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Supplementary Results 
 

Distribution of dbBact experiments across different ontologies 
 

 
Figure S1: Distribution of dbBact experiments by different ontologies. The number of 
experiments containing representative terms from: a. ENVO, covering environment types 
(1,2). b. GAZ, specifying geographic locations (3). c. NCBI taxonomy of species (4). d. 
Uberon, covering anatomical entities (5). Numbers in parenthesis and circle sizes denote the 
number of unique dbBact experiments containing these terms. 
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Querying sequences from one region and retrieval across all regions 
When submitting queries from regions V1-V2, V3-V4 or V4, sequences are matched with full-

length 16S rRNA sequences based on the SILVA database, then “linked” to the corresponding 

sequences in the other regions (see Methods section for implementation details). The latter 

corresponding sequences are automatically submitted as queries to dbBact, therefore retrieval is 

based on annotations across all regions. For example, when submitting a query sequence from the 

V1-V2 region, dbBact also “transforms” it into its matching sequences in V4 and in V3-V4 and 

retrieves also annotations that were originally submitted using these regions.  

To exemplify this process, we submitted queries of V3-V4 sequences from soil samples (6), V3-

V4 sequences from mouse and pig feces (7,8), and V1-V2 sequences from human feces (9). Figure 

S2a displays dbBact word clouds for each sample when retrieval was restricted to V4 linked 

sequences, showing accurate detection of the origin of the sequences based only on the linked 

annotations. Figure S2b displays a similar example for an enrichment query of 55 and 332 V1-V2 

sequences that are higher in short bowel syndrome (SBS) patients and healthy controls, 

respectively. Although dbBact retrieval was restricted to V4 linked sequences, the bar plot 

identifies an enrichment of general dysbiosis bacteria (oral and diarrhea associated) in the SBS 

group, as well as an enrichment of non-dysbiosis bacteria (“LOWER IN ulcerative colitis”) in the 

control group. This indicates the SILVA-mediated sequence linking can assist in identifying subtle 

biological signals even for primer regions lacking direct experiments for these signals. 
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Figure S2: Querying dbBact using V3-V4 or V1-V2 16S rRNA gene regions and 
retrieving annotations from V4. a. Reads originating from soil (6) (V3-V4 region), mouse 
feces (8) (V3-V4 region), pig feces (7) (V3-V4 region), and human feces (9) (V1-V2 region) 
were used to query dbBact, while retrieval was restricted to their linked V4 sequences. Word 
clouds based on V4 annotations are shown for each sample. b. Top dbBact terms 
significantly enriched between SBS patients and healthy controls using only V4 region 
annotations, while the two-group enrichment query was based on V1-V2 reads. Results 
indicate general dysbiosis of SBS bacteria (similar to Crohns’ disease, ulcerative colitis, 
and pancreatitis), as well as enrichment of mouth bacteria in SBS patients.  
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Integrating dbBact into microbiome analysis pipelines allows generating novel biological 
hypotheses: Detailed examples 
 
The following sections present a detailed analysis of examples mentioned in Figure 6a. 

 

Jupyter notebooks for recreating all analyses and figures, as well as the data used, are available at: 

https://github.com/amnona/dbbact-paper 
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Oral microbiome of wild sea otters resembles the oral microbiome of  
dogs and cats  
Dudek et al. (10) collected oral samples from 158 wild southern sea otters living off the coast of 

central California. Figure S3a displays the terms word cloud of all sea otter oral samples indicating 

shared sequences with dogs and cats (e.g., “beagle dog,” “canis lupus familiaris,” “felis catus”). 

To validate and further understand this observation, we plotted the fraction of sea otter oral 

sequences shared with oral or non-oral terms corresponding to dogs, cats, humans, and fish (Figure 

S3b). For example, dbBact contains 19 annotations of dogs’ oral microbiome (leftmost column in 

Figure S3b). Comparing the sequences corresponding to each of these annotations with the set of 

125 sea otter oral sequences reveals an overlap of up to 30% (median 10%) across annotations. A 

significantly lower overlap exists when comparing the 125 sea otter sequences with sequences 

corresponding to non-oral dog annotations. The same phenomenon occurs for cats’ oral 

annotations. By contrast, oral and non-oral annotations from humans and fish show a low overlap 

with the 125 sea otter oral sequences (Mann-Whitney p-values <1E-8 for all comparisons). These 

results indicate that dogs’ and cats’ oral bacteria are the closest to sea otter oral samples, possibly 

because of a common local environment and diet. 

 

 
Figure S3: Sea otter oral microbiome resembles the oral microbiome of dogs and cats. 
a. dbBact term word cloud of prevalent sequences (present in >0.3 of samples) of wild sea 
otter oral samples. b. Fraction of the 125 sea otter sequences (present in >10% of samples) 
that also appear in annotations containing specific dbBact terms. Each point represents a 
single dbBact annotation. To collect oral-related annotations we used the terms “mouth,” 
“saliva,” “dentition,” or “oropharynx,” together with the host term (i.e., “dog,” “cat,” “homo 
sapiens,” or “fish”). Non-oral annotations were taken as all other terms for each host. 
Numbers in parenthesis correspond to the number of annotations. 
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Himalayan vulture fecal microbiome resembles that of the California condor 
Wang et al. (11) collected 28 fecal samples from wild Himalayan vultures in Qinghai province, 

China. Figure S4a shows the most significant dbBact terms associated with the 36 sequences 

present in at least 30% of Himalayan vulture samples. The two dbBact terms having the highest 

associated F1 scores are “feces” and “gymnogyps californianus” (California condor). About 60% 

of the Himalayan vulture sequences are associated with “California condor,” and over 80% are 

associated with “feces” (Figure S4b). dbBact California condor annotations are derived from the 

Jacobs et al. experiment (12), which contains fecal and cloacal samples of captive California 

condor collected in Idaho, USA. Thus, dbBact indicates a common bacterial core for these two 

carrion-eating vultures from different continents.  

 
 

Figure S4: Himalayan vulture microbiome resembles that of the California condor. a. 
dbBact terms with the highest F1  scores. b. The fraction of Himalayan vulture sequences 
(present in >30% of samples) associated with each of the terms shown in panel a.  

  

fra
ct

io
n 

of
 se

qu
en

ce
s 

w
ith

 te
rm

f-
sc

or
e

a.

b.



7 
 

Colitis in horses increases the abundance of human-related bacteria in the horse gut 
Arnold et al. (13) collected fecal samples from 80 healthy horses and 26 horses suffering from 

colitis due to Salmonella or antibiotics use. Standard analysis identified 2,441 sequences higher in 

healthy horses (S-Normal) and 399 sequences higher in horses with colitis (S-Colitis). dbBact term 

enrichment indicates that S-Normal is enriched in horse and other species of the same genus 

(“equus caballus,” “equus hemionus), whereas S-Colitis is enriched in human related terms 

(“homo sapiens,” “adult,” “child”) (Figure S5a). For example, we compared S-Colitis sequences 

with all 6,037 dbBact sequences having an annotation “child.” 26% (102/399) of S-Colitis 

sequences were independently assigned a “child” annotation across dbBact, as opposed to only 

1.7% (42/2,441) of S-Normal sequences (Figure S5b). This enrichment in human-related terms 

may indicate a decrease in host-specific sequences and an increase in non-specific opportunistic 

sequences, possibly arising from horses’ exposure to human bacteria following colitis. 

 

 
Figure S5: Bacteria of horses with colitis are more human related.  a. Bar plot of the top 
10 enriched dbBact terms comparing the sequences higher in S-Normal (green) and S-
Normal (red).  b. Venn diagram showing the number of sequences associated with at least 
one dbBact annotation containing the term “child.” Green and red circles are the sequences 
of the S- Normal and S-Colitis, respectively. The blue circle corresponds to all dbBact 
sequences associated with the term “child.” 
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Human health-related bacteria are associated with primates, whereas disease-related bacteria are 
associated with homeothermic hosts 
 

In a recent meta-analysis, Abbas-Egbariya et al. (14)  identified a set of bacteria that displayed the 

same disease-dependent behavior across multiple studies and diseases. They identified a set of 34 

disease-related bacteria whose frequency consistently increased in different diseases, and a set of 

97 bacteria whose frequency decreased in the various disease types, which are referred to as health-

related. We used dbBact to identify enriched terms in these two groups (Figure S6a). Disease-

related bacteria are enriched in “Crohn’s disease” and “LOWER in controls,” whereas health-

related bacteria are enriched in “LOWER-in-disease” terms (e.g., “LOWER in Crohn’s disease,” 

“lower in pancreatitis,” “lower in ulcerative colitis”).  

Disease-related bacteria are also enriched in young age terms (e.g., “infant,” “6-month old human 

stage,” “under-1-year human stage”), indicating a possible state of dysbiosis associated with 

immature microbiome populations. Conversely, health-related bacteria are also enriched in rural 

lifestyle associated terms (“small village,” “rural community”) and caloric restriction diet (“cron 

diet”). 

To gain further insight into the factors determining this cross-disease bacterial response, we 

repeated term enrichment, excluding human disease-associated annotations (i.e., analysis was 

limited to annotations that do not contain the term “homo sapiens”) (Figure S6b). Health-related 

bacteria are also observed in multiple primate annotations, e.g., chimpanzee (69 out of 97 health-

related bacteria were observed in chimpanzees compared to only 1 out of the 34 disease-related 

bacteria; Figure S6c). By contrast, disease-related bacteria are enriched in mouse, horse, rat, and 

chicken annotations (Figure S6d). These results indicate that the bacteria disappearing in various 

diseases are more specifically adapted to humans, whereas the ones appearing in disease are more 

generalist homeothermic host-associated bacteria, and therefore probably less specifically adapted 

to their human host. 
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Figure S6: Health-related bacteria are associated with primates, whereas disease-
related bacteria are associated with other homeothermic hosts. a. Bar plot of the top 10 
enriched dbBact terms comparing the health-related sequences (green) and disease-related 
sequences (red). b. The same as a. but restricting enrichment analysis to non-human 
annotations, i.e., those that do not contain the term “homo sapiens.” c. Venn diagram of 
dbBact annotations related to the term “chimpanzee.” Green and red circles indicate the 
number of sequences associated with the term in the health- and disease-related bacteria, 
respectively; the blue circle indicates the number of “chimpanzee” sequences across dbBact. 
d. The top 25 terms of the disease group in b. 
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High fruit consumption is associated with monkey- and rural- associated bacteria 

Samples from the American Gut project (15) were filtered based on levels of fruit consumption 

(higher/lower than three fruits per week). Samples were selected so that the distributions of age, 

BMI, and sex were similar, resulting in 1,071 samples in either low or high fruit consumption 

groups (see Methods section “Processing of datasets” for more details). Standard analysis yielded 

45 sequences higher in high fruit consumption and 41 sequences higher in low fruit consumption, 

referred to as S-high and S-low, respectively. dbBact enrichment analysis (Figure S7a) shows that 

S-low sequences were associated with diets in industrialized regions (e.g., “LOWER IN rural 

community”), and S-high was enriched with the terms “hunter gatherer,” “monkey,” and rural 

environment-related terms. For example, the term “monkey,” appearing 5,292 times in dbBact, is 

associated with 86% (39/45) of S-high sequences, compared to 12% (5/41) of S-low (Figure S7b). 

This may indicate that the majority of bacteria positively affected by a high fruit diet are universal 

responders to fruit consumption, and thus also appear in monkeys. Therefore, some of the 

differences in microbial communities between humans and monkeys are due to diet rather than 

host-microbe co-evolution. 

  

 
Figure S7: High fruit consumption is associated with monkey- and rural-associated 
bacteria. a. Bar plot of enriched terms in high/low fruit consumption groups. b. Venn 
diagram for the representative term “monkey,” displaying the number of dbBact sequences 
associated with the term (blue circle), and their overlap with sequences associated with that 
term in either group (red or green circles). The numbers indicate the number of sequences 
in each part of the Venn diagrams.      
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Enrichment of oral related bacteria in fecal IgA-positive compared to IgA-negative fraction 

Scheithauer et al. (16) collected fecal samples from individuals with obesity. Amplicon sequencing 

was applied to the IgA positive and IgA negative fractions of the fecal microbiome following anti-

human-IgA FACS. Using standard analysis, we looked for differentially abundant bacteria in the 

IgA positive vs. IgA negative fractions (i.e., comparing IgA positive and negative samples from 

each subject). An FDR threshold of 0.5 was used to obtain a large set of features to enable robust 

dbBact term enrichment, resulting in 70 and 137 sequences significantly higher in the IgA negative 

and positive fractions, respectively.  

dbBact term enrichment (Figure S8a) shows that the IgA negative fraction is enriched in IgA 

negative bacteria from other experiments (e.g., “IgA negative fraction,” “only lower in IgA 

positive fraction”), indicating a conserved signal of IgA binding across studies. In addition, the 

IgA positive fraction is enriched in oral associated terms (e.g., “oral cavity,” “oral wash,” “lower 

in dentition,” “dentition”). For example, annotations of the term “oral cavity” contain 1990 

sequences, out of which 36 are shared with sequences of the IgA positive fraction, and none with 

the IgA negative fraction (Figure S8b). It is reasonable to hypothesize that oral bacteria are more 

likely to be IgA bound, possibly because of binding in the oral cavity. 

 

 
Figure S8: Enrichment of oral related bacteria in fecal IgA-positive compared with 
IgA-negative fraction. a. Bar plot of the top 10 enriched dbBact terms comparing the 
sequences higher in IgA negative (green) and IgA positive (red) fecal samples. b. Venn 
diagram showing the number of sequences associated with the term “oral cavity.” Green and 
red circles are sequences higher in the IgA negative and IgA positive fractions, respectively. 
The blue circle corresponds to all dbBact sequences associated with the term “oral cavity.” 
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Braces lead to enrichment of dentition-related bacteria in saliva  
Willis et al. (17) collected oral rinse samples from age-matched adolescent students with and 

without braces. We tested for sequences significantly higher in participants with/without braces, 

resulting in sets of 146 and 40 sequences, respectively. dbBact term enrichment (Figure S9) shows 

that the no-braces group is enriched in non-dentition terms (e.g., “tongue,” “lower in supragingival 

plaque,” “lower in dentition”), whereas participants with braces show strong enrichment in 

dentition-related terms (e.g., “subgingival dental plaque,” “dentition,” “lower in saliva,” 

“supragingival plaque”). The latter enrichment may be due to bacterial attachment to the braces. 

 
Figure S9: Braces cause enrichment of dentition-related bacteria. Bar plot of the top 10 
enriched dbBact terms comparing the sequences higher in children with and without braces 
(red and green, respectively).  
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Oral rinse bacteria of acute tonsillitis patients are enriched in soft-tissue-associated bacteria, and 
are depleted of dentition-associated bacteria 
 
Yeoh et al. (18) compared the oral cavity bacteria of 43 acute tonsillitis patients with that of 165 

individuals without tonsillitis. Standard analysis comparing the two groups detected 29 sequences 

higher in tonsillitis patients and 59 sequences higher in non-tonsillitis controls, referred to as S-

tonsillitis and S-non, respectively. dbBact enrichment analysis (Figure S10) shows that S-non 

sequences are enriched in dentition-associated terms (e.g., “supragingival plaque,” “dentition,” 

“LOWER in saliva,” “subgingival plaque”), whereas S-tonsillitis sequences are enriched in soft 

tissue-associated terms (e.g., “tongue,” “LOWER IN supragingival plaque,” “LOWER IN 

dentition”). Oral rinse represents sampling of bacteria from multiple oral cavity sources, but 

typically tonsil-associated bacteria are not expected to be sampled in saliva. Therefore, the increase 

in soft-tissue-associated bacteria (and the decrease in dentition-associated bacteria) in tonsillitis 

patients could be due to increased amounts and/or increased shedding of non-tonsil soft-tissue-

associated bacteria. 

 
Figure S10: Oral rinse bacteria of acute tonsillitis patients are enriched in soft-tissue-
associated bacteria and depleted of dentition-associated bacteria. Bar plot of enriched 
dbBact terms comparing the sequences higher in tonsillitis (red) and non-tonsillitis (green).  
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Acute pancreatitis and Crohn’s disease share gut bacteria 

Fecal samples of 135 acute pancreatitis patients (seven days from the onset of symptoms) and of 

35 healthy controls were analyzed (19). Standard analysis detected 39 sequences higher in 

pancreatitis patients and 296 sequences higher in healthy controls, referred to as S-panc and S-

healthy, respectively. dbBact enrichment analysis shows that S-healthy sequences were enriched 

in rural and health-associated terms such as “LOWER in crohn’s disease” and “rural community,” 

whereas enriched terms in S-panc sequences included disease-associated terms such as “diarrhea,” 

“crohn’s disease,” and “LOWER in control,” as well as oral terms such as “saliva” and “dentition” 

(Figure S11a). For example, 36% (14/39) of the S-panc sequences were independently annotated 

as “crohn’s disease”-associated sequences across dbBact, compared to only 14% (41/296) of S-

healthy sequences (Figure S11b). Therefore, dbBact hints at a common gut response to acute 

pancreatitis, diarrhea, and Crohn’s disease, i.e., a phenomenon of general dysbiosis formerly 

suggested by Duvallet et al. (20). Next, we focused on the twelve sequences in S-panc that are not 

associated with either Crohn’s disease or ulcerative colitis across dbBact annotations. The terms 

associated with these thirteen sequences include “fermentation,” “homo sapiens,” “feces,” and 

“skin,” as well as “soil” and sequences tagged as “candidate contaminants” (Figures S11c-d). 

Additional experimental validation is required to determine whether some of these bacteria are 

pancreatitis-specific.  
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Figure S11: Acute pancreatitis and Crohn’s disease share gut bacteria. a.  Bar plot of 
enriched terms in fecal samples of acute pancreatitis vs. healthy controls. b. Venn diagram 
for the term “crohn’s disease.” c-d. The list of 40 sequences higher in pancreatitis patients 
than in healthy controls was pruned to include sequences that are not associated with either 
Crohn’s disease or ulcerative colitis across dbBact annotations, resulting in 13 bacteria 
whose word clouds are shown (see Supplementary File 6 for the sequences). c. The terms 
associated with 10 of these sequences include bacteria related to fermentation 
(Flavobacteriaceae), human feces and skin (Bacteroides), and soil (Bacillaceae). d. Three 
of the 13 sequences were annotated in dbBact as candidate reagent-related contaminants.  
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Chronic fatigue syndrome patients are enriched in bacteria observed in people with little physical 
activity  
Giloteaux et al. (21) collected samples from 48 chronic fatigue syndrome (CFS) patients and 

compared them with those of 39 healthy controls. dbBact standard analysis identified 19 sequences 

higher in CSF patients, and 40 sequences higher in controls, referred to as S-CSF and S-Healthy, 

respectively. Sequences that were more abundant in the CFS group are enriched in terms related 

to low physical activity, while healthy controls are enriched in terms related to rural and less 

industrialized communities (Figure S12a).  

For example, 27% (11/40) of control sequences are associated with the term “physical activity,” 

compared to 0% (0/19) of CSF-related sequences (Figure S12b). Analogously, 68% (13/19) of S-

CFS sequences are shared with “little physical activity” sequences across dbBact, compared to 0% 

of S-Healthy sequences (Figure S12c). Note that these associations are derived from a single 

dbBact experiment, which is based on the American Gut project data (15). Two possible 

interpretations for this observation are: (i) the bacterial difference in CFS patients is due to lower 

physical activity, and hence observed also in American Gut participants with lower physical 

activity; (ii) the microbiome change in CFS is due to the disease rather than to the physical activity 

level, and the associations with American Gut are due to unreported CFS patients in the American 

Gut cohort.  
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Figure S12: Chronic Fatigue Syndrome (CFS) patients are enriched in bacteria 
observed in people with little physical activity. a. Bar plot of enriched dbBact terms 
comparing the sequences higher in healthy controls (green) or CFS patients (red). b. Venn 
diagram showing the number of sequences associated with dbBact annotations containing 
the term “physical activity.” Green and red circles represent the sequences higher in healthy 
controls and CFS patients, respectively, and the blue circle corresponds to all dbBact 
sequences associated with the term “physical activity.” c.  Same as b for the dbBact term 
“little physical activity.” 
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Bank voles inhabiting regions inside and outside the Chernobyl Exclusion Zone: Differences in 
skin microbial communities may be attributed to exposure to humans and farm animals rather than 
to radioactivity 
Lavrinienko et al. collected skin swabs of bank voles, Myodes glareolus, inside the uninhabited 

Chernobyl Exclusion Zone (CEZ), and in the outskirts of Kyiv, Ukraine, i.e., outside the 

contaminated region (22). 110 samples were collected from five sites within the CEZ, having 

different levels of environmental radioactivity, and 46 samples were collected in two locations 

around Kyiv. Standard analysis resulted in 1,203 and 327 sequences, more abundant inside and 

outside the CEZ, respectively. These sequences, referred to as S-CEZ and S-Kyiv, were submitted 

to dbBact as an enrichment query. The bar plot in Figure S13a displays overrepresentation of 

human and farm animal terms in S-Kyiv, as opposed to plant-related bacteria in S-CEZ. To validate 

this finding, we compared S-CEZ sequences with all 9,233 dbBact sequences having an annotation 

of “plant;” 38% (453/1203) of S-CEZ bacteria were independently assigned a “plant” annotation 

across dbBact, as opposed to only 18% (58/327) of S-Kyiv sequences (Figure S13b). It is 

reasonable to hypothesize, therefore, that at least some of the differences in skin microbial 

communities of bank voles inhabiting the two regions are not due to radioactivity but may be 

attributed to differences in exposure to humans and farm animals or their byproducts (which are 

less common in the CEZ).  

 
Figure S13: Bank voles inhabiting regions inside and outside the Chernobyl Exclusion 
Zone: Differences in skin microbial communities may be attributed to exposure to 
humans and farm animals rather than to radioactivity. a. Bar plot of enriched terms. b. 
Venn diagram for “plant” displaying the number of dbBact sequences associated with the 
term in either group. 
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Diurnal oscillations in meerkat feces are driven by soil bacteria  
Risely et al. (23) collected over a thousand fecal samples from South African wild meerkats 

(Suricata suricatta), observing strong diurnal oscillations in microbiome composition. They found 

that morning and afternoon samples were significantly different, eclipsing seasonal and lifetime 

dynamics.  

Using standard analysis, we looked for differentially abundant bacteria between the morning and 

afternoon samples, identifying 568 sequences higher in morning samples, and 4400 sequences 

higher in afternoon samples. dbBact term enrichment indicates enrichment of soil-related terms in 

afternoon samples (e.g., “soil,” “rhizosphere,” “desert,” “triticum aestivum”) (Figure S14a). 

Examining the number of sequences in each group that are associated with the term “soil” shows 

that 29% (1,268/4,384) of afternoon-related sequences are associated with “soil,” compared to 

only 3% (20/567) of morning-related sequences (Figure S14b). To further illustrate this effect, 

Figure S14c displays the fraction sequences associated with the terms “soil” and “feces” in the 

course of the day.  

The fraction of “soil” sequences rises from 15% in the morning to about 30% in the afternoon, 

while the fraction of “feces” displays an opposite trend. Our results show that soil-associated 

bacteria are driving the diurnal oscillations in meerkat feces. 
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Figure S14: Soil/feces origin of diurnal oscillation in wild meerkats. a. Bar plot of 
enriched dbBact terms comparing the sequences higher in morning samples (green) and 
afternoon samples (red). b. Venn diagram showing the number of sequences associated with 
dbBact annotations containing the term “soil.” Green and red circles are the sequences 
higher in morning and afternoon, respectively, and the blue circle corresponds to all dbBact 
sequences associated with the term “soil.” c. Fraction of sequences associated with “soil” 
or “feces” (blue and orange, respectively) in samples collected along the day. We split the 
samples into bins of 2.5 hours and collected the list of sequences that appeared in at least 
10% of the bin’s samples. Sequences were then classified as feces-associated in case their 
annotations contained the term “feces.” An analogous classification was performed for soil-
associated sequences.  If the annotations of a sequence contained both “feces” and “soil,” 
its classification was based on the highest F1  score. 
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Tracking sources of airborne bacteria: Clear days display fecal bacteria from human and farm 

animals, whereas dust storms carry desert and soil associated bacteria  

Gat et al. profiled air samples in an urban region (Rehovot, Israel) during a dust storm and during 

clear days (24). Our re-analysis detected 418 and 182 sequences as significantly enriched during 

dust storm and clear conditions, respectively. These sequences, referred to as S-dust and S-clear, 

were submitted to dbBact as an enrichment query (Figure S15a). Enriched terms in S-dust include 

“‘soil” and “desert,” as opposed to “homo sapiens,” “feces,” and other anthropogenic-like terms 

in S-clear. To validate this finding, we compared S-dust sequences with all 6,310 dbBact sequences 

having an annotation of “desert;” 66% (271/418) of S-dust bacteria were independently assigned 

a “desert” annotation across dbBact, as opposed to only 18% (33/182) of S-clear sequences (Figure 

S15b). An analogous analysis performed over “homo sapiens” and “feces” identified 61% and 

55%, respectively, of S-ambient sequences in other dbBact experiments, compared to only 18% 

and 8%, of S-dust sequences (Figure S15c,d). Thus, in this case, dbBact revealed the sources of 

the samples: fecal bacteria from human and farm animals are airborne during ambient weather 

conditions, whereas dust storms bring over desert and soil associated bacteria. 
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Figure S15: Tracking sources of airborne bacteria: Clear days display fecal bacteria 
from human and farm animals, whereas dust storms carry desert and soil associated 
bacteria. a. Bar plot of enriched terms. b. Venn diagram for “desert” displaying the number 
of dbBact sequences associated with the term (blue circle), and their overlap with sequences 
associated with “desert” in either group (red and green circles). The numbers indicate the 
number of sequences in each part of the Venn diagrams. c. and d. Similar Venn diagrams 
for “feces” and “homo sapiens,” respectively.  
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Microbiome composition along the Bronx River is affected by salinity due to proximity to the 
ocean  
Naro-Maciel et al. (25) collected water samples in two locations, Hunts Point and Soundview Park, 

along the Bronx river in New York (Figure S16a). Using standard analysis, we detected sequences 

differentially enriched in either location, resulting in 30 and 106 sequences higher in Hunts Point 

and Soundview Park, respectively. Terms enriched in Hunts Point are related to freshwater (e.g., 

“fresh water,” “lake,” “river”), while Soundview Park is enriched in ocean water terms (e.g., 

“ocean,” “pacific ocean,” “sea water”) (Figure S16b). These results indicate that although both 

locations harbor a mainly saline water-related microbiome (data not shown), Hunts Point, which 

is farther from the ocean, is enriched in fresh water-related bacteria. 

 
Figure S16: Microbiome composition along the Bronx River is affected by ocean 
proximity. a. Map showing the sampling locations (star) of Hunts Point and Soundview 
Park along the Bronx River, New York. b.  Bar plot of the top 10 enriched dbBact terms 
comparing the sequences higher in Hunts Point (green) and Soundview Park (red). 
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Fecal samples from toilet paper can contain significant amounts of skin bacteria 
Caporaso et al.  followed the oral, skin, and fecal microbiome of an individual using daily samples 

for one year. dbBact term-based PCA (see Methods) shows a separation between oral, fecal, and 

skin samples (Figure S17a) along two principal axes whose interpretation is provided below.  

1st principal axis (horizontal) - feces vs. saliva: the terms with the highest positive coefficients in 

the 1st principal component are “feces,” “LOWER IN crohn’s disease” and “LOWER IN 

ulcerative colitis,” while the terms with the most negative coefficients are “saliva,” “mouth,” 

“LOWER IN supragingival plaque.” Hence, the horizontal axis is the “feces vs. saliva” principal 

axis, where higher values correspond to feces. Indeed, most fecal samples (blue) have high values 

along this axis whereas most saliva samples (red) have low values.  

2nd principal axis (vertical) - skin vs. feces/saliva: The terms with the highest positive coefficients 

in the 2nd principal component are “skin,” “pair of nares” and “nasal cavity,” while the most 

negative coefficients are “homo sapiens,” “adult,” “feces” and “saliva.” Hence the vertical axis is 

the “skin vs. feces/saliva” axis.  

While saliva samples form a tight cluster at the bottom left, fecal samples show a spread along the 

2nd principal axis. To further investigate this behavior, we display the dbBact term-based PCA of 

only fecal samples (Figure S17b). The 1st principal axis in this case (which holds 60% of the 

variance) is a “feces vs. skin/vagina” axis. Some samples are spread along this axis, with a majority 

of samples located towards the “feces” direction of the axis (blue circles), whereas a smaller group 

is located towards the “skin”/”vagina” direction (magenta circles), indicating a possible skin-

derived contamination in this set of samples. To validate this, Figure S17c displays a heatmap of 

the fecal samples sorted according to sampling date, where the top color bar corresponds to blue 

or magenta samples in Figure S17b, and each sequence is “classified” according to its largest F1 

score term out of “feces” and “skin.” As can be seen, the samples originating from the magenta 

samples contain a cluster of skin-associated sequences. This agrees with sporadic contaminations 

of fecal samples with skin-associated bacteria in some of the samples. As the sampling protocol 

involved swabbing of used bathroom tissue, this raises the possibility that skin bacteria from the 

rectum were sometimes sampled from the tissue paper, leading to the appearance of this skin-

related cluster. 
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Figure S17: Fecal samples from toilet paper can contain significant amounts of skin 
bacteria. a. dbBact term-based PCA of all samples from one individual. Frequency weighted 
term precision scores are used to construct the distance matrix (see Methods section for 
details). The three top terms contributing to each axis direction are shown. Variance 
explained is 0.4 and 0.27 for the first and second axes, respectively. b. dbBact term-based 
PCA for only fecal samples colored by their 1st PCA coordinate (blue and magenta for 
projections lower or higher than the mean value, respectively). c. Heatmap showing the 
frequency of each sequence (row) in consecutive daily fecal samples of the same individual 
(columns). Each sequence is classified according to the term with the highest F1  score out 
of the terms “feces” and “skin.” The horizontal color bar denotes samples belonging to the 
blue and magenta groups in (b). 
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Filtering mouse-associated contaminants in human nasopharyngeal samples improves statistical 

power 

Xu et al. analyzed the nasopharyngeal microbiome of six- and twelve-months old infants, aiming 

to study the effect of Streptococcus pneumoniae colonization (27). Examining the word cloud of 

the terms, we observed several seemingly unrelated terms, e.g., “mouse,” “mus musculus” and 

“soil” (Figure S18a). Therefore, we “classified” each bacterium in this study according to its 

highest F1 score term out of “homo sapiens,” “mus musculus,” “soil,” and “other.” The resulting 

heatmap shows a cluster of mouse-associated sequences that appear together in a subset of the 

samples, as well as a small set of soil-associated sequences (Figure S18b). These findings indicate 

a possible contamination, maybe due to sample processing or reagent-borne contaminants. 

Because these bacteria are spread across sample types, they do not introduce a systemic bias in the 

authors’ findings. But such contamination may reduce the power of downstream statistical tests. 

Therefore, we removed all mouse- and soil-associated sequences and reapplied total sum per 

sample (TSS) normalization. Consequently, the difference in Shannon diversity between the six- 

and twelve-months age groups, which was not statistically significant before contamination 

filtering (Mann-Whitney non-parametric test p-value=0.16, Figure S18c), became significant 

(Mann-Whitney non-parametric test p-value=0.049, Figure S18d). 

 

 
Figure S18: Detection and removal of contaminants increases statistical power . a. 
dbBact term word cloud of prevalent sequences (present in >0.3 of samples) of infant 



28 
 

nasopharyngeal samples taken at age six and twelve months. b. Heatmap showing the 
frequency of each sequence (row) in the infant nasopharyngeal samples (columns). Each 
sequence is classified according to the term with the highest F1  score. c-d. Comparison of 
the Shannon diversity between the six- and twelve-months age groups without (left) and 
with (right) filtering sequences associated with “mus musculus” or “soil.” 

  



29 
 

 

Supplementary methods  
 

dbBact - Implementation 
dbBact data are stored in a SQL database using Postgres 9.5.10. A weekly dump of the complete 

dbBact database (excluding users’ private details) is available at https://dbbact.org/download 

 

Database tables 

The basic structure of the database is shown in Figure S19. A full database schema is shown in 

Figure S20, and a detailed list of all dbBact tables and columns is available in Supplementary File1 

(database-tables.xls). General implementation notes are provided below. 

 

Sequences (dbbact.SequencesTable): A sequence is a partial 16S rRNA sequence of at least 100nt 

length. Because different experiments can have different read lengths, the same bacterium may be 

described by multiple sequence entries of different lengths. Similarly, because experiments may 

amplify different regions, the same bacterium may be represented by multiple sequences 

originating from different regions. dbBact assigns a taxonomy to each uploaded sequence based 

on RDP (28) and Greengenes 13.8 (29), using an external script applied daily.  

 

Experiments (dbbact.ExperimentsTable): The table holds a list of the different experiments 

available in dbBact. The experiments describe the source of the dataset (i.e., the SRA/qiita (30) 

accession, the DOI, the title of the paper, etc.). 

 

Terms (dbbact.OntologyTable): dbBact terms are ontology based, resulting in several tree 

structures stored in dbbact.OntologyTreeStructureTable. Users may also add new terms to dbBact, 

if needed.  

 

Annotations (dbbact.AnnotationsTable): The different annotation predicates (Table  S3) are stored 

in dbbact.AnnotationTypesTable. Each annotation is based on a single dataset, but several 

annotations can originate from the same dataset (e.g., an experiment containing sick and healthy 
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subjects can be assigned annotations describing the common sequences in either the sick and 

healthy groups, as well as annotations describing sequences higher in the sick group than in the 

healthy group, and vice versa). Each annotation is associated with the experiment it is derived 

from and with the user who added the annotation. 

Associations between an annotation and its sequences are stored in 

dbBact.SequencesAnnotationTable. Terms in each annotation appear in 

dbbact.AnnotationListTable. 

 

 
Figure S19: Main dbBact entities. Each annotation associates several bacterial sequences 
with a set of ontology terms describing various phenotypes based on an experiment.  
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Figure S20: dbBact database schema. 
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Ontologies 
Table S1 presents ontologies available in dbBact release 2021.05. In addition, new terms, which 

do not appear in either ontology, can be added to the generic dbBact ontology. dbBact stores each 

ontology term as a directed graph, with parent terms defined as terms appearing in the ontology, 

like one of the following: 

‘is_a’/‘derives_from’/‘located_in’/‘part_of’ /‘develops_from’/‘participates_in’. 

Ontology Version 

ENVO (Environment Ontology) (1,2)  2019-03-14 

DOID (Human Disease Ontology) (31)  2019-09-16 

EFO (Experimental Factor Ontology) (32) 3.10.0 

GAZ (Gazetteer) 2013-12-23 

HSAPDV (Human Stages Ontology) 2018-05-20 

PATO (Phenotype and Trait Ontology) 2019-12-03 

TO (Plant Trait Ontology) (33) 2019-05-21 

UBERON (Uber-Anatomy Ontology) (5) 2018-11-25 

NCBI Taxonomy (4) 2019 

Table S1: List of ontologies supported in dbBact release 2021.05. 

Primer pairs currently implemented in dbBact 
Region Forward primer (dbBact sequences start at the end of the primer sequence) 

V1-V2 AGAGTTTGATC[AC]TGG[CT]TCAG 

V3-V4 CCTACGGG[ACGT][CGT]GC[AT][CG]CAG 

V4 GTGCCAGC[AC]GCCGCGGTAA 

Table S2: Primers used for dbBact sequences. Square brackets denote nucleotide 
degeneration (e.g., [AG] denotes A or G at this position). 
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Predicates used in annotations 

Predicate Description Example 

COMMON Present in over half the samples 

of a given type in the experiment 

COMMON in feces, homo 

sapiens, adult, State of Colorado 

DOMINANT Mean frequency >1% in samples 

of a given type in the experiment 

DOMINANT in desert, 

rhizosphere, agave desert, State of 

California 

HIGH/LOW 

(differential 

abundance) 

Significantly different between 

two conditions in the experiment 

HIGH in Crohn’s disease 

compared to control in feces, 

homo sapiens, child, United States 

of America 

CONTAMINANT Suspected as a contaminant in an 

experiment 

CONTAMINANT 

OTHER Additional observations (i.e., 

known pathogen, free text 

descriptions, etc.) 

OTHER: Tropheryma whipplei 

(pathogen, whipple disease, 

whipple's disease) 

OTHER: associated with glucose 

tolerance (mus musculus, caecum, 

feces, c57bl/6j, glucose tolerance) 

Table S3: Available predicates in dbBact, i.e., “relations” between dbBact annotation 
types. 
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