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Abstract

A causative role for DNA damage as a molecular driver of aging has long been advocated. Transcription-
blocking lesions (TBLs) accumulate with age in a stochastic manner. Thus, gene expression data might
reflect the gene length-dependent accumulation of TBLs. Here we present an analysis of gene expression
as a function of gene length in several independent single-cell RNA sequencing datasets of mouse and
human aging. We found a pervasive age-associated downregulation of long gene expression, which is seen
across species, datasets, sexes, tissues and cell types. Furthermore, long gene downregulation was also
observed in premature aging models such as UV-radiation and smoke exposure, and in gene expression
data from progeroid diseases Cockayne syndrome and trichothiodystrophy. Finally, we analyzed the
length of differentially expressed genes associated to age in both mice and humans. Downregulated
genes were significantly longer than upregulated genes. These data highlight a previously undetected
hallmark of cellular aging and provide strong support for age-associated accumulation of genotoxic
damage inducing a generalized shutdown of RNA polymerase II-mediated long gene transcription.
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Introduction1

DNA damage has long been proposed as a primary molecular driver of aging [1, 2]. Aging has also2

been associated with a series of transcriptional changes, most of which are highly tissue- and cell3

type-specific [3]. Even though the search for a global aging signature has been the goal of much research4

[4, 5, 6, 7], meta-analyses have shown that very few genes are consistently up- or downregulated with5

aging across different tissues [8]. It appears that, at the mRNA level, aging signatures are not defined6

by the overexpression of particular sets of genes – in fact, the differences between the transcriptome of7

middle-aged and young individuals are bigger than those between young and old individuals, at least8

in some human tissues [9]– but rather, an overall decay in transcription [10].9

Genetic material is constantly challenged throughout the lifespan of the organism, both by endoge-10

nous and environmental genotoxins. Some of this damage happens in the form of transcription-blocking11

lesions (TBLs), which impede transcriptional elongation [11]. Accumulation of TBLs provokes a12

genome-wide shutdown of transcription which also affects undamaged genes through poorly understood13

mechanisms, that may be related to RNA polymerase II (RNAP II) ubiquitylation and degradation14

[12, 13]. Assuming a constant TBL incidence, meaning that any base pair in the genome has a similar15

probability of suffering damage that results in a lesion, a greater accumulation of TBLs is to be16

expected in longer genes. As a matter of fact, a gene length-dependent accumulation of other forms17

of genetic damage, like somatic mutations, has already been reported in conditions like Alzheimer’s18

disease [14]. Hence, TBLs, just like somatic mutations, are expected to accumulate with aging, and19

their accumulation is expected to be dependent on gene length. However, unlike somatic mutations,20

TBLs have a strong and direct impact on mRNA production, and their gene length-dependent effects21

are likely to be measurable from RNA sequencing data of aged tissues, which make single-cell RNA22

sequencing (scRNA-seq) atlases and datasets of aging an excellent opportunity to characterize them at23

the cell type level over a wide range of tissues.24

So far, a potential relationship between age-related transcriptional changes and gene length has25

received relatively little attention. A recent analysis of the transcript length of 307 genes related to aging26

(as extracted from the GenAge database) found longer transcript lengths in these genes as compared to27

the rest of the protein-coding genes [15]. However, when they studied aging gene-expression signatures28

from a human, mouse and rat meta-analysis, they found no significance regarding transcript length in29

overexpressed and underexpressed genes, the only exception being the brain (which downregulated30

long genes). Of interest, a previous analysis of gene expression profiles in the liver of mice deficient in31

the DNA excision-repair gene Ercc1, which present features of accelerated aging, had found specific32

downregulation of long genes [16]. Similar findings were reported by the authors in naturally aged33

rat liver and human hippocampus, indicating that it could reflect a more generalized phenomenon.34

Here we aimed to extend these early observations, which were based on bulk microarray and RNA35

sequencing data, to the existing aging datasets based on scRNA-seq technology. We also extended36

our gene length analyses to mouse and human datasets of lifestyle-induced genotoxic exposure (UV,37

smoke) and progeroid syndromes (Cockayne Syndrome and trichothiodystrophy).38
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Results39

Age-associated shutdown of transcription preferentially affects40

long genes41

In order to test if gene expression at the single-cell level is conserved with aging, we first analyzed 1142

organs of the landmark Tabula Muris Senis (TMS) dataset of mouse aging [17], on the basis of having43

enough experimental replicates and single cells for statistically significant analyses. Thus, we selected44

male animals of both young (3-month) and old (24-month) age (Figure 1). Plotting the average gene45

expression of aged tissues against their young counterparts yielded scatter plots where data presented46

a high linear correlation between both average expression vectors (Figure 1a). However, we observed47

that a large number of genes lied below the y = x line, meaning that their mean expression was lower48

in old mice. This was most evident in brain, heart, liver, lung, muscle, pancreas and skin. Having49

established that there is an age-related decline in mRNA production, we explored the gene-length50

dependence of such decline. To this end, we split the whole transcriptome into four equally sized bins51

according to gene length and fitted a multiple linear regression model considering the interaction effect52

between average expression in young and the categorical variable representing the gene-length quartile.53

We found that the slope of the straight line that fits the gene expression data decreases with gene54

length, which confirms that the decay in mRNA production is strongly dependent on gene length. We55

graphically show this difference for the two most extreme quartiles (25% shortest and the 25% longest56

genes) in Figure 1b; gene lengths and p values for all comparisons are shown in Supplementary Tables57

S1 and S2). The differences in gene lengths were statistically significant in all analyzed organs.58

This effect was also detected in independent scRNA-seq datasets obtained from mouse lung, kidney,59

spleen and skin [18, 19, 20, 21], although there were relevant experimental differences among datasets60

(Supplementary Figure S1). Importantly, downregulation of longer genes was also evident in single-cell61

data of human lung, pancreas and skin [22, 23, 24, 25] (Supplementary Figure S1). Similarly, the effect62

was also detectable in TMS female animals (Supplementary Figure S2). These results suggested a63

generalized downregulation of long gene expression associated with age, which is seen across tissues,64

sexes and species, and in data extracted from several independent scRNA-seq datasets.65

Differentially expressed genes between young and old individuals66

show a preferential bias for the downregulation of long genes67

A number of genes change their expression in the same direction during aging in several tissues, and68

the search for differentially expressed genes (DEGs) may thus provide a molecular signature of aging69

[26]. We next analyzed if DEGs between young and old animals from the TMS dataset showed a70

preferential bias for the downregulation of long genes. Indeed, that was the case, since DEGs between71

young (3-month) and old (24-month) mice showed a statistically significant bias for the downregulation72

of long genes for all tissues and comparisons based on a Wilcoxon-Mann-Whitney test (Figure 2,73

p-values are provided in the Supplementary Table S3). Once more, this effect was not specific of the74

TMS dataset, since it was also detected in independent scRNA-seq datasets obtained from mouse lung,75

kidney, spleen and skin and human lung, pancreas and skin (Supplementary Figure S3). Finally, the76

effect was also detectable in TMS female animals (Supplementary Figure S4). Despite the fact that77

inter-individual and inter-tissue differences were apparent in some cases, these data confirmed that78

long genes were differentially affected by the age-associated shutdown of transcription.79

3

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.22.501099doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501099
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. A generalized, age-associated shutdown of long gene transcription. a, Gene
expression is highly conserved but shows a detectable decay with aging. Scatter plots showing the
average gene expression in 24-month old mice against average gene expression in 3 month-old mice
in 11 tissues from the TMS FACS and the TMS droplet datasets [17]. Each dot represents a gene.
N : number of single cells; n: number of biological replicates. R2: coefficient of determination. Thre
grey line represents y = x. b, A generalized shutdown of transcription is apparent in long genes. The
scatter plots show the average gene expression of the 25% shortest (yellow) and the 25% longest (blue)
genes in 24 month-old versus in 3 month-old mice. βs and βl represent the slopes of the straight lines
that best fit the data points corresponding to short and long genes, respectively. The number of young
(ny) and old (no) biological replicates are shown.
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Figure 2. Differentially expressed genes between young and old animals show a preferential
bias for the downregulation of long genes. Top 300 DEGs between young and old cells in 12
aging datasets from the Tabula Muris Senis. The 300 differentially expressed genes between 3 months
old and 24 months old male mice were obtained using the Wilcoxon method. The difference between
young and old DEG length is significant in all tissues (p-value < 0.001), see Supplementary table S3

The age-associated decrease in the expression of long genes is80

not cell type-specific81

Since many aging signatures are cell type-specific, a relevant open question was if the age-associated82

downregulation of long genes might be restricted to a particular cell type that is abundantly and83

ubiquitously located across tissues, such as fibroblasts or endothelial cells. To answer this question,84

we selected the four existing TMS heart datasets and analyzed the gene length of expressed genes85

(Figure 3). As expected, shorter genes were overexpressed in old mice as compared to young mice86

in all four datasets (Figure 3a). Compartmentalization of the analyses onto the 11 single-cell types87

detected in at least two datasets showed that young animals expressed longer genes in all cell types88

analyzed, including tissue-specific cells such as cardiomyocytes and infiltrating cell types such as B89

and T lymphocytes (Figure 3b). Therefore, a pervasive downregulation of long genes was detectable90

across aged tissues and cell types.91

Genotoxic UV exposure of young mouse skin mimics age-associated92

decrease in the expression of long genes93

Ultraviolet (UV) radiation of skin exposed to sunlight produces accumulation of DNA damage and94

photoaging [27, 28]. Notably, UV-induced photolesions – mainly cyclobutane pyrimidine dimers (CPDs)95

and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs)– trigger a general shutdown of transcription96

and are mainly repaired by the Nucleotide Excision Repair (NER) pathways [13] . The vitamin D97
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Figure 3. The age-associated decrease in the expression of long genes is not cell type-
specific. a, Genes ranked according to their age-related difference in average gene expression. Genes
are shown sorted according to their difference in mean expression between old and young cells. The
positions of the top 200 shortest (yellow) and the top 200 longest (blue) genes are shown. b, Genes
differentially expressed between old and young cells have significantly different gene lengths. Gene
length of the 200 most differentially expressed genes (DEGs) between young and old cells within each cell
type. EC, endothelial cell. SMC, smooth muscle cell. Significant differences (Wilcoxon-Mann-Whitney
test, p− value < 0.01) are marked with an asterisk (*).

system provides a local adaptive response to UV radiation, reducing DNA damage, inflammation98

and photocarcinogenesis [29]. To test if genotoxic damage to DNA (a premature aging model) also99

affected the transcription of long genes, we analyzed a single-cell RNAseq dataset of young (five to100

six-week-old) mouse skin irradiated with UVB or normal light [30]. One of the UV-irradiated groups101

was injected with vitamin D (Figure 4). A Uniform manifold approximation and projection (UMAP)102

plot of the merged datasets of mice skin shows the 11 cell types detected in this experiment using103

unsupervised cell clustering (Figure 4a). Of note, long gene expression decreased in UV-radiated104

skin as compared to both healthy and vitamin D-treated groups (Figure 4b-c). An analysis of the105

length of the top 300 DEGs computed between the three conditions (the genes differentially expressed106

in each of the conditions against the remaining two) further demonstrated that longer genes were107

differentially affected by UVB exposure (Figure 4d-e). Finally, this effect was detected in all skin108

cell types, although not all long gene transcriptional phenotypes were rescued by vitamin D injection109

(Figure 4f). These results strongly suggested that environmental genotoxic damage by UV-radiation110

may induce a generalized shutdown of long gene transcription in young animals, which may be partially111
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reverted by vitamin D injection.112

Figure 4. Genotoxic UV exposure of young mouse skin decreases the expression of long
genes. a, Uniform manifold approximation and projection (UMAP) plot showing 11 cell types in the
murine skin dataset [30]. The samples corresponding to the three conditions (healthy, UV-radiated and
UV-radiated with a vitamin D treatment) were merged into a single dataset. Diff., differentiated. EC,
endothelial cell. HF, hair follicle. IFE, interfollicular epidermis. Kerat., keratinocytes. SG, sebaceous
gland. b, Long-gene expression decreases in UV-radiated skin, but not in vitamin D-treated skin.
Scatter plots showing the mean expression in every pair of conditions: UV-radiated vs healthy skin
(top), UV-radiated vs vitamin D-treated skin (middle) and vitamin D-treated vs healthy skin (bottom).
βs and βl correspond to the slopes of the multiple linear regression models with interaction fitted
on the 1st and 4th quartiles (top 25% shortest and top 25% shortest genes). c, Shortest genes are
overexpressed in UV-radiated skin. Position of the top 200 shortest and top 200 longest genes, in the
differential expression ranking. Genes are shown ranked according to their difference in mean expression
between every pair of conditions. Genes are colored according to their length: top 200 shortest (yellow)
and top 200 longest (blue). d, Length of the genes differentially expressed in UV-radiated skin cells.
Top 300 DEGs are computed between the three conditions (those differentially expressed in each of
the conditions against the remaining two). The distributions of log10 gene length (bp) is shown. The
p-values were obtained in a Tukey post-hoc test after ANOVA. e, Log-transformed gene lengths for the
DEGs associated with the three conditions are normally distributed. A histogram and a density plot
are shown for each condition. The three distributions are normal (Lilliefors normality test, p-value >
0.05). f, DEGs associated with UV-radiated skin cell types are significantly shorter. The DEGs were
computed between the three conditions for each cell type separately.

Smoke exposure of human airways mimics age-associated de-113

crease in the expression of long genes114

Chronological age of never-smokers does increase the frequency of mutations in bronchial epithelial115

cells at a rate of 28 mutations per cell per year. Mutation frequency in cells from smokers increased116

at a rate of 91 mutations per cell per year, i.e. 3.25X higher [31]. In addition to somatic mutations,117

exposure to smoke from organic matter is known to provoke TBLs [11], due to benzo[a]pyrene diol118

epoxide (BPDE) reacting with guanines to form bulky DNA adducts [13]. To test if the lifestyle of119

smokers affected specifically the expression of long genes in airway epithelial cells, we analyzed a120

scRNA-seq dataset [32] of human trachea of never-smokers and heavy smokers (subjects who had been121
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smoking for >20 years) of a similar age range (Figure 5). A UMAP plot of the merged datasets of both122

never-smokers and heavy smokers detected 13 cell types in human trachea (Figure 5a). As expected by123

their increased accumulated genotoxicity, long gene expression significantly decreased in heavy smokers124

as compared to never-smokers (Figure 5b-c, p-values in Supplementary Table S4). An analysis of the125

length of the top 300 DEGs computed between both groups further demonstrated that longer genes126

were differentially affected by smoke exposure (Figure 5d-e). Finally, this effect was not cell-specific127

since it was detected in all tracheal cell types (Figure 5f). These results confirmed that environmental128

genotoxic damage induces a generalized shutdown of long gene transcription.129

Figure 5. Smoke exposure of human airway epithelial cells mimics age-associated decrease
in the expression of long genes. a, UMAP showing the 13 detected cell types in the human trachea
dataset. The samples corresponding to the two conditions (never-smokers and heavy smokers) were
merged into a single dataset. Diff, differentiated. KRT8, Keratin 8. PNEC, pulmonary neuroendocrine
cells. Prolif., proliferating. Prot., proteasomal. SMG, submandibular salivary glands. b, Long-gene
expression in decreased in heavy smokers. The scatter plot shows the average gene expression in heavy
smokers vs average gene expression in never-smokers. βs and βl correspond to the slopes of the linear
regression models fitted on the 1st and 4th quartiles (top 25% shortest and top 25% shortest genes). c,
Shortest genes are overexpressed in airway cells from heavy smokers. Position of the top 200 shortest
(yellow) and top 200 longest (blue) genes in the differential expression ranking. d, The length of the
genes differentially expressed in airway cells from heavy smokers vs never-smokers. 300 DEGs are
computed between the two conditions. The distributions of log10 gene length (bp) is shown. The
p-values were obtained in a Mann Whitney U test. e, Log-transformed gene lengths for the DEGs
associated with never smokers are not normally distributed. A histogram and a density plot are shown
for each condition. Only the distribution of the DEG lengths for heavy smokers passed the Lilliefors
normality test. f, DEGs associated with heavy smoker airway cell types are significantly shorter. The
DEGs were computed between never-smokers and heavy smokers for each cell type separately.

Transcriptional stress in progeroid diseases Cockayne Syndrome130

and trichothiodystrophy results in a decrease in the expression131

of long genes132

A number of progeroid diseases are caused by mutations functionally linked to genome maintenance133

and DNA damage repair [33]. Of particular interest to this work, a subset of defects in repair genes134

impair transcription-coupled nucleotide excision repair (TC-NER), i.e. TBLs remain unrepaired,135

causing RNAPII stalling and ultimately syndromic features such as Cockayne Syndrome, xeroderma136

pigmentosum, and trichothiodystrophy [11]. Of interest, increased cutaneous photosensitivity is one of137

the clinical features of patients suffering from these conditions, and is caused by deficiencies in genes138
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coding for components of the TC-NER.139

Endogenous formaldehyde is abundant in the body, causing DNA crosslinks, oxidative stress and140

potentially contributing to the onset of Fanconi Anemia and other syndromes [34]. On the other141

hand, Cockayne Syndrome is caused by loss of the Cockayne Syndrome A (CSA) or CSB proteins. Of142

note, double knock-out mice deficient in both formaldehyde clearance (Adh5−/−) and CSB protein143

(Csbm/m) develop transcriptional stress in a subset of kidney cells and features consistent with human144

Cockayne Syndrome [35]. To test if kidney cells of these animals undergoing formaldehyde-driven145

transcriptional stress specifically decreased transcription of long genes, we analyzed single-cells of three146

knockout mice – ADH5KO (deficient in formaldehyde clearance), CSBKO (Cockayne Syndrome group147

B knock-out, also known as Ercc6 ), and DKO (Adh5−/−Csbm/m double knock-out) – against those148

of wild type (WT ) mice (Figure 6). Interestingly, specific downregulation of long genes was already149

detected in ADH5KO and CSBKO single mutants. Both mutations seemed to synergize causing further150

downregulation of long genes in the DKO animals as compared to WT mice (Figure 6A-B, p-values in151

Supplementary Table S4). An analysis of the length of the top 300 DEGs computed between WT and152

ADH5KO, WT and CSBKO, and WT and DKO groups further demonstrated that longer genes were153

differentially affected by formaldehyde-driven transcriptional stress (Figure 6C).154

Encouraged by these results, we analyzed a microarray dataset of human mesenchymal stromal155

cells (MSCs) derived from a Cockayne Syndrome patient bearing a CSB/ERCC6 mutation, which156

are known to present marked changes in their transcriptome upon UV-radiation [36]. In fact, skin157

fibroblasts from this patient were first reprogrammed to generate induced pluripotent stem cells,158

which were then gene-corrected with CRISPR-Cas9, and differentiated to MSCs. Thus, the available159

data included UV-radiated MSCs vs MSCs in normal conditions in both mutant (ERCCmut) and160

gene-corrected (ERCCGC) backgrounds (Figure 7). As expected, UV-radiation on ERCCmut cells161

induced a decrease in long gene expression as compared to normal conditions in both mutant and162

gene-corrected (ERCCGC) cells (Figure 7a). Plotting of the gene lengths of the top 300 DEGs between163

cells with and without UV-radiation exposure in both mutant and gene corrected backgrounds, further164

demonstrated a bias for long gene downregulation (Figure 7b-c). This was due to the combined165

effect of UV-radiation and CSB/ERCC6 mutation, since comparisons between mutant (ERCCmut)166

and gene corrected (ERCCGC) cells in normal conditions (control) and after UV-radiation exposure167

demonstrated that GC-cells were unaffected in control conditions (Figure 7d). An analysis of the168

length of the 300 most differentially expressed genes between mutant and gene-corrected cells further169

illustrated this point (Figure 7e-f). Overall, these results demonstrated that transcriptional stress170

provided by aldehyde and UV-radiation in Cockayne Syndrome preferentially affected the transcription171

of long genes.172

Finally, we tested if long gene transcription was also affected in a second progeroid syndrome,173

trichothiodystrophy (TTD). To this end, we analyzed the length of the DEGs obtained by Lombardi174

et al. [37] between a cancer-free photosensitive trichothiodystrophy (PS-TTD) patient carrying a175

mutation in the ERCC2 gene and her healthy mother, both in basal conditions and upon UV-radiation.176

Selecting the genes that were significantly (p-value ≤0.05) over- or underexpressed in PS-TTD and177

with a substantial effect size (logFC ≥2 in either direction), we observed that the DEGs associated178

with PS-TTD were significantly shorter upon UV-radiation (Figure 7g). These results suggested that179

other progeroid syndromes may present a similar phenotype of reduced long gene transcription.180
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Figure 6. A mouse model of Cockayne Syndrome mimics age-associated decrease in the
expression of long genes in the kidney. a, Correlation between global average gene expression in
each of the knock-outs against the wild type mice. The average gene expression in three knockout mice
– ADH5KO (deficient in formaldehyde clearance) CSBKO (Cockayne Syndrome group B knock-out,
also known as Ercc6 ) and DKO (Adh5−/−Csbm/m double knock-out) – against wild type mice. Each
data point represent a gene. βs and βl represent the slopes of the straight lines that best fit the data
points corresponding to the 25% shortest (yellow) and 25% longest (blue) genes, respectively. b-c,
Distribution of gene lengths in the genes differentially overexpressed in each of the knock-outs vs the
wild type mice. The log-transformed gene length of the 300 most differentially expressed genes between
each of the knock outs and the wild type mice are shown in a density plot over a histogram (b) and a
stripplots over boxplots (c).

Published aging signatures are influenced by gene length-dependent181

transcriptional decay182

A number of aging-related transcriptional signatures have been proposed for both mice and humans. A183

recent study identified a set of mouse global aging genes (GAGs) [26], defined as genes whose expression184

varies substantially with age in most (>50%) of the tissue-cell types across several tissues of the TMS185

dataset. They found that GAGs exhibited a strong bimodality, i.e., that they were either upregulated186

or downregulated with aging in most tissues. However, to our knowledge no study of gene length has187
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Figure 7. Human Cockayne Syndrome-and trichothiodystrophy (TTD)-derived cells
mimic age-associated decrease in the expression of long genes. a-c, Effect of UV-radiation
on cells carrying a mutation in Cockayne Syndrome group B (ERCC6). Average gene expression in
UV-radiated cells vs in normal conditions in mutant (ERCCmut) and gene corrected (ERCCGC)
cells (a). The gene lengths of the 300 most differentially expressed genes between cells with and
without UV-radiation exposure in mutant and gene corrected cells, shown as overlapped density plots
(b) and separate boxplots (c). d-f, Baseline effect of the ERCC6 mutation on length-dependent
expression. Average gene expression between mutant (ERCCmut) and gene corrected (ERCCGC)
cells in normal conditions (control) and after UV-radiation exposure (d). Length of the 300 most
differentially expressed genes between mutant and gene corrected cells, shown as overlapped density
plots (e) and separate boxplots (f). g, Length of the DEGs (| logFC |≥ 2 and p-value ≤0.05) between
a PS-TTD patient and her healthy mother in basal conditions (control) and upon UV-radiation.

been applied to these genes. We analyzed the length of GAGs (Figure 8) and found that genes that188

are downregulated with aging tend to be longer than those that were found to be upregulated, and189

that their difference in length is statistically significant (Figure 8a, Wilcoxon-Mann-Whitney test,190

p− value < 0.01).191

In humans, the first large-scale meta-analysis (14,983 individuals) of aging-related gene expression192

profiles identified 1,497 genes differentially expressed with chronological age in peripheral blood193

mononuclear cells [38]. Interestingly, long genes downregulated with aging in this human cohort,194
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the differences in length between upregulated and downregulated genes being statistically significant195

(Figure 8b). Overall, these data suggest that transcriptomic aging signatures are influenced by gene196

length-dependent transcriptional decay.197

Figure 8. Down-regulated genes are longer than up-regulated genes in two published
aging transcriptomic signatures. The length of the genes from two aging signatures (murine
and human) are shown as two overlapped histograms and separate boxplots. The number of up-and
down-regulated genes in each signature are shown as nd and nu, respectively. The gene length is
different between the two categories according to the Mann-Whitney test (p-values shown in the
figure).

Discussion198

In this article, we report that a generalized age-related decline in gene expression is dependent on199

gene length. The fact that gene length affects mRNA expression levels has long been known [39]. In200

early development, gene size and architecture influences the expression timing of specific genes [40].201

This is also true more generally, for instance in the immediate cellular response to external stimuli,202

where shorter pre-mRNA molecules are synthesized first [41]. Furthermore, gene lengths appear to be203

compartmentalized among chromosomes, and tissue-specific expression patterns may be detected [42].204

RNA polymerase II (RNAP II)-driven transcription can be divided into initiation, pausing, elonga-205

tion, 3’ end formation and termination stages; each step being tightly regulated [43]. Once initiated,206

transcription pauses downstream from the transcription start site and requires specific signaling for207

pause-release, elongation and processivity. Cyclin-dependent kinases CDK12 and CDK13 seem to be208

involved in the regulation of RNAP II elongation, processivity and selection of alternative polyadenyla-209

tion sites [44]. Of interest, the GC content of the initially transcribed sequence determines early RNAP210

II elongation rates, and recognition of a 5’ splice site (SS) by U1 snRNP promotes RNAP II elongation211

potential [45]. This is related to a process known as telescripting, whereby U1 snRNP base pairing with212

5’SS avoids premature 3’ end cleavage and polyadenylation at cryptic intronic sites [46, 47]. It is likely213

that long gene transcription is mediated by many other RNA-binding proteins (RBPs) as well, many214

of which have additional functions in the regulation of pre-mRNA splicing [48]. In fact, only about215
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half of the introns present in newly synthesized pre-mRNA are co-transcriptionally spliced [49], further216

supporting alternative roles for specific RBP subsets. Although we have no mechanistic understanding217

of which dysfunction is mediating the apparent loss of long gene transcription associated to aging, our218

data may generate new avenues for aging-related research, where the relevance of pathways related to219

RNAP II elongation and processivity remains virtually unexplored.220

Premature transcript termination by RNAP II has already been described in some contexts.221

An increase in elongation rate (speed) concomitant to premature termination at cryptic intronic222

polyadenylation signals has recently been reported during heat shock, which was mediated by inhibition223

of U1 telescripting [50]. Interestingly, failure to target the stalled RNAP II for degradation by224

polyubiquitination of a single residue is enough to shutdown long gene transcription, the expression of225

shorter genes being unaffected [51, 52]. Further, the concept of long-gene transcriptopathy has been226

proposed as a possible mechanism underlying a number of neurological and psychiatric disorders, some227

of which are age-associated [53, 54, 48]. RNA-binding protein SFPQ mediates CDK9 recruitment228

to the transcription elongation complex, which activates RNAP II-CTD. Neuron-specific ablation of229

SFPQ downregulated a regulon of 135 genes, which account for less than 10 percent of the genes230

with a pre-mRNA >100 kb in length, inducing neuronal cell death and embryonic lethality [54].231

Similarly, muscle-specific ablation of SFPQ induced metabolic myopathy, severe progressive muscle232

mass reduction and impairment of motor function. This was shown to be mediated by downregulation233

of long genes regulating energy metabolism in skeletal muscle [48]. While the specific mechanisms234

underlying the generalized age-associated downregulation of long genes that we report here remain to235

be determined, it seems likely that they will be related to some of the aforementioned mechanisms.236

For example, a longitudinal analysis of gene expression differences in a human cohort that followed237

65 healthy individuals between ages 70 and 80 [55] found changes in the expression of the SFPQ238

gene among the strongest associations with age. Of note, the key importance of RNA metabolism239

dysregulation in human aging has long been known [56].240

Accumulation of genotoxic damage with chronological age is pervasive, and it may also be signifi-241

cantly incremented through lifestyle choices [27, 31, 57, 58]. The fact that augmented DNA damage242

specifically induces downregulation of long genes is of great interest. A recent study has shown that243

UV-mediated global transcription shutdown favored transcription restart from shorter mRNAs with244

less exons [59]. Similarly, transcription blockage by DNA damage is known to generate neurodegener-245

ative processes associated to human genetic syndromes deficient in nucleotide excision repair, such246

as Cockayne Syndrome and xeroderma pigmentosum [60]. Our data showing that several models of247

progeroid disease specifically downregulate long genes are most likely true as well for other TC-NER248

syndromes.249

The search for aging-related gene signatures has provided relatively little advance to the field. In250

our opinion, the straightforward mechanism depicted here (of DNA damage-induced loss of RNAP II251

processivity as a molecular driver of aging) might better explain many of the age-associated features252

and may thus provide a fruitful research avenue for the aging field. Future work should shed light on253

the specific mechanisms underlying loss of long gene transcription associated with aging.254

Methods255

Data inclusion criteria256

In order to analyze balanced aging datasets, samples were selected according to the following criteria:257

1) When sex annotations where available, same-sex datasets were generated. 2) Individuals of the258
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same age were used to create the "young" and the "old" cohorts. 3) In datasets including samples259

from different sub-tissues, samples corresponding to the sub-tissues with representation in the two age260

cohorts were selected.261

In murine datasets derived from Tabula Muris Senis data, 3 month-old and 24 month old mice262

were used to form the young and old cohorts, respectively. In all TMS female murine aging datasets 18263

month animals were used to form the old cohort. In the murine dermal fibroblast dataset [21], samples264

from newborn mice were not included.265

Regarding human aging datasets, samples from newborn and middle-aged individuals were discarded266

and sex-stratified cohorts where created when possible. In the human aging pancreas dataset [22],267

samples from pediatric donors as well as those from a 38-year old patient were removed. Thus, only268

two young (21 and 22 years old) and two old (44 and 54 years old) donors were included in the aging269

dataset.270

In the human trachea of heavy smokers and never-smokers dataset [32] only donors aged over 50271

years were included in the dataset to avoid age as a confounding variable.272

Data processing pipeline273

Single-cell RNA-seq datasets were preprocessed using a standard preprocessing pipeline in Scanpy [61]:274

normalization, log-transformation of counts, feature selection using triku [62], dimensionality reduction275

through Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection276

(UMAP) [63], and community detection using Leiden [64]. In some cases, when the original labels were277

too granular, some cell identities were merged into broader categories before proceeding to downstream278

analyses.279

Datasets280

Male murine aging datasets281

TMS male mice aged 3 months and 24 months were selected to create balanced datasets of aging of 11282

organs (12 comparisons): bladder, brain, brain myeloid, heart, kidney, liver, lung, muscle, pancreas,283

skin, spleen and thymus (Almanzar et al. [17]).284

Female murine aging datasets285

Due to the lack of available 24 month-old females in the TMS dataset, we chose a set of 3 month286

and 18 month-old mice to create 12 balanced female aging datasets: TMSF muscle, TMSF brain,287

TMSF brain myeloid, TMSD heart, TMSF heart, TMSF thymus, TMSF skin, TMSF pancreas, TMSD288

mammary gland, TMSF mammary gland, TMSF spleen and TMSF kidney.289

Additional murine and human datasets290

We analyzed six additional murine aging datasets of several tissues: lung cells from 3 and 24 month291

old mice (Angelidis et al. [18], GEO accession GSE124872), lung, spleen and kidney cells from 7 and292

21 months old mice (Kimmel et al. [19], GSE132901), brain cells from 2-3 and 21-23 month old mice293

(Ximerakis et al. [20], GSE129788) and dermal fibroblasts from 2 and 18 month old mice (Salzer et al.294

[21], GSE111136). We also analyzed four human datasets: lung cells from 46 and 75 years old male295

healthy donors (Travaglini et al. [24], available at Synapse under accession syn21041850), lung cells296

from young (21, 22, 32, 35 and 41 years old) and old (64, 65, 76 and 88 years old) male and female297
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healthy donors Raredon et al. [25], GSE133747), pancretic cells from X and Y years old male and298

female healthy donors (Enge et al. [22], GSE81547), and whole-skin cells from X and Y years old299

donors ([23], GSE130973). Murine lung, human lung and human pancreas datasets were processed and300

cell type annotated as in Ibáñez-Solé et al. [65].301

Murine aging heart302

Four aging balanced datasets were created from samples from the TMS FACS heart and the TMS303

droplet heart and aorta datasets. All mice aged 3 months, 18 months and 21 months were selected and304

combined so that all mice representing an age cohort within a dataset were of equal age and sex: TMS305

FACS male (3-24 months), TMS FACS female (3-18 months), TMS droplet female (3-18 months) and306

TMS droplet female (3-21 months).307

Murine UV-radiated skin308

The datasets corresponding to the three conditions (healthy, UV-radiated and vitamin D) were309

downloaded from the Gene Expression Omnibus (GSE173385). We checked that the age of the mice310

used in the study was identical between conditions. The three datasets were subjected to the standard311

processing pipeline described in Data processing pipeline separately. Then, the Leiden community312

detection algorithm was run and cell type annotations were added to the resulting clusters based on313

the expression of known cell type markers. The murine dermal cell type characterization by Joost et al.314

was used as a reference.315

The clusters were annotated based on the following gene markers: «IFE basal» (basal keratinocytes316

from the interfollicular epidermis, Krt5, Krt14, Mt2 ); «IFE diff.» (differentiating keratinocytes, Krt1,317

Krt10, Ptgs1 ); «IFE kerat.» (terminally differentiated cells in the keratinyzed layer, Lor, Flg2.);318

«HF» (hair follicle cells, Krt17, Krt79, Sox9 ); «Fibroblast» (Col1a1, Col3a1, Col1a2, Dcn, Lum,319

Sparc); «Myeloid» (Cd74, Lyz2 ); «SG» (sebaceous gland cells, Mgst1, Scd1, Krt25, Pparg); «T cell»320

(Cd3d, Thy1, Nkg7 ); «EC» (endothelial cells, Mgp, Fabp4 ); «Melanocyte» (Mlana, Pmel, Tyrp1 );321

«Erythrocyte» (Hbb-bs, Hbb-bt, Hbba-a2 ).322

The Lilliefors normality test [67] was conducted on the log-transformed lengths of the differentially323

expressed genes for each of the conditions, using Python module statsmodel. The null hypothesis – that324

the log10 gene lengths follow a normal distribution – could not be rejected (cutoff: 0.05), meaning that325

the distribution of gene lengths within each group is normally distributed. We tested whether the mean326

lengths of the DEGs were significantly different across conditions using ANOVA (stats.f_oneway).327

The null hypothesis that the three means were equal was rejected (p-value 3.67E-06). Post-hoc analysis328

(Tukey test, scikit_posthocs.posthoc_tukey) was run to test which of the pairwise comparisons329

between the three conditions yielded a statistically significant difference. Additionally, statistical330

significance was confirmed with non-parametric alternatives: Kruskal-Wallis (stats.kruskal) and331

Dunn test (scikit_posthocs.posthoc_dunn).332

Human airway cells from heavy smokers333

The dataset used in Goldfarbmuren et al. was downloaded from the Gene Expression Omnibus334

(GSE134174). Original cell type annotations were used, but subtypes of the same cell types were pooled335

into a single category. The final dataset contained 13 cell types: «Diff. basal» (differentiating basal336

cells), «Prolif. basal» (proliferating basal cells), «Prot. basal » (proteasomal basal cells), «ciliated»337

(the two mature ciliated clusters –A and B– were pooled together), «ionocytes», «PNEC» (pulmonary338

neuroendocrine cells), «secretory/ciliating» (hybrid secretory early ciliating cells), «KRT8 high»,339
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«secretory» (mucus secretory cells), «tuft-like» (Tuft-like cells), «SMG basal» (basal cells from the340

submucosal gland or SMG, the two clusters –A and B– were pooled into a single category), «SMG341

myoepithelial» (myoepithelial cells from the SMG), «SMG secretory» (mucus secretory cells from the342

SMG).343

In order to control for age as a possible confounding factor, we checked the ages of the subjects344

in the original dataset. We discarded the youngest donors and only kept samples from donors aged345

>50 years. The final dataset consisted of 21,425 cells from 8 donors. Heavy smokers (T101, T120,346

T154, T167, T85 ) were aged 55-66 years, and never-smokers (T164, T165, T166 ) were 64-68 years old.347

Since the average never-smoker age is slightly higher than the average heavy-smoker age, we can safely348

attribute transcriptional changes between these two groups to their smoking status.349

The Lilliefors test was used to test whether the log10 length of the DEGs for the two conditions350

("heavy smokers" and "never-smokers") were normally distributed. The null hypothesis could be rejected351

(cut-off: 0.05) for the "never-smokers", meaning that DEGs associated with that condition were not352

normally distributed, so a MannWhitney U test was used to compare between the means of the two353

distributions.354

Effect of ERCC6 mutation of susceptibility to UV-radiation355

The dataset by Wang et al. was downloaded from the Gene Expression Omnibus (GSE124208).356

The following samples were included in the dataset: GSM3525718, GSM3525717, GSM3525714,357

GSM3525715, GSM3525719, GSM3525716, GSM3525713 and GSM3525720. Those samples correspond358

to four experimental conditions: MSCs from Cockayne syndrome patients carrying the ERCC6 mutation,359

with (UV ) and without (ct) UV-radiation treatment (MSC_mut_ct, MSC_mut_UV ); MSCs from360

gene-corrected cells with and without UV radiation treatment (MSC_GC_ct and MSC_GC_UV ).361

All samples were merged into a single dataset and expression values were log-transformed.362

Effect of ERCC2 mutation of susceptibility to UV-radiation363

The complete list of DEGs between a cancer-free PS-TTD patient carrying a mutated ERCC2 gene and364

her healthy mother in basal conditions and upon UV-radiation were obtained from the Supplementary365

Material provided by Lombardi et al. [37]. From the original DEG list, we selected the genes with a366

log fold-change greater than 2 (either overexpressed in the sample from the PS-TTD patient or in the367

sample from the healthy donor). The same threshold for statistical significance (p-value ≤0.05) as the368

one used by the original authors was used.369

Gene length analysis370

Human and mouse gene length annotations for were obtained from Biomart. Total gene length was371

calculated as the difference between the transcription end site and the transcription start site.372

Length-dependent difference in expression in aging and genotoxic conditions373

Two different types of analysis were run between conditions: global average gene expression and374

length-dependence of transcriptional decay and gene length analysis of the differentially expressed375

genes between conditions.376
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Gene length dependence in age-related transcriptional decay377

Here, we computed the average gene expression across all cells for a pair of conditions (for instance,378

"young" and "old"). We used a scatter plot to represent each gene according to its average expression379

in old cells (y axis) against its average expression in young cells (x axis). This is a way of looking at380

how predictable the expression of each particular gene is in old cells based on the expression of the381

same gene in young cells. As we observed that most genes show a great correlation between young and382

old cells, even though many of them show expression levels that are lower than what we would have383

expected from their expression in young individuals, we then looked at the role gene length plays in384

this transcriptional decay. We did so by splitting the transcriptome into four quartiles according to385

their length. we considered whole sequence length from transcription start site to transcription end386

site. Then, we fitted a linear regression model to the average gene expression in old and young cells387

for each of the quartiles, thus obtaining a separate linear model for each quartile, using the formula388

MEold ∼ MEyoung ∗ Q, where (MEold and MEyoung are the mean expression vectors for old and389

young cells, and Q is the vector that assigns each gene to a length quartile, to be used as a factor by390

the linear model). We observed that the shorter the genes included in the linear model (for instance,391

Q1 genes), the greater was the slope of the resulting straight. We performed statistical analysis to392

compare between the slope of the Q1 model against each of the three remaining models (Q2, Q3 and393

Q4).394

The same analysis was extended to conditions other than aging, by making analogous comparisons.395

In the UV-radiated murine skin analysis, we compared UV-radiated skin against the healthy skin396

control (to test for the effect of UV-radiation), the UV-radiated skin against the vitamin D-treated and397

UV-radiated skin (effect of vitamin D treatment on damage caused by UV-radiation), and the vitamin398

D-treated skin against the healthy skin control (effect of UV-radiation after vitamin D treatment). In399

the analysis on the murine model for Cockayne syndrome we compared between each of the knock400

outs (Adh5−/−, Csbm/m, and double KO) against the wild type (WT ). In the analysis of human401

mesenchymal stromal cells derived from Cockayne syndrome patients, we compared between the402

following conditions: UV-radiated cells against control (both in mutant and gene corrected cells), and403

ERCCmut against ERCCGC (to test for the effect of carrying the ERCC6 mutation, both in normal404

conditions and after UV-radiation exposure).405

Gene length analysis of the differentially expressed genes between conditions406

We carried out two types of differential expression analysis: overall differential expression between407

conditions and differential expression at the cell type level.408

Overall differential expression between conditions is based on the assumption that the changes in409

cell type composition between the conditions to be compared are negligible, so that the genes that are410

detected to be differentially expressed do not correspond to markers defining specific cell types that411

are more abundant in one of the conditions. Differential expression analysis between conditions at412

the cell type level identifies genes that are over-expressed in one of the conditions. Of course, DEGs413

can only be computed for cell types that are present in the conditions to be compared in sufficient414

amounts (we used 10 cells as the minimum). Its output is not directly affected by changes in cell type415

composition between conditions. However, if the abundance of cell type under study is very different416

between conditions – if one cell type is very rare in one of the conditions – the population might not417

be well sampled for that condition and the gene length analysis might not be reliable. We therefore418

use the two approaches as they are complementary to one another. In either case, we used the Scanpy419

function sc.tl.rank_genes_groups with method = "wilcoxon" to obtain the top 300 differentially420
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expressed genes between conditions.421

In most cases, pairwise comparisons were made, as in the aging analysis ("young" vs "old") or when422

analyzing the effect of smoking of human airways ("never-smokers" vs "heavy smokers"). In those cases,423

two lists of genes were obtained: one per condition. In the analysis of murine UV-radiated skin (Figure424

4), we compared between the three conditions simultaneously. In that case, each of three DEG lists425

corresponds to the genes that are over-expressed in one condition against the other two conditions426

pooled together.427

First, the Lilliefors test was used check whether gene lengths in each of the conditions were normally428

distributed. In cases where the null hypothesis could be rejected (p-value < 0.05) in at least one of the429

conditions to be compared, a non parametric test was used to compare between means. In order to430

make statistical comparisons between the mean gene length between conditions, we used the following431

tests: Student’s T test (two conditions, normally distributed), Mann-Whitney’s U test (two conditions,432

not normally distributed), ANOVA (three conditions) and Tukey’s test for post-hoc analysis.433

Code availability434

Jupyter notebooks and R scripts for reproducing the analyses can be found in GitLab.435
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Supplementary Figures

Figure S1. Downregulation of long genes with aging is replicated in several datasets of
different species. a, Gene expression is conserved with aging in several datasets of different species.
Average gene expression in old against young cells in six mouse and four human datasets of several
tissues. R2: coefficient of determination; N : total number of cells; n: number of biological replicates.
b, Age-associated shutdown of transcription is found to be gene length-dependent in several datasets
of different species. Slopes of the straight lines that fit the data for the 25% shortest (βs) and the 25%
longest genes (βl). Number of biological replicates in each age category: young (ny) and old (no).

Supplementary Tables
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25% shortest (Q1) 25% longest (Q4)

short_min short_median short_max long_min long_median long_max
Bladder 65 5,373 10,218 58,647 104,278 2,270,723
Brain 63 5,402 10,143 52,003 93,157 1,211,426
Brain myeloid 69 5,521 10,418 57,559 103,285 2,257,271
Heart 69 5,196 9,713 52,057 95,055 2,270,723
Kidney 63 5,402 9,905 49,274 88,337 1,503,513
Liver 108 5,494 10,367 56,554 101,606 2,960,898
Lung 63 5,574 10,615 59,384 108,898 2,960,898
Muscle 64 5,897 11,150 63,517 118,298 2,960,898
Pancreas 67 5,526 10,471 55,760 100,580 2,960,898
Skin 63 5,411 10,151 56,744 101,808 2,960,898
Spleen 63 5,379 9,987 50,379 89,933 1,503,513
Thymus 63 5,538 10,287 54,303 99,058 2,960,898

Table S1. Length of the Q1 (25% shortest) and Q4 (25% longest) genes used in the analysis of Figure
1. The minimum, median and maximum gene lengths (bp) are shown for the two gene categories.

Q1 Q1-Q2 Q1-Q3 Q1-Q4

Est. (SE) p-val Est. (SE) p-val Est. (SE) p-val Est. (SE) p-val
Bladder 1.02 (<0.01) 0 -0.03 (0.01) <0.001 -0.05 (0.01) <0.001 -0.07 (0.01) <0.001

Brain 0.86 (<0.01) 0 -0.25 (0.01) <0.001 -0.35 (0.01) <0.001 -0.43 (0.01) <0.001
Brain myeloid 1.03 (<0.01) 0 -0.06 (0.01) <0.001 -0.11 (0.01) <0.001 -0.29 (0.01) <0.001

Heart 1.02 (<0.01) 0 -0.09 (0.01) <0.001 -0.17 (0.01) <0.001 -0.28 (0.01) <0.001
Kidney 0.93 (<0.01) 0 -0.03 (0.01) 3.85E-02 -0.08 (0.02) <0.001 -0.19 (0.02) <0.001

Liver 0.86 (<0.01) 0 -0.06 (0.01) <0.001 -0.08 (0.01) <0.001 -0.20 (0.02) <0.001
Lung 1.16 (0.01) 0 -0.24 (0.02) <0.001 -0.39 (0.02) <0.001 -0.50 (0.02) <0.001

Muscle 1.26 (0.01) 0 -0.36 (0.02) <0.001 -0.50 (0.02) <0.001 -0.62 (0.02) <0.001
Pancreas 0.85 (<0.01) 0 -0.03 (0.01) 2.83E-02 -0.06 (0.01) <0.001 -0.14 (0.01) <0.001

Skin 1.09 (<0.01) 0 -0.13 (0.01) <0.001 -0.21 (0.01) <0.001 -0.29 (0.01) <0.001
Spleen 0.99 (<0.01) 0 0.05 (0.01) <0.001 -0.03 (0.01) 3.80E-02 -0.19 (0.01) <0.001

Thymus 1.02 (<0.01) 0 -0.13 (0.02) <0.001 -0.25 (0.02) <0.001 -0.41 (0.02) <0.001

Table S2. Linear models fit on short and long genes are significantly different in 12
murine aging mouse datasets. We test for the difference between the slope that best fits the old vs
young average gene expression using the Q1 genes (25% shortest) and the slope that corresponds to
each of the other three quartiles (Q2, Q3, Q4). Q1-Q2, Q1-Q3 and Q1-Q4 represent the differences
between the slopes fitted on Q1 and each of the quartiles. Est. (estimate), SE (standard error), p-val
(p-value).

U statistic p-value
Bladder 28948.5 5.23e-10
Brain 27401.0 2.52e-10
Brain myeloid 13075.0 1.45e-43
Heart 12005.5 5.54e-45
Kidney 22024.0 9.91e-21
Liver 31636.0 0.000227
Lung 10844.0 7.16e-52
Muscle 8774.5 7.31e-59
Pancreas 25380.0 6.00e-12
Skin 12953.5 1.35e-44
Spleen 19386.0 5.45e-25
Thymus 10888.5 1.97e-50
Table S3. Mann-Whitney test comparing lengths of DEG between young and old cells U
statistic and p-value associated with each comparison. The test compares the mean log10 gene length
(bp) of the top 300 DEGs between young and old cells in 12 murine tissues (shown in Figure 2).
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Figure S2. Age-associated shutdown of transcription is also detected in 18 month-old
females. a, Gene expression is highly conserved but shows a detectable decay with aging in 18 month
old female mice as well. Scatter plots showing the average gene expression in 18-month old female
mice against average gene expression in 3 month-old female mice in 12 tissues from the TMS FACS
and the TMS droplet datasets [17]. Each dot represents a gene. N : number of single cells; n: number
of biological replicates. R2: coefficient of determination. b, Age-associated shutdown of transcription
preferentially affects long genes. The scatter plots show the average gene expression in 18 month-old
versus in 3 month-old female mice. The top 25% and bottom 25% of the total genes according to their
gene length are shown in blue and yellow, respectively. βs and βl represent the slopes of the straight
lines that best fit the data points corresponding to short and long genes, respectively. Number of
young (ny) and old (no) biological replicates.
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Figure S3. Downregulation of long genes is found in several datasets of different species.
Top 300 DEGs between young and old cells in 10 independent aging datasets from mouse and human.
The 300 differentially expressed genes between young and old individuals were obtained using the
Wilcoxon method.

Figure S4. Downregulation of long genes is also detected in 18 month-old females. Top
300 DEGs between young and old cells in 12 aging datasets from the Tabula Muris Senis. The 300
differentially expressed genes between 3 months old and 18 months old female mice were obtained
using the Wilcoxon method.
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Q1 Q1-Q2 Q1-Q4 Q1-Q4

Est. (SE) p-val Est. (SE) p-val Est. (SE) p-val Est. (SE) p-val

Lin
H vs UV 0.91 (<0.01) 0 -0.07 (<0.01) <0.001 -0.10 (0.01) <0.001 -0.11 (0.01) <0.001
VD vs UV 0.91 (<0.01) 0 -0.08 (<0.01) <0.001 -0.10 (0.01) <0.001 -0.13 (0.01) <0.001
H vs VD 0.98 (<0.01) 0 0.01 (<0.01) 0.392 -0.01 (0.01) 0.201 0.00 (0.01) 0.903

Goldfar. H vs Smoker 1.01 (<0.01) 0 -0.03 (<0.01) <0.001 -0.06 (0.01) <0.001 -0.12 (0.01) <0.001

Mulder.
WT vs ADH5KO 1.00 (<0.01) 0 0.02 (<0.01) <0.001 0.01 (0.01) 0.171 0.01 (0.01) 0.0969
WT vs CSBKO 1.00 (<0.01) 0 0.03 (<0.01) <0.001 0.03 (<0.01) <0.001 0.04 (0.01) <0.001
WT vs DKO 0.99 (<0.01) 0 -0.02 (<0.01) 4.68E-03 -0.05 (0.01) <0.001 -0.06 (0.01) <0.001

Wang
GC: ct vs UV 0.94 (<0.01) 0 0.00 (<0.01) 0.691 0.01 (0.01) 9.30E-03 0.00 (0.01) 0.893
mut: ct vs UV 0.94 (<0.01) 0 -0.04 (<0.01) <0.001 -0.07 (0.01) <0.001 -0.10 (0.01) <0.001
ct: GC vs mut 0.97 (<0.01) 0 0.02 (<0.01) <0.001 0.02 (<0.01) <0.001 0.00 (<0.01) 0.958
UV: GC vs mut 0.99 (<0.01) 0 -0.03 (<0.01) <0.001 -0.08 (<0.01) <0.001 -0.12 (0.01) <0.001

Table S4. Statistical significance of the analyses done on premature aging datasets.

Q1 Q1-Q2 Q1-Q3 Q1-Q3

Est. (SE) p-val Est. (SE) p-val Est. (SE) p-val Est. (SE) p-val

TMSD F (3-18) 1.06 (0.00) <0.001 -0.07 (0.01) <0.001 -0.14 (0.01) <0.001 -0.21 (0.01) <0.001
TMSD F (3-21) 1.06 (0.00) <0.001 -0.04 (0.01) <0.001 -0.12 (0.01) <0.001 -0.22 (0.01) <0.001

TMSD M (1-18) 0.97 (0.00) <0.001 -0.04 (0.01) <0.001 -0.05 (0.01) <0.001 -0.09 (0.01) <0.001
TMSD M (1-24) 0.98 (0.00) <0.001 -0.03 (0.01) <0.001 -0.04 (0.01) <0.001 -0.07 (0.01) <0.001
TMSF F (3-18) 0.93 (0.00) <0.001 -0.01 (0.01) 7.84E-2 -0.05 (0.01) <0.001 -0.09 (0.01) <0.001

TMSF M (3-24) 1.02 (0.01) <0.001 -0.09 (0.01) <0.001 -0.17 (0.01) <0.001 -0.28 (0.01) <0.001

Table S5. Output of the statistical analysis comparing the effects of the different gene
length groups based on a linear model with interaction. We test for the difference between
the slope that best fits the old vs young average gene expression using the Q1 genes (25% shortest)
and the slope that corresponds to each of the other three quartiles (Q2, Q3, Q4). Q1-Q2, Q1-Q3 and
Q1-Q4 represent the differences between the slopes fitted on Q1 and each of the quartiles.
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