicted; does the same pattern hold for words that were not accurately predicted? We 

conducted the same layerwise encoding analyses in the same ROIs for unpredictable words—

i.e. words for which the probability assigned to the word was not among the top-5 highest 

probabilities assigned by the model (N = 1808). We still see evidence, albeit slightly weaker, for

layer-based encoding sequences in the IFG (r = .81, p<10e-11) and TP (r = .57, p<10e-4), but not 

aSTG (r = .09, p>.55) or mSTG (r = -.10,p>.48). Similar results were obtained with Spearman 

correlation (mSTG r = -.10, p>.48; aSTG r=.02, p>.9; IFG r=.8, p<10e-11; TP r=.72, p<10e-8), 

demonstrating that the effect is robust to outliers. We conducted permutation tests that 

yielded the following p-values: p>.24 (mSTG), p>.27 (aSTG),p<10e-5 (TP, IFG). We also noticed 
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a crucial difference between the encoding of the correctly and incorrectly predicted words in 

the IFG. In the IFG the encoding for early layers (red) shifted from around word onset (lag 0) for

correct prediction to later lags (around 300ms) for incorrect predictions. We ran a paired t-test 

to compare the average lags (across the electrodes in a ROI) that yield the maximal 

correlations (i.e., peak encoding performance) across predicted and unpredicted words for 

each layer. The paired t-test indicated that the shift in peak encoding (at the ROI level) was 

significant for 9 out of the 12 first layers (corrected for multiple comparisons see supp. table 1, 

q<0.05). 

Figure 4. Temporal hierarchy along the ventral language stream for incorrectly predicted words. Scaled 

encoding performance for separate areas along the ventral language pathway, from the middle superior temporal

gyrus (mSTG) to the anterior superior temporal gyrus (aSTG), inferior frontal gyrus (IFG), and the temporal pole 

(TP). The encoding analysis was performed for words that were incorrectly predicted by the model. A word was 

classified as incorrectly predicted if it was not among the top 5 most probable words predicted by GPT2-XL given 

the context.  

Discussion 

Prior studies reported shared computational principles (e.g., prediction in context and 

representation using multidimensional embeddings space) between DLMs and the human 

r 
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brain (1–3). In the current study, we extracted the contextual embeddings for each word in a 

chosen narrative across all 48 layers and fitted them to the neural responses to each word in 

our human participants. We found that the sequence of layerwise transformations learned by 

GPT2-XL maps onto the temporal sequence of transformations of linguistic input in high-level 

language areas. This finding reveals a surprising and important link between how DLMs and 

the brain process language: conversion of discrete input into multidimensional (vectorial) 

embeddings, which are further transformed via a sequence of non-linear transformations to 

match the context-based statistical properties of natural language (21). These results provide 

additional evidence for shared computational principles between the way DLMs and the 

human brain process natural language. 

At the same time, our study also points to implementational differences between the internal 

sequence of computations in transformer-based DLMs and the human brain. GPT2-XL relies 

on a “transformer” architecture, a neural network architecture developed to process hundreds 

to thousands of words in parallel. In other words, transformers are designed to parallelize a 

task that is largely computed serially, word by word, in the human brain. While transformer-

based DLMs process words sequentially over layers, in the human brain we found evidence for 

similar sequential processing, but over time relative to word onset within a given cortical area. 

For example, we found that within high-order language areas (such as IFG and TP) the 

sequence of layerwise processing in DLMs corresponded to a sequence of temporal processing.  

What are possible explanations for this result? First, it may be that cortical computations 

within a given language area are better aligned with recurrent architectures, where the internal 

computational sequence is deployed over time rather than over layers. In addition, however, 

we observed evidence for recurrent processing at different time scales across different levels of 

the linguistic processing hierarchy. That is, the sequence of temporal processing unfolds over 

longer timescales as we proceed up the processing hierarchy, from aSTG to IFG, and TP. 

Second, it may be that layered architecture of GPT2-XL is recapitulated within the local 

connectivity of a given language area like IFG (rather than across cortical areas). That is, local 

connectivity within a given cortical area may resemble the layered graph structure of GPT2-XL. 

Third, it is possible that long-range connectivity between cortical areas could yield the 

temporal sequence of processing observed within a single cortical area. Together, these results 

hint that a deep language model with stacked recurrent networks may better fit the human 

brain's neural architecture for processing natural language. Interestingly, there have been 

several attempts to develop such new architectures, such as universal transformers (40, 41) 

and reservoir computing (42). Future studies will have to compare how the internal processing 

of natural language compares between these models and the brain.  
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Previous results indicate that the ability to encode the neural responses in language areas 

using DLMs varies with the accuracy of their next-word predictions and is lower for incorrect 

predictions (1, 2). In contrast, we observed that even for unpredicted words, the temporal 

encoding sequence was maintained in high-order language areas (IFG and TP). However, we 

do find a difference in the neural responses for unpredictable words in the IFG, in which early 

layers encoding in IFG shifted from around word-onset for predictable words to around 300-

400ms after word-onset for unexpected words (Fig. 4). This finding suggests that the dynamic 

of neural responses in human language areas is systematically different for predictable and 

unpredictable words. 

Replicating prior studies (3, 11, 16), we also noticed that intermediate layers best matched 

neural activity in language areas (Fig. S2). Intermediate layers are thought to best capture the 

syntactic and semantic structure of the input (43, 44) and generally provide the best 

generalization to other NLP tasks (25). The improved correlation between neural activity and 

GPT2–XL’s intermediate layers suggests that the language areas place additional weight on 

such intermediate representations. At the same time, each layer’s embedding is distinct and 

represents different linguistic dimension (22), and thus, invoke a unique temporal encoding 

pattern. Thus, our finding of a gradual sequence of transitions in language areas is 

complimentary and orthogonal to the level of encoding across layers.  

This paper provides strong evidence that DLMs and the brain process language in a similar 

way. Given the clear circuit-level architectural differences between DLMs and the human brain, 

the convergence of their internal computational sequences may be surprising. Classical 

psycholinguistic theories postulated an interpretable rule-based symbolic system for linguistic 

processing. In contrast, DLMs provide a radically different, statistical learning framework for 

learning the structure of language by predicting speakers’ language use in context. This kind of 

unexpected mapping (layer sequence to temporal sequence) can point us in novel directions 

for both understanding the brain and developing neural network architectures that better 

mimic human language processing. Taken together, this study provides strong evidence for 

shared internal computations between DLMs and the human brain and calls for a paradigm 

shift from a symbolic representation of language to a new family of contextual embeddings 

and statistical learning-based models.  
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Materials and methods 

Data acquisition and preprocessing  

The full procedure is also described at (1). Ten patients (5 female; 20–48 years old) 
listened to the same story stimulus from beginning to end (story “So a Monkey and a 
Horse Walk Into a Bar: Act One, Monkey in the Middle”). Participants were not explicitly 
made aware that we would be examining word prediction in our subsequent analyses. 
One patient was removed from further analyses, due to excessive epileptic activity and 
low SNR across all experimental data collected during the day. All patients volunteered 
for this study via the New York University School of Medicine Comprehensive Epilepsy 
Center. All participants had elected to undergo intracranial monitoring for clinical 
purposes and provided oral and written informed consent before study participation, 
according to the New York University Langone Medical Center Institutional Review 
Board. Patients were informed that participation in the study was unrelated to their 
clinical care and that they could withdraw from the study at any point without affecting 
their medical treatment. 

For each patient, electrode placement was determined by clinicians based on clinical 
criteria. One patient consented to have an FDA-approved hybrid clinical-research grid 
implanted which includes standard clinical electrodes as well as additional electrodes in 
between clinical contacts. The hybrid grid provides a higher spatial coverage without 
changing clinical acquisition or grid placement. Across all patients, a total of 1106 
electrodes were placed on the left hemisphere and 233 on the right hemisphere. Brain 
activity was recorded from a total of 1339 intracranially implanted subdural platinum-
iridium electrodes embedded in silastic sheets (2.3 mm diameter contacts, Ad-Tech 
Medical Instrument; for the hybrid grids 64 standard contacts had a diameter of 2 mm 
and additional 64 contacts were 1 mm diameter, PMT corporation, Chanassen, MN). 
Decisions related to electrode placement and invasive monitoring duration were 
determined solely on clinical grounds without reference to this or any other research 
study. Electrodes were arranged as grid arrays (8 × 8 contacts, 10 or 5 mm center-to-
center spacing), or linear strips. 

Pre-surgical and post-surgical T1-weighted MRIs were acquired for each patient, and 
the location of the electrodes relative to the cortical surface was determined from co-
registered MRIs or CTs following the procedure described by Yang and colleagues(45). 
Co-registered, skull-stripped T1 images were nonlinearly registered to an MNI152 
template and electrode locations were then extracted in Montreal Neurological Institute 
(MNI) space (projected to the surface) using the co-registered image. All electrode 
maps are displayed on a surface plot of the template, using the Electrode Localization 
Toolbox for MATLAB available at (https://github.com/HughWXY/ntools_elec). 

Preprocessing 
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66 electrodes from all patients were removed due to faulty recordings. The analyses 
described are at the electrode level. Large spikes exceeding 4 quartiles above and 
below the median were removed and replacement samples were imputed using cubic 
interpolation. We then re-referenced the data to account for shared signals across all 
channels using either the Common Average Referencing (CAR) method or an ICA-
based method (based on the participant’s noise profile). High-frequency broadband 
(HFBB) power frequency provided evidence for a high positive correlation between local 
neural firing rates and high gamma activity. Broadband power was estimated using 6-cycle 

wavelets to compute the power of the 70-200 Hz band, excluding 60, 120, 180 Hz line noise. 

Power was further smoothed with a Hamming window with a kernel size of 50 ms. For full 
technical description see (1). 

Linguistic embeddings  

In order to extract contextual embeddings for the stimulus text, we first tokenized the words 

for compatibility with GPT2-XL. We then ran the GPT2-XL model implemented in 

HuggingFace (46) on this tokenized input. To construct the embeddings for a given word, we 

passed the set of up to 1023 words preceding the word (the context) along with the current 

word as input to the model. We include the current word for convenience, but the embedding 

we extract is the output generated for the previous word. This means that the current word is 

not used to generate its own embedding and its context only includes previous words. We 

constrain the model in this way because our human participants do not have access to the 

words in the podcast before they are said during natural language comprehension. 

GPT2-XL is structured as a set of blocks that each contain a self-attention sub-block and a 

subsequent feedforward sub-block. The output of a given block is the summation of the 

feedforward output and the self-attention output through a residual connection. This output is 

also known as a “hidden state” of GPT2-XL. We consider this hidden state to be the contextual 

embedding for the block that precedes it. For convenience, we refer to the blocks as “layers”;  

that is, the hidden state of output by block 3 is referred to as the contextual embedding for 

layer 3. In order to generate the contextual embeddings for each layer, we store each layer’s 

hidden state for each word in the input text. Fortunately, the HuggingFace implementation of 

GPT2-XL automatically stores these hidden states when a forward pass of the model is 

conducted. Different models have different numbers of layers and and embeddings of 

different dimensionality. The model used herein, GPT2-XL, has 48 layers and the embeddings 

at each layer comprise 1600-dimensional vectors. For a sample of text containing 101 tokens, 

we would generate an embedding for each layer and each word, excluding the first word as it 

has no prior context. This results in 48 1600-dimensional embeddings per word and 100 words; 

48 * 100 = 4800 total 1600-long embedding vectors. Note that in this example the context 

length would increase from 1 to 100 as we proceed through the text. 
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Dimensionality reduction  

Before fitting the encoding models, we first reduce the dimensionality of the embeddings by 

applying principal component analysis (PCA) and retaining the first 50 components. This 

procedure effectively focuses our subsequent analysis on the 50 orthogonal dimensions in the 

embedding space that account for the most variance in the stimulus. 

Encoding models: 

Linear encoding models were estimated at each lag (-2000 ms to 2000 ms in 25-ms 

increments) relative to word onset (0 ms) to predict the brain activity for each word from the 

corresponding contextual embedding. Before fitting the encoding model, we smoothed the 

signal using a rolling 200-ms window. We used a 10-fold cross-validation procedure ensuring 

that for each cross-validation fold, the model was estimated from a subset of training words 

and evaluated on a non-overlapping subset of held-out test words: the words and the 

corresponding brain activity were split into a training set (90% of the words) for model 

estimation and a test set (10% of the words) for model evaluation. Encoding models were 

estimated separately for each electrode (and each lag relative to word onset). For each cross-

validation fold, we used ordinary least squares (OLS) multiple linear regression to estimate a 

weight vector (50 coefficients for the 50 PCA components) based on the training words. We 

then used those weights to predict the neural responses at each electrode for the test words. 

We evaluated model performance by computing the correlation between the predicted brain 

activity and the actual brain activity across the held-out test words; we then averaged these 

correlations across electrodes. This procedure was performed for all the hidden states in GPT2-

XL to generate an “encoding” for each layer.  

Correct and incorrect predictions 

After generating encodings for all words in the podcast transcript, we split the embeddings 

into two subsets: words that the model predicted correctly and words that the model predicted 

incorrectly. A word was considered to be predicted correctly if the model assigned that word 

the highest probability of occurring next among all possible words. We refer to these subsets 

of embeddings as “top 1 predictable” (1709/4744 = 36%) ” and “top 5 predictable”. To reduce 

the stringency of top 1 prediction, we also created subsets of “top 5 predictable” (2936/4744 = 

62%) and “top 5 unpredictable” words where the criterion for correctness was that the 

probability for the correct word must be among the highest five probabilities assigned to 

words by the model. We then trained linear encoding models as outlined above on these 

subsets of embeddings.  

Statistical significance 

To establish the significance of the bars in Fig. 2B we conducted a bootstrapping analysis for 

each lag. Given the values of the electrodes in a specific layer and a specific ROI, we sampled 
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the max correlations values with replacement 10^4 samples with the size of the number of 

electrodes. For each sample we computed the average and generated a distribution (consisting

of 10^4 points). We then compared the actual mean for the lag-ROI pair to estimate how 

significant it is given the generated distributions. The ‘*’ indicates two-tailed significance of 

p<0.01.  

 

 

 

Supplementary Figure 1. Peak correlations of electrode-averaged encodings for each 

g 
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combination of layer (1-48) and brain area (mSTG, aSTG, IFG and TP) and word classification 

(correctly predicted, incorrectly predicted, all words). The significance test is done using 

bootstrap analysis across the electrodes. 
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Supplementary Figure 2. Encoding averaged over electrodes for each combination of layer (1-

48), brain area (mSTG, aSTG, IFG and TP) and word classification (correctly predicted, 

incorrectly predicted, all words).  
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Supplementary Figure 3. Scaled encoding for each combination of layer (1-48), brain area 

(mSTG, aSTG, IFG and TP) and word classification (correctly predicted, incorrectly predicted, 

all words). For completion the correlation between the layer index and max-lag for condition 

‘All’: mSTG (r=.56, p<10e-4), aSTG ( r=.81, p<10e-11), IFG ( r=.89 ,p<10e-16), TP ( r=.75 ,p<10e-

9) 
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Layer index p. value q-value Layer index p-value q-value 

1 0.784826 0.459996 25 0.731631 0.3963 

2 0.061834 0.015458 26 0.719935 0.360514 

3 0.016337 0.000953 27 0.608419 0.278859 

4 0.016337 0.00111 28 0.569881 0.249323 

5 0.409457 0.153546 29 0.38613 0.136755 

6 0.016337 0.001688 30 1 0.949051 

7 0.016337 0.001847 31 0.990003 0.696491 

8 0.035199 0.0066 32 1 0.906098 

9 0.016522 0.002409 33 1 0.94135 

10 0.023182 0.003864 34 1 0.922248 

11 0.016337 0.002042 35 1 0.9526 

12 0.051168 0.01066 36 0.719935 0.374966 

13 0.283744 0.094581 37 0.927577 0.618385 

14 0.276009 0.086253 38 1 0.844096 

15 0.21497 0.0627 39 0.784826 0.474165 

16 0.059726 0.013687 40 0.927577 0.61807 

17 0.016337 0.000372 41 0.820915 0.513072 

18 0.191238 0.051794 42 1 0.961332 

19 0.425111 0.168273 43 1 0.736217 

20 0.990003 0.701252 44 1 0.942203 

21 1 0.993479 45 0.548249 0.228437 

22 0.749748 0.421733 46 1 0.968246 

23 0.703456 0.337073 47 1 1 

24 1 0.825196 48 1 0.907848 

 

Supplementary Table 1. The p value and FDR-corrected q-value of the paired sampled t-test 

comparing the lags that achieve maximal correlation in the encoding across the different layers 

(n=48) of GPT2-XL. 
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