1	A learning experience elicits sex-dependent neurogenomic responses in <i>Bicyclus</i>
2	anynana butterflies
3	
4	Short title: Dynamic sexually dimorphic neurogenomics in a butterfly
5	David A. Ernst* ^{1,2} , Gabrielle A. Agcaoili* ¹ , Abbigail N. Merrill ¹ , Erica L. Westerman ¹
6	¹ Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
7	² Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544
8	
9	*These authors contributed equally
10	
11	Corresponding Author: Erica L. Westerman; <u>ewesterm@uark.edu</u> ; 479-575-5348
12	
13	Author Contributions: DAE- conceptualization, investigation, methodology, data
14	curation, formal analysis, visualization, writing- original draft, review & editing; GAA-
15	conceptualization, investigation, formal analysis, writing-original draft, review & editing;
16	ANM- formal analysis, visualization, writing-original draft, review & editing; ELW-
17	conceptualization, investigation, methodology, resources, visualization, writing-original
18	draft, review & editing
19	

20 Abstract

21 Sexually dimorphic behavior is pervasive across animals, with males and females 22 exhibiting different mate selection, parental care, foraging, dispersal, and territorial 23 strategies. However, the genetic underpinnings of sexually dimorphic behaviors are 24 poorly understood. Here we investigate gene networks and expression patterns associated 25 with sexually dimorphic imprinting-like learning in the butterfly Bicyclus anynana. In 26 this species, both males and females learn visual preferences, but learn preferences for 27 different traits and use different signals as salient, unconditioned cues. To identify genes 28 and gene networks associated with this behavior, we examined gene expression profiles 29 of the brains and eyes of male and female butterflies immediately post training and 30 compared them to the same tissues of naïve individuals. We found more differentially 31 expressed genes and a greater number of significant gene networks in the eye, indicating 32 a role of the peripheral nervous system in visual imprinting-like learning. Females had 33 higher chemoreceptor expression levels than males, supporting the hypothesized sexual dimorphic use of chemical cues during the learning process. In addition, genes that 34 35 influence B. anynana wing patterns (sexual ornaments), such as invected, spalt, and 36 apterous, were also differentially expressed in the brain and eye, suggesting that these 37 genes may influence both sexual ornaments and the preferences for these ornaments. Our 38 results indicate dynamic and sex-specific responses to social scenario in both the 39 peripheral and central nervous systems and highlight the potential role of wing patterning 40 genes in mate preference and learning across the Lepidoptera.

41

42 Key words: mate choice; sexual imprinting; butterfly; transcriptomics; wing patterning

43

44 Introduction

45	Sexually dimorphic behavior is pervasive across animal taxa. Males and females				
46	may exhibit different mate selection strategies (Byrne and Rice, 2006; Kokko and				
47	Johnstone, 2002; Talyn and Dowse, 2004), parental care behavior (Trivers, 1972; Zilkha				
48	et al., 2017), foraging strategies (Ehl et al., 2018; Quillfeldt et al., 2011; Shannon et al.,				
49	2006), dispersal (reviewed in (Greenwood, 1980; Trochet et al., 2016)), and territorial				
50	displays (Reedy et al., 2017; Rosell and Thomsen, 2006). Though pervasive across				
51	species and context, the genetic underpinnings of many types of sexually dimorphic				
52	behavior are poorly understood. This is partially because males and females carry much				
53	of the same genetic material; thus, sex-specific behavior is unlikely to be allele				
54	dependent, except for the rare behaviors that are primarily associated with genes of large				
55	effect on the sex chromosome. And, because behaviors are notoriously complex traits,				
56	even sexually dimorphic behaviors influenced by genes of large effect on the sex				
57	chromosome are likely to also be influenced by autosomal genes of minor effect				
58	(Edwards et al., 2009; Lande, 1980).				
59	Substantial headway has been made in elucidating the hormones and genes that				
60	act as master regulators of sexually dimorphic traits and behaviors in model systems.				
61	Sex-specific steroid hormone production is associated with sexually dimorphic behaviors				
62	such as song production in song birds (Alward et al., 2013; Gurney and Konishi, 1980),				
63	aggression in mammals (reviewed in (Hashikawa et al., 2018)), and spawning in fish				
64	(Pradhan and Olsson, 2015). Similarly, sex-specific alternative splicing of master				

65 regulator genes, such as *doublesex*, is associated with sexually dimorphic morphology

66	and behavior in arthropods (Kunte et al., 2014; Rideout et al., 2007; Rodriguez-Caro et				
67	al., 2021; Wang et al., 2020). However, hormones and genes such as <i>doublesex</i> are often				
68	upstream master regulators, and the presumably sexually dimorphic downstream gene				
69	networks associated with hormone- and <i>doublesex</i> -related behaviors remain largely				
70	unknown, outside of courtship initiation in the fruit fly Drosophila melanogaster (Datta				
71	et al., 2008; Ruta et al., 2010) and song production in the zebra finch Taeniopygia guttata				
72	(Olson et al., 2015; Woodgate et al., 2014) and the canary Serinus canaria (Alward et al.,				
73	2018).				
74	One sexually dimorphic behavior that is pervasive across animals is imprinting-				
75	like mate preference learning. In imprinting-like mate preference learning, sexually				
76	immature, or juvenile, individuals learn preferences for characteristics of adults (often,				
77	but not always parents) of the opposite sex (Immelmann, 1975; ten Cate and Vos, 1999;				
78	Verzijden et al., 2012). This behavior is inherently sexually dimorphic, as females learn				
79	preferences for male traits, and males learn preferences for female traits (Kendrick et al.,				
80	2001; ten Cate, 1985; Verzijden et al., 2008; Witte and Sawka, 2003). The sexual				
81	dimorphism in trait learning can be quite extreme if adults are highly sexually dimorphic				
82	or there are sex-specific signal modalities, such as male-limited pheromones or song.				
83	To better understand the gene networks underlying sexual dimorphism in				
84	imprinting-like learning, we examined sex-specific gene expression patterns in the brains				
85	and eyes of Bicyclus anynana butterflies during an imprinting-like learning event. Both				
86	male and female <i>B. anynana</i> butterflies exhibit imprinting-like learning, but they learn				
87	preferences for different traits. Female B. anynana learn preferences for numbers of				
88	dorsal forewing eyespots and are better at learning preferences for increasing numbers of				

89	spots (Westerman et al., 2012). Conversely, male B. anynana learn preferences for dorsal				
90	hindwing eyespots and are better at learning preferences for loss of spots (Westerman et				
91	al., 2014). In addition to the observed sexual dimorphism in traits learned and				
92	directionality of learning bias, females learn from males who exude a volatile sex				
93	pheromone (Nieberding et al., 2008; Nieberding et al., 2012; Westerman and Monteiro,				
94	2013), while males learn from females who, to our knowledge, do not have a volatile sex				
95	pheromone. Thus, the two sexes are likely using different cues as unconditioned stimuli				
96	to induce imprinting-like learning.				
97	This sexual dimorphism in learning could be associated with sexual dimorphism				
98	in perception, sexual dimorphism in downstream neural processing, or a combination of				
99	these two processes. Previous studies suggest that male <i>B. anynana</i> have larger eyes and				
100	more facets (ommatidia) than female <i>B. anynana</i> , and consequently, they potentially have				
101	greater spatial acuity (Everett et al., 2012; Macias-Muñoz et al., 2015). If the observed				
102	sexual dimorphism in learning is primarily associated with sexual dimorphism in visual				
103	perception, we expect to see differential gene expression in the eyes of female and male				
104	butterflies and in visual processing genes in the brain. Alternatively, the observed sexual				
105	dimorphism in learning could be associated with sex-specific downstream processing, as				
106	is seen in D. melanogaster's response to pheromones (Datta et al., 2008; Ruta et al.,				
107	2010). In this case we expect to find differential expression of genes unrelated to visual				
108	processing in the brains of males and females. We might also find differential expression				
109	of putative "magic genes," genes subject to divergent selection that also pleiotropically				
110	affect reproductive isolation, potentially by being associated with both the production of				

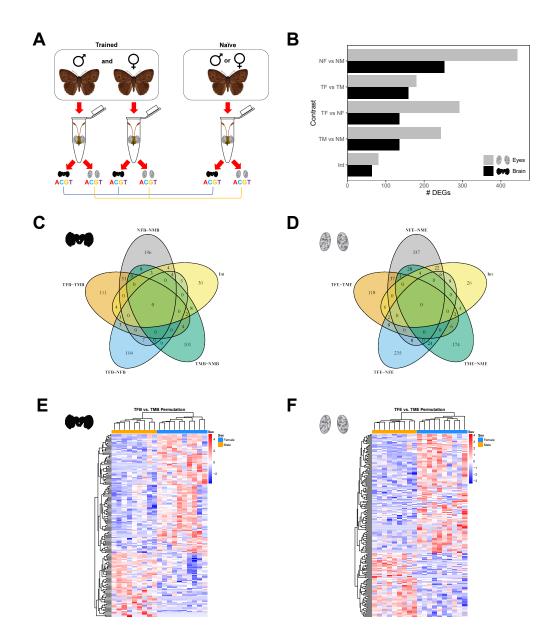
111 and preference for given a trait (Servedio et al., 2011), such as butterfly wing patterning

112	genes. Many wing patterning genes are expressed in the heads of <i>B. anynana</i> (Ernst and		
113	Westerman, 2021), and males and females have different wing patterns, with males		
114	having brighter UV-reflective eyespots than females (Everett et al., 2012; Prudic et al.,		
115	2011) while females have more dorsal hindwing spots than males (Westerman et al.,		
116	2014). Additionally, since males but not females produce pheromones that can act as the		
117	unconditioned stimuli for learning (Nieberding et al., 2008; Westerman and Monteiro,		
118	2013), we may identify female-specific expression of genes in chemosensory processing		
119	pathways.		
120			

121

Results

122 To examine sex-specific gene expression in the brains and eyes of *Bicyclus* 123 anynana butterflies during an imprinting-like learning event, both male and female B. 124 anynana butterflies were either subjected to an imprinting-like learning event with a 125 conspecific of the opposite sex bearing modified wing ornaments or were placed in a cage alone as a control (Fig. 1A). These two treatments mirror the experiences of trained 126 127 and naïve individuals prior to mate choice assays in published butterfly imprinting-like 128 learning studies (Westerman et al., 2012; Westerman and Monteiro, 2013; Westerman et 129 al., 2014). Butterflies were observed during these training/control periods, and the 130 corresponding behavioral data were analyzed to confirm that sex-specific expression 131 patterns were not the result of sexually dimorphic activity levels (S1 Table & S2 Table). 132 We then sequenced the eye and brain transcriptomes of these animals, N=10 per 133 treatment per sex, which generated a total of nearly three billion high-quality 50 base pair 134 (bp) single end (SE) reads (S3 Table). Approximately 1.6 million reads (0.05% of raw


reads) were removed during adapter trimming, with 2.7 billion of the remaining reads
(90% of trimmed reads) mapping to the *B. anynana* reference genome (Nowell et al.,
2017). Across all brain libraries, 16,785 genes (74% of annotated genes in the genome)
had at least 10 mapped reads, while this was the case for 16,612 genes (73%) for eye
libraries. For each tissue, these gene sets were used as input for differential expression
analyses.

During data quality assessment, gene expression clustering analysis revealed that one sample (TMB_E2, a trained male brain sample) was likely mislabeled, as it clustered with eye samples (S1 Fig.). Because the two tissue types exhibited distinct clustering patterns and tissue type accounted for approximately 85% of the variance, this sample was discarded and not included in downstream analyses.

146 For all differential gene expression comparisons, we used DESeq2 to perform 147 both a standard differential expression analysis as well as a permutation-test-based 148 analysis, a method that eliminates the assumption of gene independence and provides a more accurate representation of the data structure of gene expression datasets (Bloch et 149 150 al., 2018; Ghalambor et al., 2015; Slonim, 2002). Nearly all genes that were determined 151 to be differentially expressed in the standard DESeq2 analyses (Tables S4-S15) were also 152 identified as differentially expressed when employing permutation test analyses (Tables 153 S4-S15). Moreover, because the permutation test analyses reduce potential over-154 correction by multiple testing correction methods, a larger number of differentially 155 expressed genes (DEGs) was found for all comparisons. Therefore, all downstream 156 analyses were conducted with the results of the permutation-based differential expression 157 tests. While all DEG sets obtained from these analyses were tested for gene ontology

- 158 (GO) term enrichment, GO term enrichment results are only reported for DEG sets with
- 159 significantly enriched GO terms.

160

- 161
- 162
- 163

164 Figure 1: Experimental design and broadscale sexually dimorphic gene expression. A)

165 Protocol for butterfly training and sampling. Newly emerged males/females were either solo or

- 166 paired with a two-day-old, zero-spot female/four-spot male. Heads of each focal animal were
- 167 collected, the brain and eyes dissected, and mRNA sequenced for expression analysis. B)
- 168 Numbers of differentially expressed genes for each comparison for each tissue. C) Brain Venn

169 diagrams showing overlap patterns for differentially expressed genes. D) Eye Venn diagrams 170 showing overlap patterns for differentially expressed genes. E) Brain gene expression heatmaps 171 of differentially expressed genes from trained females vs. trained males. Each row indicates a 172 single gene, and each column indicates an individual sample. Counts were first normalized by 173 variance stabilizing transformation, and gene-wise Z-scores were calculated for plotting. Genes 174 and samples are clustered by expression, with warmer colors denoting increased expression 175 relative to the mean for a given gene, while cooler colors denote decreased expression relative to 176 the mean. F) Eye gene expression heatmaps of differentially expressed genes from trained 177 females vs. trained males. NFB=naïve female brain, NMB=naïve male brain, TFB=trained female 178 brain, TMB=trained male brain, NFE=naïve female eye, NME=naïve male eye, TFE=trained 179 female eye, TME=trained male eye, Int=interaction. 180 181 182 Trained male and female brains have distinct expression patterns 183 Contrasting naïve female and male brains revealed a baseline of 253 genes that were differentially expressed (Fig. 1B,C; S4 Table). Conversely, 158 genes were found to 184 185 be differentially expressed between trained female and male brains (Fig. 1B,C,E; S5 186 Table). Of these gene sets, 127 genes were unique to the training contrast (Fig. 1C), 187 several of which are linked to various neural processes, including neurodevelopment, 188 neural signaling, eye development, and phototransduction (Fig. 2; S16 Table). 189 Additionally, four genes with putative chemosensory functions were differentially 190 expressed, all of which were upregulated in females relative to males (chemosensory 191 protein 6, BANY.1.2.g12995; ejaculatory bulb-specific protein 3-like, BANY.1.2.g12992; 192 ejaculatory bulb-specific protein 3-like, BANY.1.2.g12993; and odorant receptor Or2-like, 193 BANY.1.2.g25738) (Ernst and Westerman, 2021). Finally, a gene encoding vitellogenin-194 like (BANY.1.2.g11921), a protein known to influence the social behavior of numerous 195 insect species (Morandin et al., 2019; Nelson et al., 2007; Roy-Zokan et al., 2015), was

196 also upregulated in females.

207 Figure 2: Neural processing, hormone signaling, and vision genes are differentially 208 expressed in multiple contrasts. The size of each dot indicates the effect size ($\log_2 FC$), while 209 the color indicates the gene regulation relative to the first sample type listed for the contrast (e.g., 210 for the TB vs. NB contrast, red indicates upregulation in trained brains, and blue indicates 211 downregulation in trained brains). Gray lines connecting the dots denote that the gene was 212 differentially expressed across multiple contrasts. NFB=naïve female brain, NMB=naïve male 213 brain, TFB=trained female brain, TMB=trained male brain, NFE=naïve female eye, NME=naïve 214 male eye, TFE=trained female eye, TME=trained male eye, TB=trained brain, TE=trained eye, 215 NB=naïve brain, NE=naïve eye. 216 217 GOExpress analyses, which find gene ontology (GO) terms that best classify

- samples from two separate groups, identified 171 GO terms that were significantly
- associated with differences between naïve female and male brains (p < 0.05; S17 Table),
- while 166 GO terms differentiated trained female and male brains (p < 0.05; S18 Table).
- 221 To eliminate baseline differences, we removed significant terms that were also found in
- the naïve results, resulting in 51 GO terms linked to differences specific to training (S18
- 223 Table). Of these terms, several are linked to neural processing, including calmodulin
- binding (p = 0.004), vesicle docking involved in exocytosis (p = 0.042), gap junction (p = 0.042)
- 225 0.046), and neuropeptide signaling pathway (p = 0.008).
- 226

227 Trained male and female eyes have distinct expression patterns

228 Differential expression analysis for naïve female and male eyes found a baseline

of 443 genes that were differentially expressed between naïve female and male eyes (Fig.

- 230 1B,D; S6 Table). By contrast, 180 DEGs were found for the trained female vs. male
- comparison (Fig. 1B,D,F; S7 Table). In total, 142 genes were unique to the trained eye
- 232 contrast (Fig. 1D), including genes encoding proteins linked to neurodevelopment, neural
- signaling, hormone signaling, and vision (Fig. 2; S16 Table). Moreover, three genes
- 234 putatively linked to circadian rhythms showed differential expression, including circadian

235	clock-controlled protein-like (BANY.1.2.g04378), which was upregulated in males, and
236	circadian clock-controlled protein-like (BANY.1.2.g05915) and protein takeout-like
237	(BANY.1.2.g05914), which were both upregulated in females. The takeout gene (to) is
238	also associated with male courtship behavior in D. melanogaster (Dauwalder et al.,
239	2002).
240	GOExpress analyses revealed 165 and 138 GO terms that were significantly
241	linked to expression differences between the sexes for naïve and trained eyes,
242	respectively (p $<$ 0.05; S19, S20 Tables). Removal of terms that overlapped both the
243	naïve and trained sets resulted in 37 GO terms linked to sex-specific differences in
244	response to training (S20 Table). A number of these terms were associated with neural
245	processes and sensory transduction, including chloride transmembrane transport (p =
246	0.007), chloride channel activity ($p = 0.01$), vesicle docking involved in exocytosis ($p =$
247	0.017), and G protein-coupled peptide receptor activity ($p = 0.025$).
248	
249	Training has sex-dependent effects on expression patterns in brains and eyes
250	Sex-specific pairwise comparisons between trained and naïve tissues revealed
251	many DEGs in all sex-dependent comparisons.
252	Starting with the female comparisons, a total of 135 genes were found to be
253	differentially expressed between trained and naïve female brains (Fig. 1B,C; S8 Table),
254	many of which have potential roles in neural development, neural signaling, hormone
255	metabolism, and eye-related processes (Fig. 2; S16 Table).
256	For the trained vs. naïve female eyes comparison, differential expression analysis
257	identified 291 DEGs (Fig. 1B,D; S9 Table). GO enrichment analysis found 12 GO terms

258	enriched in this gene set, with the top being mitochondrion (FDR=4.04E-04),				
259	intracellular organelle (FDR=4.04E-04), and organelle (FDR=5.23E-04) (S21 Table).				
260	There were several genes of interest in the trained vs. naïve female eye contrast,				
261	including genes linked to neural development and signaling, hormone signaling, eye				
262	development, and vision (Fig. 2; S16 Table).				
263	Similar to the female brains comparison, the trained vs. naïve male brains				
264	comparison found 135 DEGs (Fig. 1B,C; S10 Table), including several genes associated				
265	with neurodevelopment, neural signaling, and eye development (Fig. 2; S16 Table).				
266	Differential expression analysis revealed 243 DEGs for the trained vs. naïve male				
267	eyes comparison (Fig. 1B,D; S11 Table). Again, numerous genes involved with neural				
268	development, neural signaling, hormone signaling, vision, and eye development were				
269	found to be differentially expressed between trained and naïve male eyes (Fig. 2; S16				
270	Table).				
271	Moreover, 63 genes in the brain and 80 genes in the eye were found to have a				
272	significant sex:condition interaction, indicating that training differentially affected their				

expression in females versus males (Fig. 1B,C,D; S12, S13 Tables). In both tissues, these

sex:condition interactions were found for genes involved with neural development and

signaling, and interactions were also found for genes linked to eye development in the

eye comparison (S16 Table). In addition, a gene putatively involved with chemoreception

277 (olfactory receptor 21, *BANY*.1.2.g12009; (Ernst and Westerman, 2021)) and a gene

associated with regulating circadian rhythms (protein LSM12 homolog,

273

BANY.1.2.g13734; (Lee et al., 2017)) showed significant sex:condition interactions in the
brain and eyes, respectively.

281

282 Training has a sex-independent effect on gene expression in brains

283 Testing for the overall effect of training while controlling for difference	s in	
---	------	--

- expression due to sex revealed 283 genes that were differentially expressed in trained vs.
- 285 naïve brains (Fig. S2A; S14 Table). Many of the genes in this gene set have functions
- related to neurodevelopment, neural signaling, hormone signaling, and eye development
- 287 (Fig. 2; S16 Table). Moreover, LSM12 homolog (*BANY.1.2.g13734*), which showed
- significant sex:condition interactions in the eyes, was also differentially expressed and
- 289 was upregulated in naïve brains.
- 290
- 291 Training has a sex-independent effect on gene expression in eyes

In total, 658 DEGs were identified for the trained vs. naïve eyes comparison when

293 controlling for sex (Fig. S2B; S15 Table). GO enrichment analysis revealed 30 enriched

GO terms, with the top terms being mitochondrion (FDR=1.92E-06), protein-containing

complex (FDR=3.03E-06), and intracellular organelle (FDR=5.17E-06) (S22 Table).

296 Several of these DEGs have putative functions in neurodevelopment, neural

signaling, hormone signaling, eye development, and vision (Fig. 2; S16 Table). In

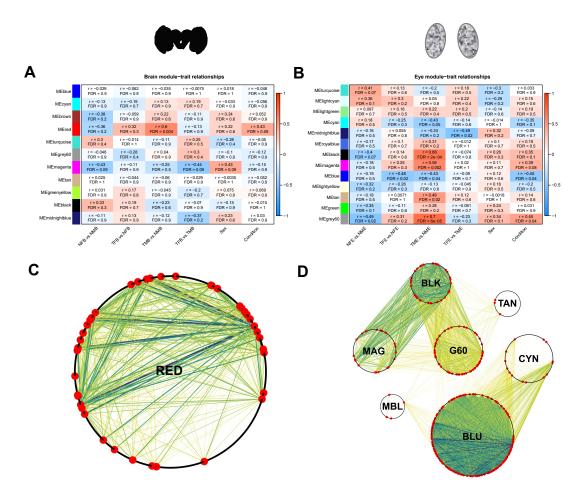
addition, a number of genes linked to learning and memory were differentially expressed

between trained and naïve eyes. Several of these genes were upregulated in trained eyes,

300 including nipped-B protein (*BANY.1.2.g01712*), Ca(2+)/calmodulin-responsive adenylate

301 cyclase (BANY.1.2.g01825), two transcription factor Adf-1-like (BANY.1.2.g03430 and

302 BANY.1.2.g08959), adenylate cyclase type 8 (BANY.1.2.g03804), neurobeachin-like

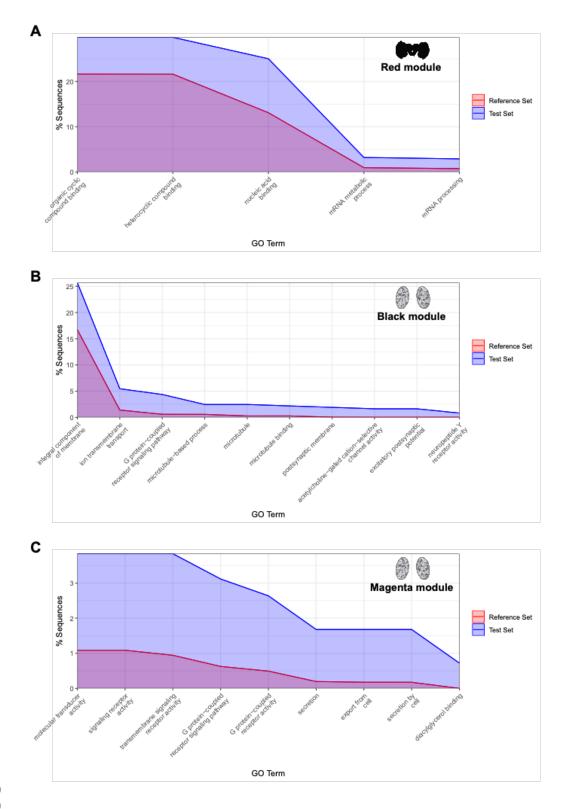

303 (BANY.1.2.g12252 and BANY.1.2.g12258), and ataxin-2 homolog isoform X1

304	(BANY.1.2.g13668). Conversely, cyclic AMP response element-binding protein B
305	isoform X3 (BANY.1.2.g01685), one transcription factor Adf-1-like (BANY.1.2.g24076),
306	probable RNA helicase armi isoform X1 (BANY.1.2.g17424), and fatty acid-binding
307	protein-like (BANY.1.2.g17524) were upregulated in naïve eyes. Finally, two genes
308	involved with male courtship in Drosophila (calcium/calmodulin-dependent 3',5'-cyclic
309	nucleotide phosphodiesterase 1 isoform X1, BANY.1.2.g07806; and cytoplasmic dynein 2
310	heavy chain 1, BANY.1.2.g19627) were upregulated in B. anynana eyes in the training
311	condition.
312	

313 One gene network is associated with training condition in the brain

314 To investigate gene networks that are associated with an imprinting-like learning experience, we performed tissue-specific weighted gene co-expression network analyses 315 316 (WGCNA). Brain co-expression network analysis identified 17 modules, which was 317 reduced to 11 modules after merging highly correlated modules (Fig. 3A; S3A Fig.). Of 318 these modules, only one (the red module) was significantly correlated with a trait, 319 specifically the trained male brain vs. naïve male brain contrast (i.e., the red module was 320 significantly correlated with training condition for male brains; r=0.6; FDR=0.004) (Fig. 321 3C; S3B Fig.). This module consisted of 655 genes (S23 Table), with the top hub gene 322 (i.e., the most highly connected gene) identified as NADH dehydrogenase [ubiquinone] 1 323 beta subcomplex subunit 7-like (BANY.1.2.g00209). GO enrichment analyses found five 324 significantly enriched GO terms in the red module, which were linked to nucleic acid and 325 cyclic compound binding and mRNA metabolism (S24 Table; Fig. 4A). 326

320



328 329

330

331 Figure 3: Gene network modules in brain and eyes are significantly associated with

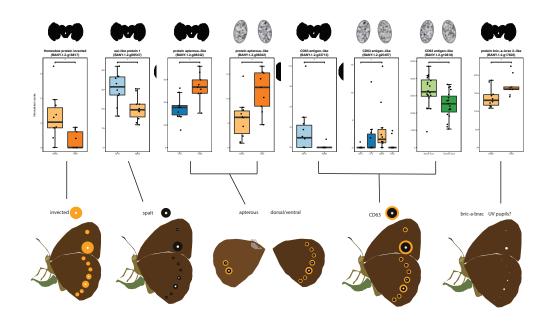
332 training. Significant modules from co-expression analyses. A) Brain module-trait association 333 heatmap. Rows indicate module eigengenes (ME), and columns indicate the pairwise binary 334 indicators representing the various comparisons ("traits") of interest. The top numbers in each cell 335 denote the correlation value (r), with false discovery rate (FDR) values below. Cells are colored 336 by the strength of the association, with r ranging from -1 to 1. B) Eye module-trait association 337 heatmap. C) WGCNA brain analysis red module Cytoscape plot. Each black dot around the 338 perimeter of the circle indicates a node (gene), with larger red dots indicating differentially 339 expressed genes from the contrast for which the module is significantly associated (i.e., trained vs. naïve male brain). Each line indicates an edge (connection) for differentially expressed genes 340 341 within the module, with thinner yellow lines indicating weaker connections and thicker blue lines 342 indicating stronger connections. D) WGCNA eye analysis, Cytoscape plot of all significant 343 modules. Only edges for differentially expressed genes within and between modules are shown. 344 BLK=black module, BLU=blue module, CYN=cyan module, G60=grey60 module, 345 MAG=magenta module, MBL=midnightblue module, RED=red module, and TAN=tan module. 346 347

351 Figure 4: Gene ontology enrichment plots for significant brain and eye modules of interest.

A) Significantly enriched GO terms in the brain red module. For each GO term, the percentage of sequences annotated with that term within the Test Set (i.e., all red module genes) is plotted along

with the percentage of sequences annotated with that term within the Reference Set (i.e., all genes
used in the co-expression analysis). B) Significantly enriched GO terms in the eye black module.
Due to the large number of enriched GO terms in this module, only the most specific terms
identified by Blast2GO were plotted for clarity. C) Significantly enriched GO terms in the eye
magenta module.

360	Many genes within the red module are linked to various neural and sensory			
361	processes. Of particular interest, 41 DEGs identified in the trained vs. naïve male brain			
362	contrast were also present in the red module network (S23 Table). Many of these genes			
363	encode proteins linked to neural development, such as protein smoothened			
364	(BANY.1.2.g01253), protein abrupt-like isoform X5 (BANY.1.2.g17381), histone			
365	acetyltransferase Tip60 isoform X6 (BANY.1.2.g17798), Down syndrome cell adhesion			
366	molecule-like protein (BANY.1.2.g23099), Down syndrome cell adhesion molecule-like			
367	protein CG42256 (BANY.1.2.g23100), and helicase domino (BANY.1.2.g24509).			
368	Additionally, others encode proteins involved with neural signaling, such as piezo-type			
369	mechanosensitive ion channel component isoform X1 (BANY.1.2.g11981) and V-type			
370	proton ATPase subunit a (BANY.1.2.g18298) and eye development, such as trr,			
371	(BANY.1.2.g04855) and crb (BANY.1.2.g13186) (S16 Table). In addition to its role in eye			
372	development, trr is also involved with short term courtship memory in D. melanogaster			
373	(Sedkov et al., 2003).			
374				


- 375 Several gene networks are associated with training condition in the eyes
- 376 Eye co-expression network analysis identified 20 modules, which was reduced to
- 377 13 modules after merging highly correlated modules (Fig. 3B, S4A Fig.). Of these
- 378 modules, seven (the black, blue, cyan, grey60, magenta, midnight blue, and tan modules)

379	were significantly correlated with at least one contrast, and DEGs for the correlated				
380	contrast(s) were present in all seven of these modules (Fig. 3D, S4 Fig.; Tables S25-S37).				
381	Two of these modules (the black and magenta modules), both of which were				
382	significantly correlated with the trained male vs. naïve male eyes contrast, were of				
383	particular interest based on their GO enrichment profiles. The black module (r=0.66;				
384	FDR=2E-04) consisted of 366 genes centered around the top hub gene gamma-				
385	aminobutyric acid type B receptor subunit 2 (BANY.1.2.g00039), a component of the				
386	receptor for the neurotransmitter GABA (S27 Table; Fig. 3D, S4C Fig.). Moreover, 73				
387	GO terms were enriched in this module, most of which are associated with neural				
388	processes (e.g., neurotransmitter receptor activity involved in regulation of postsynaptic				
389	membrane potential, chemical synaptic transmission, and excitatory postsynaptic				
390	potential) (S28 Table; Fig. 4B). A total of 32 DEGs from the trained male vs. naïve male				
391	eyes contrast were found in the black module, nearly half of which are associated with				
392	neural and eye development and neural signaling. Differentially expressed development				
393	genes include protein unc-80 homolog isoform X10 (BANY.1.2.g05052), microtubule-				
394	associated protein futsch-like (BANY.1.2.g08693), delta and Notch-like epidermal growth				
395	factor-related receptor (BANY.1.2.g09881), protein abrupt-like isoform X1				
396	(BANY.1.2.g17383), and rst (BANY.1.2.g15359) (S16 Table; S27 Table). Moreover,				
397	differentially expressed neural signaling genes include sodium channel protein para				
398	(BANY.1.2.g00003), potassium voltage-gated channel subfamily KQT member 1 isoform				
399	X2 (BANY.1.2.g01557), adenylate cyclase type 8 (BANY.1.2.g03804), neuroligin-4, Y-				
400	linked isoform X1 (BANY.1.2.g06479), acetylcholine receptor subunit alpha-like 2				
401	(BANY.1.2.g06669), potassium channel subfamily T member 2 isoform X10				

402	(BANY.1.2.g09307).	calcium/calmodulin-de	pendent protein	kinase kinase 1
	(21111111111111111111111111111111111111		peneren present	

- 403 (*BANY.1.2.g12425*), sodium leak channel non-selective protein (*BANY.1.2.g19402*),
- 404 gamma-aminobutyric acid type B receptor subunit 2 isoform X3 (*BANY.1.2.g21830*), and
- dopamine receptor 2-like, (*BANY.1.2.g24500*) (S16 Table; S27 Table).
- 406 The magenta module (r=0.59; FDR=0.002) consisted of 417 genes with a hub
- 407 gene of disintegrin and metalloproteinase domain-containing protein 33-like (S29 Table;
- 408 S4D Fig.) and showed an enriched GO term profile similar to that of the black module
- 409 (S30 Table; Fig 4C). Specifically, the terms transmembrane signaling receptor activity, G
- 410 protein-coupled receptor signaling pathway, G protein-coupled receptor activity,
- 411 signaling receptor activity, and molecular transducer activity were found to be enriched
- 412 in both the black and magenta modules. In total, 21 DEGs from the trained male vs. naïve
- 413 male eyes contrast were found in the magenta module, a third of which have putative
- 414 functions in neurodevelopment (protein smoothened isoform X2, *BANY.1.2.g01254*;
- 415 putative defective proboscis extension response, *BANY.1.2.g12002*; rho GTPase-
- 416 activating protein 100F, *BANY.1.2.g12733*; and dynamin-like 120 kDa protein,
- 417 mitochondrial, *BANY.1.2.g23042*), neural signaling (regulating synaptic membrane
- 418 exocytosis protein 1 isoform X1, *BANY.1.2.g10739*; and dopamine receptor 1,
- 419 *BANY.1.2.g24271*), and eye development (adenylyl cyclase-associated protein 1 isoform
- 420 X1, *BANY*.1.2.g04305) (S16, S29 Tables).
- 421
- 422 Wing patterning genes are differentially expressed in both the brain and eyes
- 423 To investigate whether putative "magic genes," or genes that influence both a 424 given trait as well as preference for that trait, are expressed in the brain and eyes of *B*.

425	anynana, we also explored the expression patterns of known butterfly wing patterning
426	genes. A total of 53 wing patterning genes were found to be expressed in the brain, while
427	50 were expressed in the eyes (S38 Table). Although none of these wing patterning genes
428	exhibited sex-specific expression (meaning only expressed in one sex) in either tissue, 46
429	were in common across the two tissues. Seven genes showed brain-specific expression,
430	including homologs for cortex (BANY.1.2.g04256), engrailed (BANY.1.2.g14935), CD63-
431	antigen (BANY.1.2.g12556), aristaless (BANY.1.2.g21346 and BANY.1.2.g24453), and
432	BarH-1 (BANY.1.2.g19326 and BANY.1.2.g22154), while four exhibited eye-specific
433	expression, including homologs for hedgehog (BANY.1.2.g04016) and CD63-antigen
434	(BANY.1.2.g20540, BANY.1.2.g25497, and BANY.1.2.g25594).
435	Several wing patterning genes were identified as differentially expressed for
436	various contrasts, including between and within sexes, in both tissue types. For the naïve
437	female vs. male brain contrast, sal-like protein 1 (BANY.1.2.g09547) and CD63 antigen-
438	like (BANY.1.2.g23713) are both upregulated in females (Fig. 5, Table S4). In the trained
439	female vs. male brain contrast protein apterous-like isoform X2 (BANY.1.2.g08342) is
440	upregulated in males (Fig. 5, S5 Table). In the naïve female vs. male eye contrast CD63
441	antigen-like (BANY.1.2.g25497) is upregulated in females (Fig. 5, S6 Table). Moreover,
442	in the eye interaction contrast CD63 antigen-like (BANY.1.2.g25497) is upregulated in
443	trained females and naive males (Fig. 5, S13 Table), and in the trained vs. naïve eye
444	controlling for sex contrast CD63 antigen-like isoform X2 (BANY.1.2.g10818) is
445	upregulated in naïve eyes (Fig. 5, S15 Table).
446	

450	Figure 5: Genes that influence <i>B. anynana</i> wing patterns are also differentially expressed in
451	the brain and eye during training. Top panel contains box plots of differentially expressed
452	genes in different contrasts. Bottom panel indicates the elements of butterfly wing pattern (gold
453	ring, eye spot center, black ring, whole eye spot, or dorsal/ventral identity) influenced by the
454	corresponding differentially expressed gene. For top panel, light hue = naïve, dark hue = trained,
455	orange = male, blue = female, green = condition (general trained/naïve).
456	

409	
460	When comparing within sexes, three known wing patterning genes were
461	differentially expressed in male brains or eyes. In the trained vs. naïve male brain
462	contrast, protein bric-a-brac 2-like isoform X4 (BANY.1.2.g17823) is upregulated in
463	trained males while Homeobox protein invected (BANY.1.2.g18817) is upregulated in
464	naïve males (Fig. 5, S10 Table). By contrast, in the trained vs. naïve male eye comparison
465	protein apterous-like isoform X2 (BANY.1.2.g08342) is upregulated in trained males (Fig.
466	5, S11 Table). No known wing pattern genes were differentially expressed in female-
467	specific contrasts.

Discussion

470	Here we identified a number of genes that were differentially expressed in the
471	brains and eyes of females and males during an imprinting-like learning event, as well as
472	several associated gene networks. We found DEGs in both tissue types, suggesting that
473	imprinting-like learning, and sexually dimorphic aspects of this learning process, are
474	associated with transcriptional change in both the peripheral sensory system and the
475	brain. A number of chemosensory genes were upregulated in females relative to males,
476	supporting the hypothesized female-specific use of pheromones in the mate preference
477	learning process (Westerman and Monteiro, 2013; Westerman et al., 2014). Furthermore,
478	a suite of butterfly wing patterning genes, which have long been hypothesized to also
479	influence mate preference and potentially serve as "magic genes," were also differentially
480	expressed in the eyes and brains of <i>B. anynana</i> butterflies during training events, further
481	supporting their hypothesized role in mate preference and speciation.
482	One of the more interesting aspects of sexually dimorphic imprinting-like learning
483	in <i>B. anynana</i> is the presence/absence of sex pheromones in males versus females.
484	Previous studies have shown that the male sex pheromone is an indicator of age
485	(Nieberding et al., 2012), is species-specific (Bacquet et al., 2015; Nieberding et al.,
486	2008), is equally weighted with visual signals during female mate selection (Costanzo
487	and Monteiro, 2007), and influences the valence females learn to associate with visual
488	signals during imprinting-like learning (Westerman and Monteiro, 2013). Thus, male
489	chemical cues are known to be important for female mate choice in this system. On the
490	other hand, a sex pheromone has not been discovered in female <i>B. anynana</i> , and it

491 remains unclear what unconditioned stimulus males use to assign positive valence to 492 number of hindwing spots. The results of this study appear to support this sex-specific 493 use of olfactory signals during the learning process. The most clear-cut finding 494 supporting this hypothesis is that chemosensory genes are upregulated in females relative 495 to males during the training period. A second result that may be related to the differential 496 use of olfactory cues during the learning (and mate choice) process is that we found a 497 larger set of gene networks associated with the training condition in the brains and eyes 498 of males than in females. This could be a result of imprinting-like learning being more 499 consistent in males than females (Westerman et al., 2012; Westerman et al., 2014). 500 However, it could also be a side effect of females relying more heavily on olfactory 501 signals than males, as we did not include antennae in our analyses and consequently may 502 have missed learning-associated gene networks that reside in female antennae. Female 503 Heliconius melpomene and Heliconius cvdno butterflies are sensitive to male pheromones 504 (Byers et al., 2020) and exhibit different antennae expression profiles before and after copulation as well as sex-specific expression profiles (van Schooten et al., 2020). It 505 506 would be interesting to see if *B. anynana* females exhibit training-specific, sexually 507 dimorphic antennae expression profiles that correspond to their sex-specific emphasis on 508 olfactory signals during the preference learning and mate selection process. 509 While the gene expression patterns of the antennae are unknown for these 510 animals, we did find training-specific, sexually dimorphic gene expression patterns in B. 511 anynana eyes. Because female and male B. anynana butterflies learn preferences for 512 different visual signals and exhibit visual learning biases in different directions (gains and 513 losses, respectively (Westerman et al., 2012; Westerman et al., 2014)), one of our

514	hypotheses was that we would see sexually dimorphic expression of vision-related genes
515	during the learning process, especially in the eyes. Although we did not observe
516	differential expression of any opsins, we did find sex-dependent expression patterns of a
517	number of vision-related genes, including an ommochrome-binding protein, retinol
518	dehydrogenase 11, rhodopsin kinase 1 (Gprk1), and arrestin homolog isoform X2.
519	Ommochrome pigments act as filtering pigments in the eyes of butterflies, limiting the
520	wavelengths of light a butterfly can see (Arikawa and Stavenga, 2014; Stavenga, 2002).
521	These filtering pigments are sexually dimorphic in a number of different species,
522	including H. cydno, H. melpomene, Heliconius pachinus, and Colias erate, and are
523	hypothesized to influence mate choice in these systems (Buerkle et al., 2022; Ogawa et
524	al., 2013). It remains unclear whether filtering pigment type or distribution is sexually
525	dimorphic in <i>B. anynana</i> , or whether filtering pigment production or distribution in the
526	eye is plastic in response to circadian rhythms, social scenario, or age. However, our
527	findings of socially-dependent expression patterns of ommochrome-binding protein and a
528	number of other vision-related genes suggest that vision is highly dynamic, not just in the
529	context of light environment (Obara et al., 2008; Sakai et al., 2018; Wright et al., 2020)
530	and circadian rhythms (Li et al., 2008; Li et al., 2005), but also in response to social
531	environment.
532	In addition to finding vision-associated differentially expressed genes, a number

of learning and memory genes were differentially expressed specifically in the eyes,including dopamine receptors. Moreover, the most highly connected gene for a gene

535

536 component of the receptor for the neurotransmitter GABA, gamma-aminobutyric acid

network associated with training condition in male eyes (the black module) encodes a

537 type B receptor subunit 2. This network also contained a variety of genes involved with 538 neural processing that were differentially expressed between trained and naïve male eyes, 539 including additional neurotransmitter receptors (acetylcholine receptor subunit alpha-like 540 2, gamma-aminobutyric acid type B receptor subunit 2 isoform X3, and dopamine 541 receptor 2-like). While there is some debate over whether eyes should be considered part 542 of the peripheral nervous system or the central nervous system in vertebrates (London et 543 al., 2013), there has been less attention given to the potentially broad cognitive role of the 544 retina in comparison to the optic lobe in insects (as illustrated by (Perry et al., 2017)). 545 Our findings not only indicate that transcription in the butterfly eye changes in response 546 to social scenario (presence/absence of a sexually mature conspecific), but that this 547 change includes the transcription of genes associated with higher processing, indicating 548 that neurogenomic processes associated with cognition might not be limited to the optic 549 lobe and central brain in insects, but might also occur in the retina. 550

551 Broad role of sensory receptors and neurotransmitters in sexually dimorphic behavior

552 Although neurogenomic assessment of sexually dimorphic behavior is relatively 553 rare to date, similarities between our results and those in other animal systems suggest 554 common mechanisms may underlie sexually dimorphic behavior across animal taxa. 555 Sensory receptors seem to be especially important and connected to downstream sexually 556 dimorphic gene networks. For example, odorant receptor expression influences female 557 receptivity and male ability to differentiate between the sexes in D. melanogaster (Datta 558 et al., 2008), male and female zebra finches exhibit different brain gene expression 559 profiles when listening to the same song (Gobes et al., 2009), a number of butterfly

560	species exhibit sexually dimorphic opsin expression patterns (Buerkle et al., 2022;
561	Everett et al., 2012), and B. anynana exhibit sexually dimorphic chemical receptor
562	expression during a mate preference learning event (this study). Sexually dimorphic
563	catecholamine-associated expression (receptors or binding proteins, for example) also
564	appears to be important for driving sexually dimorphic social behaviors across taxa, as
565	illustrated by sex-dependent distribution of tyrosine hydroxylase in male and female
566	plainfin midshipman fish brains (Goebrecht et al., 2014) and sexually dimorphic
567	association of dopamine receptors and binding proteins with social interactions in B .
568	anynana butterflies (this study). Pathways integrating sensory receptors and
569	catecholamine neurotransmitters may be particularly fruitful for future study of sexually
570	dimorphic behaviors across animal taxa.
571	
670	\mathbf{H}

572 Wing patterning genes may be "magic" genes

While butterfly wing patterning genes have long been hypothesized to play a role 573 in shaping both wing pattern and preference for wing pattern (Kronforst and Papa, 2015; 574 575 Kronforst et al., 2006; Merrill et al., 2015; Merrill et al., 2019; Naisbit et al., 2001), 576 evidence supporting this hypothesis has been rare. Here we show that a number of wing 577 patterning genes are differentially expressed in the brain and eyes during a sexual 578 (training) encounter. Not only are these genes associated with wing patterning in a range 579 of butterfly species, but a subset of these genes are specifically associated with aspects of 580 eyespot production in *B. anynana* (Brunetti et al., 2001; Ozsu and Monteiro, 2017; Prakash and Monteiro, 2018) and/or with UV reflectance (Ficarrotta et al., 2022). 581 582 Because male and female B. anynana learn preferences for eyespot number, and

583	specifically the UV-reflective center of the eyespots (Westerman et al., 2012; Westerman
584	et al., 2014), these genes that both influence eyespots or UV scale production and are
585	differentially expressed in the brain or eyes during an intersexual social encounter
586	(invected, spalt, apterous, CD63 antigen-like, and bric-a-brac) are particularly promising
587	candidate magic genes in the <i>B. anynana</i> system. The brain and eye expression profiles of
588	genes known to influence wing patterning traits important for mate selection in other
589	butterfly systems, such as BarH-1 (Woronik et al., 2019), artistaless (Westerman et al.,
590	2018), cortex (Nadeau et al., 2016), and doublesex (Kunte et al., 2014), support the
591	hypothesis that these genes may be expressed in the brains or eyes of the butterfly species
592	using these genes to control wing pattern elements under sexual selection. Future studies
593	should explore the pervasiveness of genes influencing both wing pattern and mate
594	preference across the Lepidoptera.

595

596 Conclusions

597 Here we show that sexually dimorphic, imprinting-like learning is associated with 598 sexually dimorphic gene expression in the brains and eyes of *B. anynana* butterflies 599 during a training event. Differentially expressed genes include sensory receptors and 600 genes associated with neurotransmitters in both tissue types, indicating dynamic and sex-601 specific responses to social scenario in both the peripheral and central nervous systems. 602 Sexually dimorphic expression of chemosensory genes supports the role of pheromones 603 in female but not male imprinting-like learning, while the learning-related expression of 604 numerous wing patterning genes highlight the potential for these genes to influence both 605 wing pattern and mate preference. Future research should explore the gene and neural

networks bridging sexually dimorphic sensory receptors to sexually dimorphic behavior,
and determine the functional role of wing patterning genes in mate preference in other
lepidopterans.

609

610 Materials and Methods

611 *Study Species and Husbandry*

612 *Bicyclus anynana* is a sub-tropical African butterfly that has been reared in the lab

613 since 1988. The colony at the University of Arkansas was established in spring 2017

614 from ~1,000 eggs derived from a population in Singapore. Butterflies at the University of

615 Arkansas were reared in a climate-controlled greenhouse at ~27°C, 70% humidity, and

under a 13:11h light:dark cycle to mimic wet season conditions and ensure development

of the wet season phenotype (Brakefield and Reistma, 1991). Butterflies bred in the

618 laboratory have levels of genetic diversity comparable to those in natural populations, as

619 suggested by similar single-nucleotide polymorphism frequencies found in laboratory and

620 natural populations (Beldade et al., 2006; de Jong et al., 2013).

All adult butterflies used in this study hatched from eggs laid on young corn

622 plants (*Zea mays*) in breeding colony cages containing ~200-500 male and female *B*.

623 *anynana* butterflies. Plants with eggs were moved to cages containing additional corn

624 plants for larval consumption, and larvae were fed *ad libitum* until pupation. Upon

pupation, pupae were placed in mesh cages ($31.8 \text{ cm} \times 31.8 \text{ cm} \times 31.8 \text{ cm}$; Bioquip,

626 Compton, CA, USA) until emergence. Upon emergence, butterflies were transferred to

627 sex- and age-specific cages to isolate the sexes from one another. All butterflies were

628 provided with fresh banana every other day.

629

630 Behavioral assays and sample collection

631	All behavioral assays and sample collection took place between November 2018 -
632	July 2019. Within one hour of dawn, assays were conducted by placing butterflies in a
633	novel mesh cage (39.9 cm \times 39.9 cm \times 59.9 cm; Bioquip, Compton, CA, USA) for a
634	three-hour observation period (Fig. 1A). Training behavioral assays consisted of either:
635	(1) a newly emerged male paired with a two-day-old, zero-spot female, for which black
636	paint (Enamel Glossy Black 1147, Testors, Rockford, IL, USA) was applied directly on
637	top of her two dorsal hindwing eyespot pupils to block all UV reflectance (for details see
638	(Westerman et al., 2014)) or (2) a newly emerged female paired with a two-day-old, four-
639	spot male, for which UV-reflective paint (White, FishVision, Fargo, ND, USA) was
640	applied between the two natural dorsal forewing eyespot pupils to create two extra
641	eyespot pupils (for details see (Westerman et al., 2012)). The UV-reflective paint closely
642	replicated the reflectance spectra of natural <i>B. anynana</i> eyespot pupils (Westerman et al.,
643	2012). All eyespot manipulations were performed one day prior to behavioral watches.
644	Control assays consisted of either one newly emerged male or one newly emerged female
645	placed in a novel mesh cage (39.9 cm \times 39.9 cm \times 59.9 cm; Bioquip, Compton, CA,
646	USA) in isolation. For any given training assay, a control assay using the same sex as the
647	training assay focal animal was conducted concurrently (e.g., for a newly emerged male +
648	zero-spot female training assay, a control assay consisting of a newly emerged male in
649	isolation was run in tandem). All behaviors exhibited by the observed butterflies were
650	recorded using SpectatorGo! (BIOBSERVE; Bonn, Germany). Observed behaviors

651	included: flutter, fly, walk, rest (wings closed), bask (wings open greater than 45°),
652	antenna wiggle, court (as defined in (Nieberding et al., 2008), and copulate.
653	After the three-hour behavioral watch, each butterfly's head was removed with
654	RNase-free scissors, transferred into a RNase-free microcentrifuge tube (Biotix; San
655	Diego, CA, USA), and immediately flash frozen in liquid nitrogen. Frozen samples were
656	then stored in a -80°C freezer until dissection and RNA extraction. We collected the
657	heads of ten individuals per group (trained male, trained female, naïve male, and naïve
658	female) to account for variation in response to training, as previous studies suggest that
659	${\sim}75\%$ of females and ${\sim}80\%$ of males learn to prefer the trainer phenotype after a three-
660	hour training exposure (Westerman et al., 2012; Westerman et al., 2014).
661	
662	RNA extraction and cDNA library preparation
663	To prevent RNA degradation during processing, heads were immersed in 500 μ L
664	of pre-chilled RNAlater-ICE (Ambion; Austin, TX, USA) and incubated at -20°C for
665	approximately 18 hours prior to dissection. Thawed heads were then dissected under a
666	dissecting microscope (Zeiss Stemi 508; Jena, Germany) while submerged in RNAlater-
667	ICE to isolate eye and brain tissue. The eyes and brain for each sample were
668	mechanically disrupted separately in lysis buffer using RNase-free, disposable pestles,
669	and small (<200 nucleotides) and large (>200 nucleotides) RNA were extracted
670	separately for each tissue with the NucleoSpin® miRNA kit (Macherey-Nagel; Düren,
671	Germany). RNA quality and quantity were determined using a NanoDrop 2000 (Thermo
672	Fisher Scientific; Waltham, MA, USA), Qubit 2.0 (Invitrogen; Waltham, Massachusetts,
673	USA), and TapeStation 2200 (Agilent; Santa Clara, CA, USA).

674	Libraries were prepared for the eyes (left and right eye together; n=40) and brain
675	(n=40) for each individual using the KAPA mRNA HyperPrep Kit and Unique Dual-
676	Indexed Adapters (KAPA Biosystems; Wilmington, MA, USA), with 100 ng of large
677	RNA as input. After running all cDNA libraries on a TapeStation 2200 (Agilent; Santa
678	Clara, CA, USA) and confirming that they were of high quality, libraries were shipped to
679	the University of Chicago Genomics Facility on dry ice. All libraries were subjected to an
680	additional quality assessment using a 5300 Fragment Analyzer (Agilent; Santa Clara, CA,
681	USA), followed by 50 bp SE sequencing across eight lanes of a HiSeq 4000 (Illumina;
682	San Diego, CA, USA).
683	
684	Read trimming, alignment, and quantification
685	We concatenated the raw fastq files from all eight lanes for each library and
686	performed an initial quality assessment using FastQC v0.11.5
687	(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). One sample (TME_A3, a
688	trained eye sample) failed to sequence properly, so was discarded from downstream
689	analysis. Trimmomatic v0.38 was used to remove any Illumina sequencing adapters from
690	the raw reads (Bolger et al., 2014). We then aligned the adapter-trimmed reads for each
691	sample to the most recent <i>B. anynana</i> reference genome (v1.2; (Nowell et al., 2017))
692	using STAR v2.7.1a (Dobin et al., 2013) and quantified all reads using the "quantMode
693	GeneCounts" option, which is equivalent to counts produced by the htseq-count script
694	from HTSeq (Anders et al., 2015).
695	
696	Differential gene expression analyses

The read counts generated by STAR were used as input for the DESeq2 v1.24.0
package (Love et al., 2014) for R (Version 3.6.2, R Foundation for Statistical Computing,
Vienna, Austria) to conduct differential expression analyses. Specifically, we used the
generalized linear model design:
$y \sim sex + condition + sex:condition$
where expression (y) is a function of <i>sex</i> (male or female), <i>condition</i> (trained or naïve),
and their interaction (sex:condition). With this design, we made five different tissue-
specific comparisons: (1) naïve females vs. naïve males; (2) trained females vs. trained
males; (3) trained females vs. naïve females; (4) trained males vs. naïve males; and (5)
the interaction of sex and condition. To investigate the overall effect of training while
controlling for differences in expression specific to sex, we performed an additional
tissue-specific analysis that utilized the design:
$y \sim sex + condition$
Only genes with ≥ 10 total mapped reads were used for the differential expression
analyses. Gene expression comparisons were conveyed as the binary log of the
expression fold change (log ₂ FC), with log ₂ FC shrinkage performed using the ashr method
(Stephens, 2017) to obtain more accurate estimates of effect size. Genes were considered
differentially expressed if they had a false discovery rate (FDR; (Benjamini and
Hochberg, 1995)) < 0.05.
In addition to these standard differential expression analyses, we also performed
permutation tests similar to those utilized in Ghalambor et al. (2015) and Bloch et al.
(2018). Because this method does not assume gene independence (an unlikely assumption
given the nature and abundance of gene co-expression networks), the risk of over-

720	correction is reduced compared to other multiple testing correction methods, resulting in
721	a more accurate representation of the expression data structure (Slonim, 2002). For each
722	tissue, we randomly assigned both the sex and treatment for each sample to create 1,000
723	permuted sample phenotype tables. For each of the reassigned sample sets, we ran the
724	DESeq2 analysis exactly as we had for the original analysis, ultimately resulting in a null
725	distribution of 1,000 p-values for every gene. For any given gene, if the p-value from the
726	original analysis was less than the 1% tail of the permuted null distribution, it was
727	considered differentially expressed. Annotations for all differentially expressed genes,
728	including the identified putative vision- and chemsensory-related gene annotations, were
729	extracted from the B. anynana reference genome functional annotation from (Ernst and
730	Westerman, 2021).
731	
732	Weighted gene co-expression network analyses
733	We performed separate weighted gene co-expression network analyses

 733
 We performed separate weighted gene co-expression network analyses

734 (WGCNA) for the brain and eyes using the WGCNA v1.70-3 R package (Langfelder and

Horvath, 2008) following the WGCNA package developers' recommendations. We first

preprocessed the expression data by removing all genes with <10 reads in >90% of the

samples to minimize noise from lowly-expressed genes, and a variance-stabilizing

transformation was performed on the remaining data using the

739 "varianceStabilizingTransformation" function in DESeq2. Signed co-expression

740 networks for each tissue were constructed by building an adjacency matrix with type =

741 "signed," topological overlap matrix (TOM) with TOMType = "signed," and the soft-

thresholding power set to 12 for brains and 14 for eyes. We then identified modules of

743	co-expressed genes using the "cutreeDynamic" function with the following parameters:
744	deepSplit = 2, pamRespectsDendro = FALSE, and minClusterSize = 30. After initial
745	module identification, we merged modules of high co-expression similarity by first
746	calculating and clustering their eigengenes (the first principal component of a module
747	representing its gene expression profile (Langfelder and Horvath, 2008)) and employing
748	the "mergeCloseModules" function with the "cutHeight" set to 0.25.
749	To identify modules that were significantly associated with any of the sample
750	traits, we used the "binarizeCategoricalVariable" function to create pairwise binary
751	indicators ("traits") for our contrasts of interest (i.e., naïve male vs. naïve female, trained
752	female vs. naïve female, trained male vs. naïve male, and trained female vs. naïve
753	female) and correlated eigengenes with these sample traits. We then adjusted all p-values
754	using the FDR method (Benjamini and Hochberg, 1995), and any module-trait
755	correlations with an FDR <0.05 were considered significant. For all modules that showed
756	significant associations with sample traits, hub genes (genes with the highest
757	connectivity) were identified using the "chooseTopHubInEachModule" function.
758	For visualization and further analysis, both networks were then exported to
759	Cytoscape v3.8.2 (Shannon et al., 2003) using the "exportNetworkToCytoscape" function
760	with "threshold" set to 0.02. The Cytoscape "Network Analyzer" tool was used to obtain
761	further statistics regarding the connectivity of genes within the network. Specifically, we
762	calculated three statistics for each gene: (1) degree (the number of other genes connected
763	to a given gene, with a larger number indicating a more highly connected gene), (2)
764	neighborhood connectivity (the average connectivity of all of a gene's neighboring
765	genes), and (3) clustering coefficient (how connected a gene is to its neighboring genes

relative to how connected it could be, with "0" representing completely unconnected and"1" representing maximum connectivity).

768

769 Gene Ontology Analyses

770	To facilitate the characterization of DEG sets and significant modules, GO
771	enrichment analyses were performed using the Fisher's Exact Test function in Blast2GO
772	v5.2.5 (Conesa et al., 2005) with the GO annotations extracted from Ernst and
773	Westerman (2021). In each case, all genes in the expression set (for the WGCNA
774	analysis, all genes that were used in the co-expression analysis) for the respective tissue
775	were used as the reference set, and an FDR threshold of <0.05 was set to identify
776	significantly enriched GO terms. All DEG sets and significant modules were tested for
777	GO enrichment.
778	To further explore the differences between male and female tissues for each
779	condition, we used GOExpress v1.20.0 (Rue-Albrecht et al., 2016) to identify GO terms
780	that best classify the samples from two groups (e.g., female trained brains and male
781	trained brains) based on their gene expression profiles. For these analyses, reads were
782	first normalized to counts per million (CPM) with edgeR v3.28.1 (Robinson et al., 2010),
783	and only genes with ≥ 1 CPM for at least 10 samples (the maximum number of replicates
784	per group) were retained for the input expression matrix. The random forest was set to
785	10,000 trees, and GO terms that were associated with at least five genes and with a p-
786	value <0.05 after 1,000 permutations were considered significant.
787	

788 *Identification of wing patterning genes*

789	In addition to examining differential expression, co-expression networks, and GO
790	signatures, we also investigated the expression patterns of known wing patterning genes,
791	as these genes have been hypothesized to act as "magic genes" and to have the capacity
792	to influence both preference as well as the preferred trait (Servedio, 2009; Smadja and
793	Butlin, 2011; Westerman, 2019). Specifically, we used the functional annotations and
794	butterfly wing patterning gene list from Ernst and Westerman (2021) to identify wing
795	patterning genes expressed in eye and brain tissue and to determine if they were
796	differentially expressed between the sexes. The genes included numerous B. anynana
797	wing patterning genes (Beldade and Peralta, 2017; Bhardwaj et al., 2018; Connahs et al.,
798	2019; Matsuoka and Monteiro, 2018; Monteiro et al., 2013; Monteiro et al., 2006;
799	Monteiro and Prudic, 2010; Ozsu et al., 2017; Prakash and Monteiro, 2018, 2020; Saenko
800	et al., 2011), as well as genes characterized in other butterfly species (Ficarrotta et al.,
801	2022; Martin and Reed, 2010; Nadeau et al., 2016; Reed et al., 2011; Westerman et al.,
802	2018; Woronik et al., 2019).
803	
804	Analysis of Behavior
805	We first conducted a Shapiro-Wilk test to assess normality of the behavioral data.
806	We then performed a Kruskal-Wallis test to examine the effect of sex on behavior,
807	followed by a second Kruskal-Wallis test subset by treatment (naïve, trained, trainer) to
808	test for the effect of sex on behavior in each treatment. We conducted a principal
809	components analysis (PCA) on behavior to search for hidden correlations and create new

810 composite variables (S39 Table). We then performed a Kruskal-Wallis test to test for the

811	effect of sex on PC1, PC2, and PC3. We calculated a Bonferroni correction to account for
812	multiple testing, producing an adjusted significance value of $p = 0.0025$.
813	
814	Ethical Note
815	All B. anynana butterflies were maintained in laboratory conditions as specified
816	by U.S. Department of Agriculture APHIS permit P526P-17-00343. Butterflies not used
817	for this experiment were maintained with ample food and water until natural death.
818	
819	Acknowledgements
820	We thank Matthew Murphy, Grace Hirzel, Deonna Robertson, and Sushant Potdar
821	for assistance with animal husbandry. This research was supported by NSF IOS grant
822	#1937201 to ELW, an Arkansas Biosciences Institute (the major research component of
823	the Arkansas Tobacco Settlement Proceeds Act of 2000) grant to ELW, a University of
824	Arkansas Honors College grant to GAA & ELW, the Arkansas High Performance
825	Computing Center, which is funded through multiple NSF grants and the Arkansas
826	Economic Development Commission, and the University of Arkansas.
827	
828	Competing Interests: The authors declare no competing interests.
829	
830	Data Availability: All raw sequence data associated with this study are accessible
831	through the NCBI Sequence Read Archive (SRA) database under XXX. Behavioral data
832	are available at Dryad Database XXXX. All other data presented in this study are
833	available within this manuscript and its Supplemental Information.

834 Literature Cited

836 837 838	Alward BA, Balthazart J, Ball GF, 2013. Differential effects of global versus local testosterone on singing behavior and its underlying neural substrate. Proceedings of the National Academy of Sciences 110:19573-19578. doi:
839	10.1073/pnas.1311371110.
840	Alward BA, Cornil CA, Baltharzart J, Ball GF, 2018. The regulation of birdsong by
841	testosterone: Multiple time-scales and multiple sites of action Horones and
842	Behavior 104:32-40. doi: 10.1016/j.yhbeh.2018.04.010.
843	Anders S, Pyl PT, Huber W, 2015. HTSeq— a Python framework to work with high-
844	throughput sequencing data Bioinformatics 31:166-169. doi:
845	10.1093/bioinformatics/btu.
846	Arikawa K, Stavenga DG, 2014. Insect photopigments: Photoreceptor spectral
847	sensitivities and visual adaptations In: Hunt DMea, editor. Evolution of Visual
848	and Non-visual Pigments New York: Springer Science + Business p. 137-162.
849	Bacquet PMB, Brattstrom O, Wang H-L, Allen C, Lofstedt C, Brakefield PM, Nieberding
850	CM, 2015. Selection on male sex pheromone composition contributes to butterfly
851	reproductive isolation Proceedings of the Royal Society of London B
852	282:20142734. doi: 10.1098/rspb.2014.2734.
853	Beldade P, Peralta CM, 2017. Developmental and evolutionary mechanisms shaping
854	butterfly eyespots Current Opinion in Insect Science 19:22-29. doi:
855	10.1016/j.cois.2016.10.006.
856	Beldade P, Rudd S, Gruber JD, Long AD, 2006. A wing expressed sequence tag
857	resournce for Bicyclus anynana butterflies, an evo-devo model. BMC Genomics
858	7. doi: 10.1186/1471-2164-7-130.
859	Benjamini Y, Hochberg Y, 1995. Controlling the false discovery rate: a practical and
860	powerful approach to multiple testing Journal of the Royal Statistical Society
861	Series B (Methodological) 57:289-300.
862	Bhardwaj S, Prudic KL, Bear A, Dasgupta M, Wasik BR, Tong X, Cheong WF, Wenk
863	MR, Monteiro A, 2018. Sex Differences in 20-Hydroxyecdysone hormone levels
864	control sexual dimorphism in Bicyclus anynana wing patterns Molecular Biology
865	and Evolution 35:465-472. doi: 10.1093/molbev/msx301.
866	Bloch NI, Corral-López A, Buechel SD, Kotrschal A, Kolm N, Mank JE, 2018. Early
867	neurogenomic response associated with variation in guppy female mate
868	preference Nature Ecology and Evolution 2:1772-1781. doi: 10.10378/s41559-
869	018-0682-4.
870	Bolger AM, Lohse M, Usadel B, 2014. Trimmomatic:a flexible trimmer for Illumina
871	sequence data Bioinformatics 30:2114-2120. doi: 10.1093/bioinformatics/btu170.
872	Brakefield PM, Reistma N, 1991. Phenotypic plasticity, seasonal climate and the
873	population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecological
874	Entomology 16:291-303.
875	Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, Carroll SB, 2001. The
876	generation and diversification of butterfly eyespot color patterns Current Biology
877	11:1578-1585. doi: 10.1016/S0960-9822(01)00502-4.

878	Buerkle N, Westerman EL, Kronforst MR, Palmer SE, 2022. Sex-limited diversification
879	of the eye in <i>Heliconius</i> butterflies bioRxiv. doi: 10.1101/2022.04.25.489414.
880	Byers KJRP, Barragh K, Musgrove J, Almeida DA, Garza SF, Warren IA, Rastas PM,
881	Kucka M, Chan YF, Merrill RM, Schultz S, McMillan WO, Jiggins CD, 2020. A
882	major locus controls a biologically active pheromone component in Heliconius
883	melpomene. Evolution 74:349-364. doi: 10.1111/evo.13922.
884	Byrne PG, Rice WR, 2006. Evidence for adaptive male mate choice in the fruit fly
885	Drosophila melanogaster Proceedings of the Royal Society of London B
886	273:917-922. doi: 10.1098/rspb.2005.3372.
887	Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M, 2005. Blast2GO: a
888	universal tool for annotation, visualization and analysis in functional genomics
889	research Bioinformatics 21:3674-3676. doi: 10.1093/bioinformatics/bti610.
890	Connahs H, Tlili S, van Creij J, Loo TYJ, Banerjee TD, Saunders TE, Monteiro A, 2019.
891	Activation of butterfly eyespots by Distal-less is consistent with a reaction-
892	diffusion process. Development 146:146. doi: 10.1242/dev.169367.
893	Costanzo K, Monteiro A, 2007. The use of chemical and visual cues in female choice in
894	the butterfly Bicyclus anynana. Proceedings of the Royal Society of London B
895	274:845-851.
896	Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K,
897	Dickson BJ, Axel R, 2008. The Drosophila pheromone cVA activates a sexually
898	dimorphic neural circuit. Nature 452. doi: 10.1038/nature06808.
899	Dauwalder B, Tsujimoto S, Moss J, Mattox W, 2002. The Drosophila takeout gene is
900	regulated by the somatic sex-determination pathway and affects male courtship.
901	Genes & Development 16:2879-2892. doi: 10.1101/gad.1010302.
902	de Jong MA, Collins SL, Beldade P, Brakefield PM, Zwaan BJ, 2013. Footprints of
903	selection in wild populations of <i>Bicyclus anynana</i> along a latitudinal cline.
904	Molecular Ecology 22:341-353. doi: 10.1111/mec.12114.
905	Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,
906	Gingeras TR, 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics
907	29:15-21. doi: 10.1093/bioinformatics/bts635.
908	Edwards AC, Zwarts L, Yamamoto A, Callaerts P, Mackay TFC, 2009. Mutations in
909	many genes affect aggressive behavior in Drosophila melanogaster. BMC
910	Biology 7:29. doi: 10.1186/1741-7007-7-29.
911	Ehl S, Hostert K, Korsch J, Gros P, Schmitt T, 2018. Sexual dimorphism in the alpine
912	butterflies Boloria pales and Boloria napaea: differences in movement and
913	foraging behavior (Lepidoptera: Nymphalidae). Insect Science 25:1089-1101. doi:
914	10.1111/1744-7917.12494.
915	Ernst DA, Westerman EL, 2021. Stage- and sex-specific transcriptome analyses reveal
916	distinctive sensory gene expression patterns in a butterfly BMC Genomics. doi:
917	10.1186/s12864-021-07819-4.
918	Everett A, Tong X, Briscoe AD, Monteiro A, 2012. Phenotypic plasticity in opsin
919	expression in a butterfly compound eye complements sex role reversal. BMC
920	Evolutionary Biology 12:232.
921	Ficarrotta V, Hanly JJ, Loh LS, Francescutti CM, Ren A, Tunström K, Wheat CW, Porter
922	AH, Counterman BA, Martin A, 2022. A genetic switch for male UV-iridescence

923	in an incipient species pair of sulpher butterflies Proceedings of the National
924	Academy of Sciences 119:e2109255118. doi: 10.1073/pnas.2109255118.
925	Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA, 2015. Non-
926	adaptive plasticity potentiates rapid adaptive evolution of gene expression in
927	nature Nature 372:372-375. doi: 10.1038/nature15256.
928	Gobes SMH, ter Haar SM, Vignal C, Vergne AL, Mathevon N, Bolhuis JJ, 2009.
929	Differential responsiveness in brain and behavior to sexually dimorphic long calls
930	in male and female zebra finches. The Journal of Comparative Neurology
931	516:312-320. doi: 10.1002/cne.22113.
932	Goebrecht GKE, Kowtoniuk RA, Kelly BG, Kittelberger JM, 2014. Sexually-dimorphic
933	expression of tyrosine hydroxylase immunoreactivity in the brain of a vocal
934	teleost fish (<i>Porichthys notatus</i>). Journal of Chemical Neuroanatomy 56:13-34.
935	doi: 10.1016/j.jchemneu.2014.01.001.
936	Greenwood PJ, 1980. Mating systems, philopatry and dispersal in birds and mammals.
937	Animal Behaviour 28:1140-1162.
938	Gurney ME, Konishi M, 1980. Hormone-induced sexual differentiation of brain and
939	behavior in zebra finches Science 208:1380-1383.
940	Hashikawa K, Hashikawa Y, Lischinsky J, Lin D, 2018. The neural mechanisms of
941	sexually dimorphic agressive behaviors Trends in Genetics 34:755-776. doi:
942	10.1016/j.tig.2018.07.001.
943	Immelmann K, 1975. Ecological significance of imprinting and early learning. Annual
944	Review of Ecology and Systematics 6:15-37.
945	Kendrick KM, Haupt MA, Hinton MR, Broad KD, Skinner JD, 2001. Sex differences in
946	the influence of mothers on the sociosexual preferences of their offspring.
947	Hormones and Behavior 40:322-338. doi: 10.1006/hbeh.2001.1672.
948	Kokko H, Johnstone RA, 2002. Why is mutual mate choice not the norm? Operational
949	sex ratios, sex roles and the evolution of sexually dimorphic and monomorphic
950	signalling. Philosophical transactions of the Royal Society B 357:319-330. doi:
951	10.1098/rstb.2001.0926.
952	Kronforst MR, Papa R, 2015. The functional basis of wing patterning in Heliconius
953	butterflies: The molecules behind mimicry. Genetics 200:1-19. doi:
954	10.1534/genetics.114.172387.
955	Kronforst MR, Young LG, Kapan DD, McNeely C, O'Neill RJ, Gilbert LE, 2006.
956	Linkage of butterfly mate preference and wing color preference cue at the
957	genomic location of wingless. Proceedings of the National Academy of Sciences
958	of the United States of America 103:6575-6580.
959	Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP,
960	Kronforst MR, 2014. <i>doublesex</i> is a mimicry supergene. Nature 507:229-234. doi:
961	10.1038/nature13112.
962	Lande R, 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic
963	characters. Evolution 34:292-305.
964	Langfelder P, Horvath S, 2008. WGCNA: an R package for weighted correlation network
965	analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-2105-9-559.
966	Lee J, Yoo E, Lee H, Park K, Hur J, Lim C, 2017. LSM12 and ME31B/DDX6 define
967	distinct modes of posttranscriptional regulation by ATAXIN-2 protein complex in
	r

968 969	<i>Drosophila</i> circadian pacemaker neurons Molecular Cell 66:129-140. doi: 10.1016/j.molcel.2017.03.004.
970	Li P, Chaurasia SS, Gao Y, Carr AL, Iuvone PM, Li L, 2008. CLOCK is required for
971	maintaining the circadian rhythms of opsin mRNA expression in photoreceptor
972	cells The Journal of Biological Chemistry 283:31673-31678. doi:
973	10.1074/jbc.M803875200.
974	Li P, Temple S, Gao Y, Haimberger TJ, Hawryshyn CW, Li L, 2005. Circadian rhythms
975	of behavioral cone sensitivity and long wavelength opsin mRNA expression: a
976	correlation study in zebrafish Journal of Experimental Biology 208:497-504. doi:
977	10.1242/jeb.01424.
978	London A, Benhar I, Schwartz M, 2013. The retina as a window to the brain — from eye
979	research to CNS disorders. Nature Reviews Neurology 9:44-53. doi:
980	10.1038/nrneurol.2012.227.
981	Love MI, Huber W, Anders S, 2014. Moderated estimation of fold change and dispersion
982	for RNA-seq data with DESeq2. Genome Biology 15:550. doi: 10.1186/s13059-
983	014-0550-8.
984	Macias-Muñoz A, Smith G, Monteiro A, Briscoe AD, 2015. Transcriptome-wide
985	differentail expression in <i>Bicyclus anynana</i> butterflies: Female vision-related
986	genes are more plastic. Molecular Biology and Evolution. doi:
987	10.1093/molbev/msv197.
988	Martin A, Reed RD, 2010. <i>wingless</i> and <i>artistaless2</i> define a developmental ground plan
989	for moth and butterfly wing pattern evolution Molecular Biology and Evolution
990 991	27:2864-2878. doi: 10.1093/molbev/msq173. Matsuoka Y, Monteiro A, 2018. Melanin pathway genes regulate color and morphology
991 992	of butterfly wing scales Cell Reports 24:56-65. doi: 10.1016/j.celrep.2018.05.092.
993	Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio DD, Hanly JJ, Huber B, Jiggins
994	CD, Joron M, Kozak KM, Llaurens V, Marin SH, Montgomery SH, Morris J,
995	Nadeau NJ, Pinharanda AL, Rosser N, Thompson MJ, Vanjari S, Wallbank RWR,
996	Yu Q, 2015. The diversification of <i>Heliconius</i> butterflies: what have we learned in
997	150 years? Journal of Evolutionary Biology 28:1417-1438. doi:
998	10.1111/jeb.12672.
999	Merrill RM, Rastas P, Martin SH, Melo MC, Barker S, Davey JW, McMillan WO,
1000	Jiggins CD, 2019. Genetic dissection of assortative mating behavior. PLoS
1001	Biology 17:e2005902. doi: 10.1371/journal.pbio.2005902.
1002	Monteiro A, Chen B, Ramos DM, Oliver JC, Tong X, Guo M, Wang W, Fazzino L,
1003	Kamal F, 2013. Distal-Less regulates eyespot patterns and melanization in
1004	Bicyclus butterflies. Journal of Experimental Zoology Part B 320B:321-331.
1005	Monteiro A, Glaser G, Stockslager S, Glansdorp N, Ramos D, 2006. Comparative
1006	insights into questions of lepidopteran wing pattern homology. BMC
1007	Developmental Biology 6:52. doi: 10.1186/1471-213X-6-52.
1008	Monteiro A, Prudic KL, 2010. Multiple approaches to study color pattern evolution in
1009	butterflies Trends in Evolutionary Biology 2. doi: 10.4081/eb.2010.e2.
1010	Morandin C, Hietala A, Helanterä H, 2019. Vitellogenin and vitellogenin-like gene
1011	expression patterns in relation to caste and task in the ant <i>Formica fusca</i> . Insectes
1012	Sociaux 66:519-531. doi: 10.1007/s00040-019-00725-9.

1013	Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RWR, Wu
1014	GC, Maroja L, Ferguson L, Hanly JJ, Hines H, Salazar C, Merrill RM, Dowling
1015	AJ, ffrench-Constant RH, Llaurens V, Joron M, McMillan WO, Jiggins CD, 2016.
1016	The gene cortex controls mimicry and crypsis in butterflies and moths Nature
1017	534:106-110. doi: 10.1038/nature17961.
1018	Naisbit RE, Jiggins CD, Mallet J, 2001. Disruptive sexual selection against hybrids
1019	contributes to speciation between Heliconius cydno and Heliconius melpomene.
1020	Proceedings of the Royal Society of London B 268:1849-1854. doi:
1021	10.1098/rspb.2001.1753.
1022	Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV, 2007. The gene vitellogenin
1023	has multiple coordinating effects on social organization PLoS Biology 5:e62. doi:
1024	10.1371/journal.pbio.0050062.
1025	Nieberding CM, de Vos H, Schneider MV, Lassance J, Estramil N, Andersson J, Bang J,
1026	Hedenstrom E, Lofstedt C, Brakefield PM, 2008. The male sex pheromone of the
1027	butterfly Bicyclus anynana: Towards an evolutionary analysis. PLoS ONE
1028	3:e2751
1029	Nieberding CM, Fischer K, Saastamoinen M, Allen CE, Wallin EA, Hedenstrom E,
1030	Brakefield PM, 2012. Cracking the olfactory code of a butterfly: the scent of
1031	ageing. Ecology Letters 15:415-424. doi: 10.1111/j.1461-0248.2012.01748.x.
1032	Nowell RW, Elsworth B, V. O, Zwaan BJ, Wheat CW, Saastamoinen M, Saccheri IJ,
1033	van't Hof AE, Wasik BR, Connahs H, Aslam ML, Kumar S, challis RJ, Monteiro
1034	A, Brakefield PM, Blaxter ML, 2017. A high-coverage draft genome of the
1035	mycalesine butterfly Bicyclus anynana. Giga Science 6:1-7. doi:
1036	10.1093/gigascience/gix035.
1037	Obara Y, Koshitaka H, Arikawa K, 2008. Better mate in the shade: enhancement of male
1038	mating behavior in the cabbage butterfly, Pieris rapae crucivora, in a UV-rich
1039	environment. Journal of Experimental Biology 211:3698-3702.
1040	Ogawa Y, Kinoshita M, Stavenga DG, Arikawa K, 2013. Sex-specific retinal
1041	pigmentation results in sexually dimorphic ling-wavelength-sensitive
1042	photoreceptors in the eastern pale clouded yellow butterfly, Colias erate. The
1043	Journal of Experimenbtal Biology 216:1916-1923. doi: 10.1242/jeb.083485.
1044	Olson CR, Hodges LK, Mello CV, 2015. Dynamic gene expression in the song system of
1045	zebra finches during the song learing period. Developmental Neurobiology
1046	75:1315-1338. doi: 10.1002/dneu.2286.
1047	Ozsu N, Chan QY, Chen B, Das Gupta M, Monteiro A, 2017. Wingless is a positive
1048	regulator of eyespot color patterns in <i>Bicyclus anynana</i> butterflies Developmental
1049	Biology 429:177-185. doi: 10.1016/j.ydbio.2017.06.030.
1050	Ozsu N, Monteiro A, 2017. Wound healing, calcium signaling, and other novel pathways
1051	are associated with the formation of butterfly eyespots BMC Genomics 18:788.
1052	doi: 10.1186/s12864-017-4175-7.
1053	Perry CJ, Barron AB, Chittka L, 2017. The frontiers of insect cognition Current Opinion
1054	in Behavioral Sciences 16:111-118. doi: 10.1016/j.cobeha.2017.05.011.
1055	Pradhan A, Olsson P, 2015. Zebrafish sexual behavior: role of sex steroid hormones and
1056	prostaglandins. Behavioral and Brain Functions 11:23. doi: 10.1186/s12993-015-
1057	0068-6.

1058	Prakash A, Monteiro A, 2018. apterous A specifies dorsal wing patterns and sexual traits
1059	in butterflies Proceedings of the Royal Society of London B 285:20172685. doi:
1060	10.1098/rspb.2017.2685.
1061	Prakash A, Monteiro A, 2020. Doublesex mediates the development of sex-specific
1062	pheromone organs in Bicyclus butterflies via multiple mechanisms. Molecular
1063	Biology and Evolution 37:1694-1707. doi: 10.1093/molbev/msaa039.
1064	Prudic KL, Jeon C, Cao H, Monteiro A, 2011. Developmental plasticity in sexual roles of
1065	butterfly species drives mutual sexual ornamentation. Science 331:73-75. doi:
1066	10.1126/science.1197114.
1067	Quillfeldt P, Schroff S, van Noordwijk HJ, Michalik A, Ludynia K, Masello JF, 2011.
1068	Felxible foraging behaviour of a sexually dimorphic seabird: large males do not
1069	always dive deep. Marine Ecology Progress Series 428:271-287. doi:
1070	10.3354/meps09058.
1071	Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD,
1072	Chamberlain NL, Kronforst MR, Chen R, Halder G, Nijhout HF, McMillan WO,
1073	2011. optix drives the repeated convergent evolution of butterfly wing pattern
1074	mimcry. Science 333:1137-1141. doi: 10.1126/science.1208227.
1075	Reedy AM, Pope BD, Kiriazis NM, Giordano CL, Sams CL, Warner DA, Cox RM, 2017.
1076	Female anoles display less but attack more quickly than males in response to
1077	territorial intrusions Behavioral Ecology 28:1323-1328. doi:
1078	10.1093/beheco/arx095.
1079	Rideout EJ, Billeter J, Goodwin SF, 2007. The sex-determination genes <i>fruitless</i> and
1080	doublesex specify a neural substrate required for courtship song. Current Biology
1081	17:1473-1478. doi: 10.1016/j.cub.2007.07.047.
1082	Robinson MD, McCarthy DJ, Smyth GK, 2010. edgeR: a Bioconductor package for
1083	differential expression analysis of digital gene expression data Bioinformatics
1084	26:139-140. doi: 10.1093/bioinformatics/btp616.
1085	Rodriguez-Caro F, Fenner J, Bhardwayj S, Cole JA, Benson C, Colombara AM, Papa R,
1086	Brown MW, Martin A, Range RC, Counterman BA, 2021. Novel doublesex
1087	duplication associated with sexually dimorphic development of dogface butterfly
1088	wings Molecular Biology and Evolution 38:5021-5033. doi:
1089	10.1093/molbev/msab228.
1090	Rosell F, Thomsen LR, 2006. Sexual dimorphism in territorial scent marking by adult
1091	Eurasian beavers (Castor fiber). Journal of Chemical Ecology 32:1301-1315. doi:
1092	10.1007/s10886-006-9087-y.
1093	Roy-Zokan EM, Cunningham CB, Hebb LE, McKinney EC, Moore AJ, 2015.
1094	Vitellogenin and vitellogenin receptor gene expression is associated with male
1095	and female parenting in a subsocial insect Proceedings of the Royal Society of
1096	London B 282:20150787. doi: 10.1098/rspb.2015.0787.
1097	Rue-Albrecht K, McGettigan PA, Hernández B, Nalpas NC, Magee DA, A.C. P, Gordon
1098	SV, MacHugh DE, 2016. GOexpress: an R/Bioconductor package for the
1099	identification and visualisation of robust gene ontology signatures through
1100	supervised learning of gene expression data BMC Bioinformatics 17:126. doi:
1101	10.1186/s12859-016-0971-3.

1102	Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel R, 2010. A dimorphic
1103	pheromone circuit in Drosophila from sensory input to descending output. Nature
1104	468:686-692. doi: 10.1038/nature09554.
1105	Saenko SV, Marialva MSP, Beldade P, 2011. Involvement of the conserved Hox gene
1106	Antennapedia in the development and evolution of a novel trait. EvoDevo 2:9.
1107	doi: 10.1186/2041-9139-2-9.
1108	Sakai Y, Kawamura S, Kawata M, 2018. Genetic and plastic variation in opsin gene
1109	expression, light sensitivity, and female response to visual signals in the guppy
1110	Proceedings of the National Academy of Sciences 115:12247-12252. doi:
1111	10.1073/pnas.1706730115.
1112	Servedio MR, 2009. The role of linkage disequilibrium in the evolution of premating
1113	isolation Heredity 102:51-56. doi: 10.1038/hdy.2008.98.
1114	Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P, 2011. Magic traits in
1115	speciation: 'magic' but not rare? Trends in Ecology & Evolution 26:389-397. doi:
1116	10.1016/j.tree.2011.04.005.
1117	Shannon G, Page BR, Duffy KJ, Slotow R, 2006. The role of foraging behaviour in the
1118	sexual segregation of the African elephant Oecologia 150:344-354. doi:
1119	10.1007/s00442-006-0521-1.
1120	Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski
1121	B, Ideker T, 2003. Cytoscape: a software environment for integrated models of
1122	biomolecular interaction networks. Genome Research 13:2498-2504.
1123	Slonim DK, 2002. From patterns to pathways: gene expression data analysis comes of
1124	age Nature Genetics 32:502-508. doi: 10.1038/ng1033.
1125	Smadja CM, Butlin RK, 2011. A framework for comparing processes of speciation in the
1126	presence of gene flow Molecular Ecology 20:5123-5140. doi: 10.1111/j.1365-
1127	294X.2011.05350.x.
1128	Stavenga DG, 2002. Reflections on colourful ommatidia of butterfly eyes Journal of
1129	Experimental Biology 205:1077-1085.
1130	Stephens M, 2017. False discovery rates: a new deal. Biostatistics 18:275-294. doi:
1131	10.1093/biostatistics/kxw041.
1132	Talyn BC, Dowse HB, 2004. The role of courtship song in sexual selection and species
1133	recognition by female Drosophila melanogaster. Animal Behaviour 68:1165-
1134	1180. doi: 10.1016/j.anbehav.2003.11.023.
1135	ten Cate C, 1985. On sex differences in sexual imprinting. Animal Behaviour 33:1310-
1136	1317.
1137	ten Cate C, Vos DR, 1999. Sexual imprinting and evolutionary processes in birds: a
1138	reassessment. Advances in the Study of Behavior 28:1-31.
1139	Trivers RL, 1972. Parental investment and sexual selection. In: Campbell B, editor.
1140	Sexual Selection and the Descent of Man, 1871-1971 Chicago: Aldine-Atherton.
1141	p. 136-179.
1142	Trochet A, Courtois EA, Stevens VM, Baguette M, Chaine A, Schmeller DS, Clobert J,
1143	2016. Evolution of sex-biased dispersal. The Quarterly Review of Biology
1144	91:297-320.
1145	van Schooten B, Meléndez-Rosa J, Van Belleghem SM, Jiggins CD, Tan JD, McMillan
1146	WO, Papa R, 2020. Divergence of chemosensing during the early stages of

1147	speciation Proceedings of the National Academy of Sciences 117:16438-16447.
1148	doi: 10.1073/pnas.1921318117.
1149	Verzijden MN, Korthof REM, ten Cate C, 2008. Females learn from mothers and males
1150	learn from others. The efect of mother and siblings on the development of female
1151	mate preferences and male aggression biases in Lake Vicotria cichlids, genus
1152	Mbipia. Behavioral Ecology and Sociobiology 62:1359-1368. doi:
1153	10.1007/s00265-008-0564-x.
1154	Verzijden MN, ten Cate C, Servedio MR, Kozak GM, Boughman JW, Svensson EI,
1155	2012. The impact of learning on sexual selection. Trends in Ecology and
1156	Evolution 27:511-519. doi: 10.1016/j.tree.2012.05.007.
1157	Wang Y, Rensink A, Fricke U, Riddle MC, Trent C, van de Zande L, Verhulst EC, 2020.
1158	Sexually dimorphic traits and ale-specific differentiation are actively regulated by
1159	Doublesex during specific developmental windows in Nasonia vitripennis
1160	bioRxiv. doi: 10.1101/2020.04.19.048553.
1161	Westerman E, 2019. Searching for the genes driving assortative mating PLoS Biology
1162	17:e3000108. doi: 10.1371/journal.pbio.3000108.
1163	Westerman E, Hodgins-Davis A, Dinwiddie A, Monteiro A, 2012. Biased learning affects
1164	mate choice in a butterfly. Proceedings of the National Academy of Sciences of
1165	the United States of America 109:10948-10953. doi: 10.1073/pnas.1118378109.
1166	Westerman E, Monteiro A, 2013. Odour influences whether females learn to prefer or to
1167	avoid wing patterns of male butterflies. Animal Behaviour 86:1139-1145. doi:
1168	10.1016/j.anbehav.2013.09.002.
1169	Westerman EL, Chirathivat N, Schyling E, Monteiro A, 2014. Mate preference for a
1170	phenotypically plastic trait is learned, and may facilitate preference-phenotype
1171	matching. Evolution 68:1661-1670.
1172	Westerman EL, VanKuren N, Massardo D, Buerkle N, Tenger-Trolander A, Zhang W,
1173	Hill R, Perry M, Bayala E, Chamberlain N, Douglas T, Palmer S, Kronforst MR,
1174	2018. Aristaless controls butterfly wing color variation used in mimicry and mate
1175	choice Current Biology 28:3469-3474.e3464. doi: 10.1016/j.cub.2018.051.
1176	Witte K, Sawka N, 2003. Sexual imprinting on a novel trait in the dimorphic zebra finch:
1177	sexes differ. Animal Behaviour 65:165-203. doi: 10.1006/anbe.2002.2009.
1178	Woodgate JL, Buchanan KL, Bennett ATD, Catchpole CK, Birghton R, Leitner S, 2014.
1179	Environmental and genetic control of brain and song structure in the zebra finch.
1180	Evolution 68:230-240. doi: 10.1111/evo.12261.
1181	Woronik A, Tunström K, Perry MW, Neethiraj R, Stefanescu C, Celorio-Mancera M,
1182	Brattstrom O, Hill J, Lehmann P, Käkelä R, Wheat CW, 2019. A transposable
1183	element insertion is associated with an alternative life history strategy Nature
1184	Communications 10:5757. doi: 10.1038/s41467-019-13596-2.
1185	Wright DS, van Eijk R, Schuart L, Seehausen O, Groothuis TGG, Maan ME, 2020.
1186	Testing sensory drive speciation in cichlid fish: linking light conditions to opsin
1187	expression, opsin genotype and female mate preference Journal of Evolutionary
1188	Biology 33:422-434. doi: 10.1111/jeb.13577.
1189	Zilkha N, Scott N, Kimchi T, 2017. Sexual dimorphism of parental care: from genes to
1190	behavior Annual Review of Neuroscience 40:273-305. doi: 10.1146/annurev-
1191	neuro-072116-031447.
1192	