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Abstract 1

2

In microbiology, the estimation of the growth rate of microorganisms is a critical parameter to describe
a new strain or characterize optimal growth conditions. Traditionally, this parameter is estimated by
selecting subjectively the exponential phase of the growth, and then determining the slope of this curve
section, by linear regression. However, for some experiments, the number of points to describe the
growth can be very limited, and consequently such linear model will not fit, or the parameters estimation
can much lower and strongly variable. In this paper, we propose a tools to estimate growth parameters
using a logistic Verhulst model that take into account the entire growth curve for the estimation of the
growth rate. The efficiency of such model is compared to the linear model. Finally, the novelty of our
work is to propose a "Shiny-web application", online, without any programming or modelling skills, to
allow estimating growth parameters including growth rate, maximum population, and beginning of the
exponential phase, as well as an estimation of their variability. The final results can be displayed in the
formof a scatter plot representing themodel, its efficiency and the estimated parameters are downloadable.
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Introduction 17

Understanding the fundamental principles that underpin the rates of growth and reproduction of organ- 18

isms is of central ecological importance, ultimately affecting long-termevolutionary trajectories of populations 19

and communities. Under variable conditions (i.e. temperature, medium composition, nutrients availability, 20

oxygen) metabolic, biochemical, and physiological processes can affect the growth of an individual, including 21

single cells (Kempes et al., 2012). Furthermore, gene expression in microorganisms is known to be intimately 22

coupled to the growth state of the cell (Scott and Hwa, 2011). For micro-organisms, the growth is non-linear 23

over time and is defined by three successive phases: the lag, the exponential and the stationary phase. Dur- 24

ing this increase of micro-organisms, the rate at which the number of organisms in a population increases 25

is defined as the growth rate. Usually, in microbiology, the growth rate is a parameter estimated by defining 26

subjectively the exponential phase in the curve and then this part’s linearity (in logarithmic scale) is used to 27

estimate the slope by linear model. According to Zwietering et al. (1990), a better method is to describe the 28

growth of micro-organisms, under different biotic and abiotic conditions (i.e as temperature, pH, salinity and 29

nutrient concentration), using a growth model. 30

31

Mathematical models provide tools widely used, for years, to describe growth of microorganisms. In food mi- 32

crobiology, these models allow predicting the shelf life of a food product. This approach allows detecting the 33

critical paths of the production process and optimizing the production and distribution chain (Zwietering et al., 34

1990). In the environmental field, models can allow finding optimal growth parameter from a new isolated 35

strain (Martini et al., 2013), or describing the behavior of microorganisms under different biotic and abiotic 36

condition (i.e Eichinger, Kooijman, et al. (2009), Eichinger, Poggiale, et al. (2011), and Garel, Panagiotopoulos, 37

et al. (2021)). Numerous models, including Verhulst (1845, 1847), Gompertz (1825), Richards (1959), Schnute 38

(1981), or Stannard et al. (1985) models are applied to adjust observational datasets in order to estimate 39

growth parameter and to predict bacterial growth over time Zwietering et al. (1990). Monod (1949) growth 40

model is another empiricalmodel to describemicrobial growth according to substrate concentration. It differs 41

from other models, previously cited, since it is applied for a constant concentration of substrate, introducing 42

the concept of limiting nutrients (Lobry et al., 1992). 43

44

The purpose of this paper is to describe a "Shiny"-web application, built with cran R framework, in which a 45

mathematical model, based on the Verhulst model, is embedded to describe the growth of microorganisms. 46

The objective of such approach is not new in term of model applied in microbiology. However, thanks to the 47

development of interactive web-applications, statistics and models are easily available to the microbiology 48

community. This pluridisciplinary (merging modelling and microbiology) approach will lead to new practices 49

easily-applied to determine growth rate of microbial populations with repeatability and transparency in the 50

methodology. We demonstrate that modelling microbial growth is more efficient to estimate growth param- 51

eters even with few data points, and less variable depending on the sampling or user. 52

53

Material and methods 54

Web application design 55

The application is accessible at https://hpteam.shinyapps.io/logistic_microbio/, and was entirely designed 56

with GNU R (R Core Team, 2017). The packages used are: ’stats’ for logistic Verhulst, ’quantreg’ for quantile 57

regression and 95% confidence interval estimation, and ’shiny’ for building the web application. Currently the 58

application is hosted on the server https://www.shinyapps.io/, it is available from any computer (independent 59

of the computer’s OS) with an internet access and a web browser. This web application is also available offline, 60
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downloading and running into cran R installing required packages with the source available at the following 61

link: https://doi.org/10.34930/DC1DAF1C-09E3-4829-8878-91D0BF0E643E. 62

63

The web application includes four mains panels (Figure 2). Firstly, a panel "Upload data" allows uploading 64

data by proposing different types of vector separators (tabulation, comma, Semicolon) and a choice of decimal 65

markers (Figure 1). The file containing data must be in text or csv format. A demo dataset is already available 66

for download. 67

Figure 1. First panel "Upload data" of the web application https://hpteam.shinyapps.io/logistic_microbio/.
68

Then, the second panel "Uploaded data" allows viewing the dataset as a dataframe in an interactive table 69

where it is possible to sort data by different variables (Figure 2). 70

Figure 2. Second panel "Uploaded data" of the application. Dataset is displayed in an interactive dataframe.
In this panel dataset can be sorted by entries.

71

72

The third panel "Plot" allows viewing the data as a scatter plot Figure (Figure 3). On this tab, it is possible to 73

give a label to each axis, adjust the boundary of each axis and adjust the smoothness of the theoretical curve. 74
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By default, the model generates as much theoretical data (data re-estimated by the model) as observed data. 75

This smoothness parameter influences the shape of the curve, the more the "smooth" parameter tends to- 76

wards 0 the more the curve will have a rounded aspect. However, this parameter has no influence on the 77

estimation of the growth. All results are downloadable in *.txt format. The data set is plotted with model 78

applied on it and the estimated parameters. In this panel, axis label and axis scale are custmomizable and the 79

smooth of the model is adjustable (Figure 3). 80

81

Figure 3. Third panel "Plot" of the application. This panel displays the plot of observed data (dark bullet), fitted
data (black line), first and third quartiles (blue dashed line) and 95% confidence interval (blue dot line). The
plot can be customized by option : axis label (x and y label), scale of axis (x and y limit) and the smooth of the
fitted data. The estimated parameters and fitted curves are downloadable as text file.
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Finally, the fourth panel "Verify parameters estimation" allows appreciating the quality of the model using 82

a graphical representation of the Residual Sum of squares (RSS) cost function in 2 or 3 dimensions (Figure 4). 83

Every displayed plots and estimated parameters can be downloaded. 84

85

Figure 4. Fourth panel "Verify parameters estimation". Contour plot showing isoline of the minimisation of
growth rate as a function of the maximum of cells (K). The green dot is the minimum of the cost function.

Model description 86

The growth of an organism is defined as the variation of the number of individuals X(ti), i = 1, ..., n as 87

a function of time such that dX
dt = X(t). The growth curve of prokaryotes is non-linear and describes three 88

phases: a latent phase corresponding to the beginning of the growthwith a specific growth rate (µ) almost null 89

and then accelerating until reaching a maximum value (µmax) after a certain period. Thereafter, prokaryotes 90

will grow exponentially until they reach an asymptote, which will be marked by a decrease of the growth 91

rate to µ= 0. This phase is called the stationary phase, which is often due, in the case of batch culture, to a 92

limitation of a substrate, or a nutritive salt involving the population density to remain constant (K). The growth 93

curve thus describes a sigmoid (Zwietering et al., 1990). The objective of modelling growth curves is to fit the 94

entire observed growth data by a non-linear logistic model described by (Verhulst, 1938). This allows not only 95

estimating a maximum growth rate µmax, but also the maximum growth density and the beginning of the 96

exponential phase. 97

The model is defined as follows: 98

dX

dt
= µmax ∗X(1− X

K
)

whereX is the number of observations, µmax is the maximum growth rate andK the carrying capacity, here, 99

the maximum density of the population. 100

The analytical solution of the equation is 101{
X(0) = 0

X(t) = KX0

X0+(K−X0)exp(−µmaxt)

The parameter estimates are determined as the parameters providing the best fit of the mean function X̂(ti) 102

to the observations X(ti), i = 1, ..., n obtained by minimizing the residual sum square (RSS) by the iterative 103

Gauss-Newton method. 104

This amounts to: 105

RSS =
n∑

i=1

(X(ti)− X̂(ti))
2
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whereX(ti) are observations and X̂(ti) are estimated values. 106

For the linear model, traditionally used in microbiology, the growth parameter is estimated by deciding 107

subjectively which part of the curve is approximately linear (in log scale) and then determining the slope of 108

this curve section (Zwietering et al., 1990). 109

Model improvement 110

To test the robustness of the two models (linear and logistic Verhulst ) to describe the growth of microor- 111

ganisms, we created a set of theoretical growth curves using the GNU R statistical software (R Core Team, 112

2017) representing different cases of study from experimentation. The theoretical curves were constructed 113

with a logistic Verhulst model whose parameters are: experimental time = 10 hours, µmax =1 h−1 and K as 114

the maximum population density = 6. In addition, a Gaussian noise is added to simulate variability between 115

eachmeasurement point, which is very common in experimentation. Then six experiments are simulatedwith 116

a decreasing number of points: 100, 75, 50, 25, 10 and 6 points (Figure 5). For each curve the growth parame- 117

ters is estimated, both with a logistic Verhulst model and with a linear model, classically used in microbiology, 118

by linearizing the data beforehand. For the linear model, the exponential phase was estimated subjectively. 119

The sensitivity of each estimation method was tested with a bootstrap (random re-sampling with discount) of 120

1000 simulations. 121

Results and Discussion 122

Model simulation 123

The Figure 5 displays six curves simulated by downgrading the number of measured points, from 100 to 6 124

points, tomimic different cases of experiments. Each succession of points represents the theoretical growth of 125

microorganisms over time. Biomass can be obtained according to different classical methods in microbiology 126

such as the cells number obtained by flux cytometer or microscopy or even by optical density. According to 127

theses curves, growth rate are estimated by bootstrapping. 128
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Figure 5. Simulation of logistic growth with different number of measurements to mimic variability in ex-
periments. The data follow a logistic distribution with gaussian noise. The number of points in each curve
decreases by random resampling. Biomass is in arbitrary units (u.a.). Time is an arbitrary unit (u.a.) depend-
ing to the experimental design.

Comparison of linear and logistic Verhulst models to estimate growth parameters 129

To compare the linear and logistic Verhulst models efficiency, we focus on the growth rate parameter µmax, 130

widely used inmicrobiology in the characterization of new bacterial strains. The following results compare the 131

growth rates’ distribution for various numbers of sampled points ranging from 100 to 6, and using two math- 132

ematical approaches: i) estimation of growth parameters using the logistic Verhulst model; ii) estimation of 133

the growth rate by the linear model applied on the exponential phase of growth after linearization (log scale). 134
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Figure 6. Distribution of the µmax estimated for 1000 simulations for each curve. The black bar represents
the median value. The gray box plots represent the distribution of µmax estimated by the logistic Verhulst
method and the white box plots represent µmax estimated by the linear model in the exponential phase after
linearization of the data.

In Figure 6, and Table 1 the growth rate parameters estimated using the logistic Verhulst method are close 136

to 1 h−1 (median values between 0.86 and 1.06 h−1), corresponding to the growth rate µmax=1 provided 137

as the input in the model. The growth rates µmax estimated by linear model are about a half of this value 138

(median value between 0.32 and 0.48 h−1). For both methods, the estimation of the growth rate decreases 139

significantly (wilcox test p − value < 0.05) for curves built with only 6 points from a median equal to 1.02 to 140

0.86 h−1 and from 0.43 to 0.32 h−1, respectively for logistic Verhulst model and linear model model. 141

142
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Table 1. Statistical summary of growth rates estimated by logistic Verhulst model and linear model obtained
after 1000 bootstrap simulations. Min. is the minimum growth rate, 1stQu. is the 1st quartile, 3rdQu. is the
3rd quartile andMax. is themaximum, n is the number of points used by eachmethod to estimate the growth
rate and Nbr of NA is the number of simulations that did not result into a growth rate estimate.
Methods Nbr of points Min. 1st Qu. Median Mean 3rd Qu. Max. n Nbr of NA
logistic 100 0.88 0.99 1.02 1.02 1.06 1.18 100 0
Verhulst 75 0.81 0.92 0.96 0.96 1.00 1.18 75 0
model 50 0.86 1.01 1.06 1.06 1.10 1.29 50 0

25 0.65 0.88 0.95 0.96 1.03 1.37 25 0
10 0.75 0.90 0.95 0.96 1.02 1.31 10 0
6 0.65 0.81 0.86 0.96 1.02 1.31 6 0

Linear 100 0.34 0.40 0.43 0.43 0.45 0.54 38 0
model 75 0.28 0.40 0.47 0.47 0.51 0.84 28 0

50 0.35 0.45 0.48 0.48 0.50 0.64 19 0
25 0.24 0.40 0.46 0.46 0.51 0.90 10 0
10 0.24 0.24 0.48 0.47 0.48 0.72 4 118
6 0.16 0.16 0.32 0.32 0.32 0.49 3 123

In Table 1, it is interesting to see that with a limited number of points, of either 10 or 6, the linear model 143

can not be applied in more than a hundred of simulations per curve (number of NA respectively 118 and 123). 144

Such result appears when the number of points used into the model (n in Table 1) is very small in the expo- 145

nential phase. In microbiology such case is frequent, especially for experiments in which numerous variables 146

are sampled at the same time, and can not be measured quickly enough to catch the exponential phase, or 147

for overnight bacterial growth. 148

149

Looking at the literature, 17 growth curves have been collected (Table 2) from various environments includ- 150

ing freshwater, deep-sea, hydrothermal vents or sediments. This table compares the estimation of growth 151

rate µmax using: logistic Verhulst model, linear model model and the µmax value provided by author. The 152

main goal of this computation is to apply logistic Verhulst model on existing datasets from the literature. All 153

the data are extracted from the growth curves represented in each article, then the two models are applied. 154

Firstly, we can note that growth rate provided by the authors are very close to those estimated by linear 155

model, as expected, since this method is widely used in microbiology. However, using logistic Verhulst model, 156

the µmax is higher than those estimated by linear model and provided by authors for 88% (15 times over 157

the 17 reported growth curves) of curves. Moreover, the logistic Verhulst model allows estimating two other 158

parameters, the beginning of the exponential growth and the maximum biomass. The beginning of the ex- 159

ponential growth is a critical parameter in food industry (Zwietering et al., 1990). In deep-sea environments 160

Martini et al. (2013), the use of the growth rate and the maximum biomass (K parameter in this model) allow 161

computing cross-coefficient that turned out to be a paramount tool to determine optimal growth conditions 162

for a deep sea strain of luminous bacteria. Ultimately, the modeling approach allows transforming discrete 163

data into a continuous function. This last point, is a critical step to associate the bacterial growth with other 164

high frequency variables measured simultaneously (i.e.: oxygen consumption (Garel, Bonin, et al., 2019), light 165

emission (Al Ali et al., 2010)). 166

167

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.29.501982doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501982
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Synthesis of 17 bacterial strains from various aquatic ecosystems. Growth parameters are estimated by Logistic Verhulst model and Linear model. K is the
maximum cells density, sd is the standard deviation and µmax is the growth rate

Logistic Verhulst model Linear model Literature
Strain Ecosystem Nbr of

points
Pressure
(bar)

K sd µmax sd K µmax sd µmax Reference

Isolate PE31 Deep sea 10 1 2.92x107 9.08x105 0.082 0.006 2.92x107 0.075 0.011 0.099 (Yayanos et al., 1982)
Isolate PE31 Deep sea 7 139 5.51x107 1.72x106 0.117 0.015 5.90x107 0.082 0.016 0.136 (Yayanos et al., 1982)
Isolate PE31 Deep sea 10 553 1.30x107 3.31x105 0.097 0.008 1.29x107 0.051 0.002 0.054 (Yayanos et al., 1982)
Rhodobacterales bacterium
PRT1

Deep sea 17 800 1.07x106 1.82x104 0.03 0.002 1.12x106 0.021 0.001 0.019 (Eloe et al., 2011)
E. coli Land 8 1.013 2.45x109 2.40x107 2.131 0.118 2.48x109 1.134 0.123 NA (Pal et al., 2007)
V. alginolyticus NCMB 1803 Deep sea 10 1.013 5.90x1010 6.58x109 1.794 0.128 3.80x10103.273 0.016 3.485 (Ulitzur, 1974)
Shewanella putrefaciens MR-
1

Anoxic sedi-
ment

8 1.013 6.76x102 3.74x101 0.161 0.022 6.78x102 0.427 0.059 NA (Moser and Nealson, 1996)
Colwellia.spMT41 Deep sea 11 690 2.70x107 1.02x106 0.046 0.006 2.76x107 0.028 0.001 0.028 (Yayanos et al., 1981)
Colwellia.spMT41 Deep sea 9 863 3.63x107 1.67x106 0.031 0.001 2.79x107 0.021 0.001 0.027 (Yayanos et al., 1981)
Colwellia.spMT41 Deep sea 12 1035 2.67x107 1.94x106 0.028 0.003 2.59x107 0.027 0.002 0.02 (Yayanos et al., 1981)
Staphylococcus aureus milk 13 1.013 2.82x103 7.15x101 0.279 0.031 2.89x103 0.11 0.006 NA (Fujikawa and Morozumi, 2006)
Vibrio cholerae Fresh water 13 1.013 2.59x105 3.80x103 0.512 0.028 2.56x105 0.357 0.025 0.5 (Vital et al., 2007)
Vibrio anguillarum Mucus of

tractus salm-
mon

11 1.013 7.09x108 8.83x106 1.102 0.242 7.24x108 0.832 0.013 NA (Garcia et al., 1997)

Strain 106 Hydrothermal
vent

6 160 6.38x108 1.02x107 0.195 0.01 6.19x108 0.1 0.012 NA (Takai et al., 2009)
Strain 108 Hydrothermal

vent
6 360 2.01x109 1.61x107 0.216 0.005 1.98x109 0.144 0.015 NA (Takai et al., 2009)

Pyrococcus abyssi sp. nov. Hydrothermal
vent

7 200 8.32x107 6.79x106 1.266 0.038 7.85x107 0.888 0.066 0.87 (Erauso et al., 1993)
Phosphobacterium 9320-SD culture 8 1.013 9.74x109 4.08x108 0.051 0.007 9.43x109 0.014 0.002 NA (Chen et al., 2008)
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From a statistical point of view, comparing these two modelling approaches on the same dataset we ob- 168

serve differences. On Figure 7, both approaches are applied on the growth curve of the bacterial strain She- 169

wanella putrefaciens. The logistic Verhulst model (Figure 7A) estimates a growth rate of 0.161±0.02 h−1 while, 170

according to data selected to estimate the slope of the line in the exponential phase, the grow rate can vary 171

from 0.38 à 0.55 h−1 (Figure 7B). 172

The distribution of growth rate is less variable with the logistic Verhulst model than the linear model (Fig- 173

ure 6), even if the confidence interval can be large with the logistic Verhulst model. Moreover, themain advan- 174

tage of the modeling approach is the objectivity and lack of user bias. Indeed, for the logistic Verhulst model 175

all points are taken into account while for the linear model µmax the linear part of the curve is estimated 176

subjectively to determine the slope (i.e. the growth rate) of this curve section (Zwietering et al., 1990). 177
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Figure 7. Comparison of growth rate estimations using the logistic Verhulst model and the linear model. A,
the growth rate is estimated with the logistic Verhulst model. B, the growth rate is estimated based on the
linearmodel applied on three different combination of points describing the exponential phase (red, blue and
green lines).

Conclusions 178

Pluridisciplinarity is essential in order to solve scientific problems in various fields of life science such as 179

ecology or microbiology. However, biologists needs to have access to statistical or modelling tools already 180

developed by mathematicians. In this work we give access to a web application dedicated to the modelling 181

and computing of growth parameters, essential for microbiologists, without deep mathematical knowledge. 182

Statistics are also available in order to estimate the model efficiency. 183
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