# A Cellular Taxonomy of the Adult Human Spinal Cord

Authors: Archana Yadav<sup>1</sup>†, Kaya J.E. Matson<sup>2,3</sup>†, Li Li<sup>2</sup>, Isabelle Hua<sup>2</sup>, Joana Petrescu<sup>1,4</sup>, Kristy Kang<sup>1,4</sup>, Mor R. Alkaslasi<sup>5,6</sup>, Dylan I. Lee<sup>1</sup>, Saadia Hasan<sup>7</sup>, Ahmad Galuta<sup>8</sup>, Annemarie Dedek<sup>8,9</sup>, Sara Ameri<sup>8</sup>, Jessica Parnell<sup>8,9</sup>, Mohammad M. Alshardan<sup>8</sup>, Feras Abbas Qumqumji<sup>8</sup>, Saud M. Alhamad<sup>8</sup>, Alick Pingbei Wang<sup>8</sup>, Gaetan Poulen<sup>10</sup>, Nicolas Lonjon<sup>10</sup>, Florence Vachiery-Lahaye<sup>10</sup>, Pallavi Gaur<sup>1</sup>, Mike A. Nalls<sup>11,12,13</sup>, Yue A. Qi<sup>14</sup>, Michael E. Ward<sup>7</sup>, Michael E. Hildebrand<sup>7,8</sup>, Pierre-Francois Mery<sup>14</sup>, Emmanuel Bourinet<sup>15</sup>, Luc Bauchet<sup>10,14</sup>, Eve C. Tsai<sup>8</sup>, Hemali Phatnani<sup>1,4</sup>, Claire E. Le Pichon<sup>5</sup>, Vilas Menon<sup>1\*</sup>, Ariel J. Levine<sup>2\*</sup>

#### Affiliations:

5

10

40

|     | <sup>1</sup> Department of Neurology, Center for Translational and Computational                  |
|-----|---------------------------------------------------------------------------------------------------|
|     | 2 Spinel Circuite and Discribite Unit. National Institute of Neurolagical Discriber and           |
| 1.5 | - Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and           |
| 15  | Stroke; Beinesda, MD, USA.                                                                        |
|     | Johns Hopkins University Department of Biology, Baltimore, MD, 21218, USA.                        |
|     | <sup>4</sup> Center for Genomics of Neurogenerative Disease, New York Genome Center               |
|     | <sup>o</sup> Unit on the Development of Neurodegeneration, <i>Eunice Kennedy Shriver</i> National |
|     | Institute of Child Health and Human Development; Bethesda, MD, USA.                               |
| 20  | <sup>6</sup> Department of Neuroscience, Brown University, Providence, RI, USA.                   |
|     | <sup>7</sup> Inherited Neurodegenerative Diseases Unit, National Institute of Neurological        |
|     | Disorders and Stroke; Bethesda, MD, USA.                                                          |
|     | <sup>8</sup> Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.        |
|     | <sup>9</sup> Department of Neuroscience, Carleton University, Ottawa, ON, Canada.                 |
| 25  | <sup>10</sup> Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and              |
|     | Transplantation Coordination Unit, Montpellier University Medical center,                         |
|     | Montpellier, France.                                                                              |
|     | <sup>11</sup> Laboratory of Neurogenetics, National Institute on Aging, National Institutes of    |
|     | Health, Bethesda, MD, USA,                                                                        |
| 30  | <sup>12</sup> Center for Alzheimer's and Related Dementias. National Institutes of Health.        |
|     | Bethesda, MD, USA,                                                                                |
|     | <sup>13</sup> Data Tecnica International LLC, Glen Echo, MD, USA.                                 |
|     | <sup>14</sup> Center for Alzheimer's and Related Dementias National Institutes of Health          |
|     | Rethesda MD USA                                                                                   |
| 35  | <sup>15</sup> Institute of Functional Genomics, Montpellier University, CNRS, INSERM              |
| 55  | Montpellier France                                                                                |
|     |                                                                                                   |
|     |                                                                                                   |

† Equal contribution.

\* Co-corresponding authors. Email: <u>vm2545@cumc.columbia.edu</u> and <u>ariel.levine@nih.gov</u>

#### Abstract:

The mammalian spinal cord functions as a community of glial and neuronal cell types to 45 accomplish sensory processing, autonomic control, and movement; conversely, the dysfunction of these cell types following spinal cord injury or disease states can lead to chronic pain, paralysis, and death. While we have made great strides in understanding spinal cellular diversity in animal models, it is crucial to characterize human biology directly to uncover specialized features of basic function and to illuminate human 50 pathology. Here, we present a cellular taxonomy of the adult human spinal cord using single nucleus RNA-sequencing with spatial transcriptomics and antibody validation. We observed 29 glial clusters, including rare cell types such as ependymal cells, and 35 neuronal clusters, which we found are organized principally by anatomical location. To demonstrate the potential of this resource for understanding human disease, we 55 analyzed the transcriptome of spinal motoneurons that are prone to degeneration in amyotrophic lateral sclerosis (ALS) and other diseases. We found that, compared with all other spinal neurons, human motoneurons are defined by genes related to cell size, cytoskeletal structure, and ALS, thereby supporting a model of a specialized motoneuron molecular repertoire that underlies their selective vulnerability to disease. 60 We include a publicly available browsable web resource with this work, in the hope that it will catalyze future discoveries about human spinal cord biology.

#### 65 **Introduction**:

70

75

80

The human spinal cord relays, processes, and transforms sensory inputs and descending cues from the brain into sensory, motor, respiratory, and autonomic outputs. These critical processes rely on a diverse array of spinal cord cell types, each with their own functions, molecular repertoires, and vulnerabilities to injury or disease. For example, in hereditary spastic paraplegia, corticospinal, sensory, and spinocerebellar neurons show degeneration (Blackstone, 2018; Bruyn et al., 1994; Schwarz and Liu, 1956); in spinal muscular atrophy spinal motoneurons are primarily affected during development (Arnold and Fischbeck, 2018); and in amyotrophic lateral sclerosis, corticospinal neurons and multiple populations of ventral spinal interneurons die in addition to the signature phenotype involving degeneration of spinal motoneurons (Allodi et al., 2021; Averback and Crocker, 1982; Kawamura et al., 1981; Ravits et al., 2013; Romer et al., 2017; Salamatina et al., 2020; Stephens et al., 2006; Williams et al., 1990). These cell types have been extensively studied in model organisms, including molecular profiling of all spinal cord cell types at the single-cell level in the mouse spinal cord (Häring et al., 2018; Osseward et al., 2021; Rosenberg et al., 2018; Russ et al., 2021; Sathyamurthy et al., 2018; Zeisel et al., 2018). However, technical obstacles and limited access to high quality tissue specimens have prevented the full application of single cell approaches to study human spinal cord biology. Thus, prior work has only

been done on limited cell types or in human fetal tissue (Rayon et al., 2021; D. Zhang et al., 2021; Q. Zhang et al., 2021).

85

To characterize the cell types of the adult human lumbar spinal cord, we used recently optimized tissue extraction methods on spinal cords from organ donor subjects and performed single nucleus RNA-sequencing of over 50,000 nuclei. We identified 64 unique clusters including 29 non-neuronal populations and 35 neuronal populations and validated many of the predicted expression patterns with independent spatial transcriptomics profiling on an independent sample. We established a comprehensive taxonomy of the neuronal clusters, compared them with their mouse counterparts, and created a publicly available browsable interface as a resource for the field (<u>https://vmenon.shinyapps.io/hsc\_biorxiv/</u>). Finally, we performed a focused analysis on the transcriptional profile of spinal motoneurons, identifying a molecular signature that could underlie their selective vulnerability in neurodegenerative disease.

#### Results

#### 100

We obtained post-mortem lumbar spinal cord tissue from seven donor transplant cases (Fig. 1a and Data File Table S1), using neuroprotective conditions, such as body chilling and perfusion with a high magnesium solution, rapid collection, and flash freezing of tissue immediately in the operating room (see Methods). Single nuclei were isolated and profiled, resulting in a dataset of 55,420 nuclei that passed quality control filtering; with 105 median detection of 2,187 genes detected per nucleus. Initial clustering of all nuclei clearly distinguished the major known cell classes present in spinal cord tissue, including oligodendrocytes and their precursors and progenitors, meningeal cells, astrocytes, endothelial and pericyte cells, microglia, and neurons; the latter included glutamatergic neurons, GABAergic/glycinergic neurons, and motoneurons. Comparison 110 of these cell classes to our prior work in the mouse spinal cord (Russ et al., 2021) revealed substantial overlap in cellular signatures as well as notable differences. For example, oligodendrocytes accounted for a larger proportion of the nuclei in the human dataset. This observation is consistent with the larger ratio of white matter to gray matter area in human versus mouse spinal cords (Supplemental Fig. S1A) and could 115 reflect the relative expansion of long axon tracts linking the brain and spinal cord in humans. To determine whether the overall proportions of cells classes that we observed in the sequencing dataset reflected in vivo tissue composition, we analyzed the prevalence of oligodendrocytes, astrocytes, microglia, and neurons in adult human lumbar spinal cord tissue. We found similar proportions for neurons, astrocytes, 120 microglia, and oligodendrocytes (Fig. 1D, p = 0.67, p = 0.33, p = 0.06, p = 0.06) in tissue versus dissociated nuclei. Overall, the major cell classes in the sequencing dataset showed clear segregation of previously reported markers for these cell types, thus allowing for further investigation within each of these broad classes (Fig. 1B, Supplemental Fig. S2-S6), as described below. 125



**Fig. 1: A single cell catalog of the human spinal cord reveals the gene expression signature of human motoneurons. A**, Lumbar spinal cord tissue was obtained from seven subjects (male and female, ~50-80 years old) and processed for single nucleus RNA sequencing. **B**, UMAP plot showing the major cell types of the human spinal cord, each in separate color. Cells of the oligodendrocyte lineage are shown in pink/purple and include oligodendrocyte precursor cells (OPC), progenitors (Oligo Progen), six groups of oligodendrocytes (Oligo-1 through Oligo-6), as well as two populations of Schwann cells (Schwann-1 and –2). Microglia cells are shown in green and includes a putatively proliferating population (Prolif Micro) and six groups of microglia (Micro-1 through Micro-6). Astrocytes are shown in turquoise and include three populations (Astro-1 through Astro-3). Meninges are shown in blue and include four populations (Men-1 through Men-4). Vascular cells are shown in teal and include two groups of

130

135

endothelial cells (Endo-1 and –2) and pericytes (Peri). Ependymal cells are shown in teal. Neurons are shown in orange and include five broad classes based on their neurotransmitter status and putative location: motoneurons (MN), excitatory dorsal neurons (ExDorsal), inhibitory dorsal neurons (InhDorsal), excitatory mid neurons (ExM), excitatory ventral neurons (EV), and inhibitory mid neurons (InhM) and inhibitory ventral neurons (InhV). **C**, Bar plot showing the proportion of a given cluster in each donor (N=7). Error bars are ± s.e.m. **D**, Multiplex immunohistochemistry of the lumbar human spinal cord, stained for NeuN (yellow), IBA1 (green), SOX9 (turquoise), OLIG2 (pink). Brightfield (BF) is shown in white. Percent of DAPI+ cells expressing NeuN, OLIG2, IBA1 and SOX9 are noted in the bottom right corner of each inset (N = 2). Scale bars are 500  $\mu$ m. Accompanying bar plots are in Supplemental Fig. S7.

155

145

150

#### Glial and Support Cell Populations of the Adult Human Lumbar Spinal Cord

Clustering of non-neuronal classes identified specific subpopulations that we identified by homology with related mouse cell types (Russ et al., 2021) and that we partially validated using spatial transcriptomics on post-mortem tissue from an independent donor (Fig. 2). Amongst oligodendrocytes and related populations, we observed two 160 populations of Schwann cells that were detected at the edges of the spinal tissue in the dorsal root entry zone, a population of oligodendrocyte precursor cells and related progenitors, as well as six populations of oligodendrocytes that were distributed over the entire spinal cord tissue with a bias for the white matter tissue, as expected (Fig. 2A-C, Supplemental Fig. S6). Amongst microglia, we observed six populations, including a 165 putative proliferative type characterized by expression of POLQ, TOP2A, and MKI67 (Fig. 2D-F, Fig. 2M, Supplemental Fig. S6). In prior work on adult mouse spinal cord cell types, proliferative microglia were not observed in the healthy spinal cord, including in mature adult (5-6 month old) animals (Matson et al., 2021; Squair et al., 2021). We therefore analyzed post-mortem tissue from three independent organ donor subjects not 170 included in the single nucleus RNA-sequencing dataset to confirm the existence of this population existed in intact tissue. Indeed, we found that 23 percent of microglia in tissue co-expressed the proliferative marker Ki67 (Supplemental Fig. 7, 25% of cells were IBA1+, with 5.77% of cells double positive for IBA1 and Ki67). Whether this 175 reflects normal human biology, is an aging-induced phenotype, or due to peri-mortem changes remains to be determined. Amongst astrocytes, we identified three populations, including one that localized to the white matter in the spatial transcriptomics data, and two that were localized to the gray matter. These gray matter astrocytes populations (ASTRO-2 and ASTRO-3) were enriched for genes involved in neural metabolism and signaling including the GABA transporter SLC6A11, the AMPA 180 receptor regulator SHISA9, and the synaptic adhesion protein TENM2 (Fig. 2G-I, Fig. 2M, Supplemental Fig. S6). By contrast, the white matter astrocyte population was enriched for CD44, CPAMD8 and AQP4. Finally, amongst support cells, we identified

two endothelial cell populations, one pericyte population, four populations of meningeal cells, a group ependymal cells and a group of lymphocytes (Fig. 2J-L).



Fig. 2: Glial and support cell types in the human spinal cord. Glial cell types including A-C, Oligodendrocytes, D-F, Microglia G-I, Astrocytes J-L, Endothelial cells, ependymal cells, pericytes and lymphocytes. For each cell type, a UMAP shows the subtypes, a spatial feature plot shows Cell2Location data, and a dendogram depicts the relationships between the subtypes. Individual spatial transcriptomic spatial feature Cell2Location plots can be found in Supplemental Figure S6. Dendograms were calculated using the top 2,000 highly variable genes from each population (Ward's method). M. Dot plot of markers for glial subtypes showing average expression and percent expressed. Average expression ranges from low (orange) to high (purple).

#### Neuronal Atlas of the Adult Human Lumbar Spinal Cord

To characterize the neuronal populations of the adult human lumbar spinal cord, we sub 200 clustered the neuronal nuclei and identified 35 groups. These include a large population of spinal motoneurons (described in greater detail below) and 33 glutamatergic (defined by the expression of SLC17A6) or GABA/glycinergic populations (defined by expression of GAD1, GAD2, PAX2, and SLC6A5). Importantly, each of these populations contained nuclei from each of the seven donors (Fig. 3A, Supplemental Fig. S8A). (We also 205

observed one neuronal cluster that was defined by expression of <u>i</u>mmediate <u>e</u>arly response <u>genes</u> (IEG), though it is unclear whether this reflects neuronal activity/stress during the patient's life or post-mortem artifacts.) Interestingly, amongst the most differentially enriched genes between putative excitatory and inhibitory cell types, we observed a pair of calcium channel regulatory subunits (CACNA2D1 and CACNA2D3) and a pair of self-avoidance adhesion molecules (DSCAM and DSCAML1), both of which are conserved in mice (Russ et al., 2021). This latter signature raises the possibility that excitatory-inhibitory network balance may be achieved partly through self-avoidance control of synaptic connectivity.

210

215

Given that the function of spinal cord neurons is highly related to their anatomical location, we explored the spatial distribution of the 33 excitatory and inhibitory populations. We used a combination of comparison to spatial transcriptomics data for key marker genes and comparison with data from macaque and mouse to assign putative locations for each population, sorting them into general categories of dorsal. 220 mid, and ventral cell types (Fig 3B). We then adopted a nomenclature for these cell types that references both their putative location and neurotransmitter status. To reveal the overall organization of human lumbar spinal neuronal populations, we analyzed their relationships with three different approaches: correlation of their gene expression profiles (Fig 5C), proximity in gene expression-derived principal component space 225 (Supplemental Fig. S12), and their separability by silhouette scoring (silhouette coefficient; Fig. 4, Supplemental Fig. S9B) and random-forest based machine learning classifier (Supplemental Fig. S10). Each of these methods revealed the same patterns: (1) location in either the dorsal or mid/ventral domain was the primary factor in overall cell type organization. (2) putative dorsal neuron populations were well separated from 230 each other into robust, distinct clusters with highly significant differential molecular markers, and (3) mid and ventral neuronal clusters were in less clearly distinct with partially overlapping gene expression profiles, were closer in principal component space and had lower accuracy in post-hoc classification. These findings are similar to trends

observed in mouse spinal neurons, establishing dorsal-ventral location as the conserved, core organizational axis of spinal neuron variability in both species.





**Fig. 3: Neuronal cell types in the human spinal cord. A**, UMAP plot of human spinal neurons showing 35 refined populations. **B**, Dendogram showing relationship of neuronal subtypes, calculated using the top 2,000 highly variable genes (Ward's method). For each cluster, 2-3 top genes are shown. **C-I,** For each class of spinal cord neuron (Motoneurons, Dorsal Excitatory, Dorsal Inhibitory, Mid Excitatory, Mid Inhibitory, Ventral Excitatory and Ventral Inhibitory) spatial feature plots shows the expression of a marker in tissue and box plot shows per-cluster and per-sample expression (Counts per Million) of 3 marker genes. Box plots show average expression from each donor (N = 7). Outliers are plotted with a dot. **D**, Dorsal excitatory markers include TAC1, CPNE4, and EBF2. **E**, Dorsal inhibitory markers include PDYN, RORB, and CDH3. **F**, Mid excitatory markers include TFAP2B, PAX8, and SAMD3. **H**, Ventral excitatory markers include ESRRG,

240

245

250

GATA3, and GAS1RR. Spatial transcriptomic gene expression is colored from purple (low) to red (high).

260

265

270



Fig. 4: Overall organization of human and mouse lumbar spinal neuronal populations. A, The relationship between dorsal and ventral neurons in the human and mouse spinal cord neurons compared using a silhouette score, with values ranging from -1 to 1 (where a high value indicates that clusters are significantly distinguished from one another). (Individual cluster silhouette scores are shown in Supplemental Fig. S8B.) Two-way ANOVA and Mann Whitney test for human and mouse dorsal vs ventral distributions are as follows. P < 0.0001, \*\*\*\*. B-C, UMAP of human neurons (B) and mouse neurons (C) colored by Silhouette score— purple (low) to yellow (high). D, Median correlation of a cluster to other clusters, as calculated by Pearson's Correlation using the top 2,000 highly variable genes. Two-way ANOVA and Mann Whitney test for human and mouse dorsal vs ventral distributions are as follows. P < 0.0001, \*\*\*\*. E-F, Heatmap correlation plot of the human spinal cord neurons (E) and mouse spinal cord neurons (F, Russ et al. 2021). Correlation is colored from purple (low) to yellow (high).

We next performed a detailed comparison of individual human and mouse spinal cord neuronal populations by integrating our work with prior harmonized datasets from 275 postnatal mouse tissue (Fig. 5A-B). We found that, overall, human neurons were enriched for KAZN, ROBO2 and DPP10 while mouse neurons were enriched for DCC, USP29, and ASIC2 (Fig. 5E). There was good correspondence between the two datasets, with pairs of human-mouse dorsal clusters showing high correlations and specific relationships, while ventral clusters showed broader overall similarity (Fig 5C). 280 We used a network perspective on cluster relatedness to highlight human and mouse cell types pairs with particularly high conservation and analyzed these further (Fig. 5D). As examples: (1) Human Ex-Dorsal-4 is highly homologous to mouse Excit-05, a member of the Maf family located in lamina III-IV which is associated with corrective reflexes and light touch processing (Fig. 5G). Both the human and mouse clusters are 285 enriched for MAF, ADARB2, and RORA, while the human cluster is also enriched for MAFA (found in the spatial transcriptomics data in the deeper region of the dorsal horn) and the mechanosensitive protein PIEZO2, which may confer evolutionarily novel functions on this population. (2) Human Inh-Dorsal-8 was highly homologous to mouse Inhib-11, a member of the Pdyn family located in lamina I-III and associated with 290 mechanical allodynia pain symptoms (Fig. 5L). Both clusters were enriched for the neuropeptides PDYN and PNOC (both found in the spatial transcriptomics data over the dorsal horn), as well as PROX1 and TACR3. The human cluster was enriched for the neuropeptide NPPC while the mouse cluster was enriched for the neuropeptide Gal. In

295 the future, such cross-species cell type relationships can be used to propose behavioral functions for a broad range of human neuronal populations.



#### Fig. 5: Integration of human and mouse spinal cord neurons. A, UMAP plot of human spinal neurons. **B**, UMAP plot of mouse spinal neurons (Russ et al. 2021). C, Heatmap correlation plot of the human spinal cord 300 neurons compared to mouse populations (Russ et al. 2021). Correlation is colored from purple to yellow and was calculated using the top 2,000 highly variable genes. Red boxes highlight 7 pairs of clusters shown in E-L. Human clusters are bolded and mouse clusters are in regular font. D, A forced graph (quotient) showing neuronal clusters as nodes connected by 305 edges. Edges represent correlations greater than 0.8 between human and mouse neuronal clusters. Line thickness and distance indicates correlation value, with greater correlations having a thicker and shorter line. Human neuronal clusters are bolded and shown in shades of pink. Mouse neuronal clusters are shown in shades of blue. Grey circles highlight 7 pairs of 310 clusters shown in E-L. E-L, Venn-diagrams represent differentially expressed genes between human and mouse pairs, as well as genes shared by a pair of clusters vs all other neurons. Top genes enriched in the human neurons from each pair are shown in the pink circle, and top genes enriched in mouse neurons in the blue circle. Genes enriched in the human 315 and mouse pair compared to all other neurons are shown in the intersection of the venn-diagram.

# Human motoneurons are defined by genes related to cell structure, cell size, and ALS

We next sought to use this cellular and molecular resource to study the gene expression profile of human motoneurons and to determine whether their molecular repertoire provided insight into their selective vulnerability in diseases such as ALS and SMA.<sup>1</sup> We examined the top 50 marker genes that distinguished the motoneuron cluster from other human spinal neurons. To determine whether these genes were enriched in 325 motoneurons in spinal cord tissue, we assessed the distribution of the entire predicted gene signature using the spatial transcriptomics dataset from an independent donor subject. Indeed, this signature was strongly enriched in the most ventral spinal tissue, confirming the overall pattern of motoneuron marker genes (Supplemental Fig. S13). Overall, the motoneuron markers included those involved in acetylcholine synthesis and 330 function (SLC5A7 and ACLY), as expected, but surprisingly were dominated by three partially overlapping sets of genes: (1) those involved in cytoskeletal structure, (2) neurofilament genes related to cell size, and (3) those that are directly implicated in ALS pathogenesis (Fig. 6A).

335

320

Cytoskeletal components were the most abundant category of motoneuron marker gene and the most enriched gene ontology (GO) terms, including GO annotation clusters related to microtubules (p=0.000009) and axon structure and neurofilaments

<sup>&</sup>lt;sup>1</sup> With our current approach, the human motoneuron cluster could not be divided into more refined types. This may reflect technical limits (these nuclei contained a relatively low number of genes per nucleus) or biological continua amongst motoneuron features. Co-clustering with mouse MNs from previously published datasets suggested a division into alpha/beta and gamma sub-types but these were not clearly separated by human marker genes. As a result, human motoneurons were analyzed as one group.

(p=0.000018) (Data File Table S4). The marker genes that were structural components of neurofilaments (NEFL, NEFM, NEFH, and PRPH) have been directly linked to cell size, axon diameter, and degeneration (Beaulieu et al., 1999; Côté et al., 1993; Gama Sosa et al., 2003; Marszalek et al., 1996; Xu et al., 1993a; 1993b), providing a potential link between human motoneuron gene expression and cellular phenotype. Amongst ALS-related motoneuron marker genes, there were both cytoskeletal genes (NEFH, PRPH, TUBA4A, and STMN2), as well as genes that are not directly linked to cellular structure (SOD1, OPTN, and SPP1).





Fig. 6. Human motoneurons are characterized by genes associated with ALS, cell structure, and increased cell size. A, Association network plot constructed using the String protein database for the top 50 marker aenes of human motoneurons. Genes related to cholineraic neurotransmission are shown in orange, genes related to ALS are shown in red, and genes whose over-expression in mice causes enlargement and/or degeneration of motoneurons are shown in green. Families of genes related to the microtubule or neurofilament cytoskeletal components are highlighted by gray. **B**, Volcano plot showing the distribution of genes enriched in either lumbar motoneurons from adult mice or lumbar motoneurons from adult humans, with several significant genes of interest labeled, including genes related to ALS (red). Genes are plotted by the average change in expression (avg log<sub>2</sub>-fold change) and by the statistical strength of the

340

345

355

350

difference (-log<sub>10</sub>(p-value). Insignificant genes are shown in gray and genes that are significantly different are shown in black or red. C, Gross anatomical and neuronal measurements of the human (H) and mouse (M) lumbar spinal cords. Measurements include median neuron size (µm), transverse area of 365 the spinal cord ( $mm^2$ ), maximum nerve length (cm), and body mass (kg). D, Transverse sections of one side of the adult lumbar human (above) and mouse (below) spinal cords, with antibody labeling for NeuN. Images are representative of data from three subjects. Scale bars are 1 mm. Boxes indicate the regions shown in panel E. Gray lines indicate the 370 laminar/regional boundaries used in panel F and were based on prior work (Routal and Pal, 1999; Schoenen, 1991; "The Human Nervous System," 2004; Watson et al., 2009). E, Higher magnification view of NeuN labeled spinal neurons from panel **D** in the human (above) and mouse (below). The left-side images are from the dorsal horn and the right-side images are of putative motoneurons 375 in lamina IX. Scale bars are 125 µm. F, Histogram showing the count distribution of neuron Feret distance (maximum caliper, similar to diameter) in human (pink) and mouse (teal) across the different lamina regions of the adult lumbar spinal cord. Measurements are given in µm and the count scale is shown at the right of each plot. Bonferroni-adjust Wilcox test p-380 values and Bhattacharyya Coefficients (BC) for human vs mouse distributions are as follows. I/II: p=7.5e-27, BC=0.93, III/IV: p=4.0e-12, BC=0.96, V/VI: p=3.2e-30, BC=0.89, VII/VIII: p=5.7e-49, BC=0.80, IX: p=1.6e-19, BC=0.71, X: p=9.5e-10, BC=0.92.

385

390

395

400

405

We further examined the expression of a panel of ALS-related genes compiled from the literature (Brown and Al-Chalabi, 2017; Castellanos-Montiel et al., 2020; Gregory et al., 2020; Klim et al., 2019; Morisaki et al., 2016; Taylor et al., 2016; Theunissen et al., 2021; Yamamoto et al., 2017) across human spinal cord cell types. In addition to the genes above, we found that CHCHD10 and KIF5A were enriched in spinal motoneurons, extending this signature profile (Supplemental Fig. S15 and S17). We also observed enriched expression of SPP1, FUS, and C9ORF72 in microglia and STMN2, and TUBA4A in an excitatory mid-population (Ex-M-1, Supplemental Fig. S16, S17). TARDBP was not detected at sufficient levels in the dataset to characterize its expression pattern.

The enriched expression of neurodegeneration-associated genes in human motoneuron transcriptomics may have been partly due to the age of the study donors. We examined expression of ALS-related genes in a dataset of human embryonic spinal cord cell types (Rayon et al., 2021) and found low levels of gene expression (i.e. NEFH and TUBA4A), moderate but broad cell type expression (i.e. OPTN and PRPH), or high and ubiquitous cell type expression (i.e. SOD1 and STMN2) (Supplemental Fig. S17). Thus, the enrichment of ALS-related genes in human motoneurons was not apparent in newly formed motoneurons but likely emerged at some point during motoneuron maturation or aging. Finally, to test whether this expression profile reflected a non-specific enrichment of degeneration-associated genes in human motoneurons with age, we compared the expression of genes for multiple neurodegenerative diseases, including those with age-

related associations, across human spinal cord cell types. This analysis revealed a specific association of ALS-related gene expression in human motoneurons (Supplemental Fig. S21)

To determine whether ALS-related genes are also enriched in motoneurons in mice, the major animal model for studying the genetic basis of neurodegenerative disease, we compared the human data to prior single nucleus sequencing data from lumbar skeletal motoneurons from adult mice (Alkaslasi et al., 2021). We found that prominent ALSrelated genes were enriched and were expressed at higher levels specifically in the human motoneurons as compared to mouse motoneurons (Fig. 7C). To determine if this enrichment is unique to motoneurons, we examined the analysis of a recent study on conservation in human brain gene expression patterns (Pembroke et al., 2021) and found that three genes of interest (SOD1, TUBA4A, OPTN) had a significantly higher mean human to mouse divergence score than other assayed genes (mean score of 0.587 ± 0.19 versus 1,426 other genes with mean 0.320 ± 0.123, p=0.0002).

#### **Cell Size and Protein Expression in Human Lumbar Motoneurons**

Why might human motoneurons be defined by genes related to cell size and structure, compared to other human neurons and mouse motoneurons? It is well established that human motoneurons are large, but to answer these relative size questions, we analyzed neuron soma size across all laminae in human and mouse lumbar spinal cord tissue. 425 Given the obvious differences in overall body size and anatomy, we expected that most classes of human neurons would be larger than mouse neurons. Surprisingly, we found that, overall, human and mouse lumbar spinal neurons were approximately the same size, with a median Feret diameter (maximal caliper length) of 16.02 and 13.13 µm, respectively (human mean  $20.3 \pm 0.28$  s.e.m; mouse mean  $14.28 \pm 0.12$  s.e.m.) (Fig. 430 6C and Data File Table S2). Indeed, across most laminae of the spinal cord, human and mouse neurons displayed somewhat similar size distributions. By contrast, human lamina IX spinal neurons were approximately 2-fold larger than those in mouse and could be up to ~120 µm across compared to ~50 µm in mouse (Fig. 6E-F and Data File S5). These measurements are consistent with those previously reported for human and 435 mouse spinal motoneuron soma (Ishihara et al., 2001; Kawamura and Dyck, 1977; McHanwell and Biscoe, 1981) and the same proportion that has been observed for human and mouse motoneuron axon caliber (M. D. Nguyen et al., 2000; Sobue et al., 1981a; 1981b). Assuming that human alpha motoneurons are within the higher end of this size distribution, then they are (1) much larger than other human spinal neurons, (2) 440 increased in scale relative to mouse motoneurons, and (3) among the among the largest vertebrate neurons, including elephant motoneurons (~85 µm) (Hardesty, 1902), human Betz corticospinal neurons (~60-100 µm) (H. Braak and E. Braak, 1976), subsets of human dorsal root ganglion neurons (up to 100 µm) (Haberberger et al., 2019) and salmon Mauthner cells (~87 µm) (Zottoli, 1978). This notable size of human 445

motoneurons may explain the specialized gene expression signature that we observed in this subclass of neurons.



Fig. 7. ALS-related proteins are enriched in human motoneurons. A, Antibody staining on adult human lumbar spinal cord against NeuN (RBFOX3 gene, general neural marker) and the ALS-related genes NEFH, OPTN, PRPH, SOD1, STMN2, and TUBA4A. Gray matter outlines are shown in pink and boundaries of lamina I/II, III/IV, V/VI, VII/VIII, IX, and X are shown in gray. Boxes indicate the enlarged images in panel. A, Images are representative of data from three subjects (two male and one female). Scale bars are 500 µm. B, Inset of the images in panel A, from the boxed region in laminae III/IV or lamina IX. The width of the insets is 500 µm. C, Quantification of the percent of NeuN+ neurons that co-expressed the indicated proteins in either all neurons not in lamina IX (non-IX) or those in lamina IX. The mean ± s.e.m. are shown. The plotted values and number of cells counted in each subject and category are available in Data File Table S5). Paired t-test results are shown where \* indicates p < 0.05, \*\* indicates p < 0.005, \*\*\*\* indicates p < 0.0001. **D**, The sizes of NeuN+ neurons are shown for each indicated protein. For NeuN, 100% of cells were positive, by definition, and the total counts and sizes (mean ± s.e.m.) are shown for neurons not in lamina IX (non-IX) or those in lamina IX. For all other indicated proteins, the Feret distance sizes are shown for all neurons that did not (-) or did (+) express the indicated protein (mean Feret distance in µm). Each line joins values within one subject. There is an unpaired value for NEFH because we did not detect neurons in lamina IX that did not express NEFH. The plotted values and number of cells measured in each subject and category are available in Data File Table S5. Paired two-tailed t-test p-values, after Benjamini-Hochberg FDR correction, are shown where \* indicates p < 0.05, \*\* indicates p < 0.005. \*\*\*\* indicates p < 0.005. 0.0001.

475

470

450

455

460

To assess specific ALS-related gene expression in tissue and to compare protein expression and in situ cell size, we next analyzed the protein expression of six ALSrelated genes in post-mortem lumbar spinal cord from four donors, using immunofluorescence: NEFH, OPTN, PRPH, SOD1, STMN2, and TUBA4A. We found that neurons expressing NEFH, OPTN, PRPH, STMN2, and TUBA4A proteins were all 480 enriched within the motoneuron region (lamina IX) of the lumbar spinal cord, with limited positive cells in other regions except for scattered, large cells in lamina III/IV of the dorsal horn which may be projection neurons and smaller neurons in medial lamina VII (Fig. 7A-D and Data File Table S5). SOD1 was present in lamina IX and throughout the spinal cord in a distinct peri-nuclear distribution, in contrast to the enriched RNA 485 expression that we detected by single nucleus RNA sequencing. To ensure the accuracy of the SOD1 expression pattern, we validated the SOD1 antibody through targeted knockdown in human iPS neurons (Supplemental Fig. S18D). Overall, these data confirm the expression of ALS-related proteins in human spinal motoneurons in tissue (Pardo et al., 1995; Tsang et al., 2000). 490

We also studied the expression of these proteins in the mouse spinal cord, using lumbar tissue from aged animals (11 months old) to approximate the advanced age of the human subjects in this study. We found that Nefh, Optn, Prph, Stmn2, and Tuba4a displayed enrichment in lamina IX, while Sod1 was expressed ubiquitously, similar to what has been previously described for Sod1 in mice (Supplemental Fig. S18 A-C) (Pardo et al., 1995). Together with the comparative transcriptomic analysis above, this suggests that while human and mouse motoneurons are both enriched for expression of ALS-related genes, in human motoneurons the relative expression levels are higher and the enrichment of these genes as motoneuron-specific markers is greater.

- Finally, we tested the relationship between expression of ALS-related genes and cell 500 size within human spinal neurons in tissue. We measured the Feret distances of human neurons expressing each ALS-related protein in comparison with non-expressing neurons. We found that neurons that expressed NEFH, OPTN, PRPH, STMN2, and TUBA4A were generally larger than non-expressing neurons, both within the motoneuron region of lamina IX and in other lamina (Fig. 7D). Within lamina IX, this 505 likely reflects enrichment within the larger alpha motoneurons (versus gamma) and in other laminae, this may reflect expression within spinocerebellar projection neurons that degenerate in ALS (Averback and Crocker, 1982; Williams et al., 1990) or other large cell classes. Importantly, we found that the very largest lamina IX neurons - that are known to be most susceptible to degeneration in ALS (Kawamura et al., 1981; McIlwain, 510 1991; Sobue et al., 1981b; 1981a) – were the most likely to express these markers. For lamina IX neurons with a Feret distance greater than 70 µm, on average 100% expressed NEFH, 81% expressed OPTN, 88% expressed PRPH, 60% expressed SOD1, 90% expressed STMN2, and 95% expressed TUBA4A (Data File Table S5).
- 515 These data further link motoneuron size and vulnerability to these cytoskeletal genes that have causative roles in motoneuron size and human disease.

#### Discussion

540

545

The advent of single cell transcriptomic profiling approaches has transformed many aspects of biology and has the potential to pinpoint novel therapeutic targets amidst the complexity of human disease. In the context of the human nervous system in health and 520 pathological conditions, multiple single nucleus RNA-sequencing studies of the cortex have been generated, but we still lack a comprehensive human spinal cord characterization that could provide crucial insights into chronic pain, spinal cord injury, and neurodegeneration. Here, we used human tissue samples prepared under careful neuroprotective conditions to collect high-quality tissue from organ donor subjects to 525 create a cellular taxonomy of the adult human lumbar spinal cord including an atlas of glial, vascular, and neuronal cell types. We characterized the highly complex landscape of human neuronal signatures and contextualized these findings relative to established cell types in the mouse spinal cord. We revealed spatial location (along the dorsalventral axis) as the conserved, core organizing principle of mammalian spinal neurons. 530 In addition, as a demonstration of the utility of this resource, we identified a signature of degeneration-associated genes expressed specifically in human motoneurons. This atlas and an accompanying web-based resource (https://vmenon.shinyapps.io/hsc biorxiv/) serve as effective tools for understanding

535 human spinal cord biology and enabling future discoveries.

This work builds on recent efforts toward understanding molecular and cellular heterogeneity in the human spinal cord, particularly during development. Rayon and colleagues (Rayon et al., 2021), focused on first trimester spinal cord derived from four human embryos, and identified diverse progenitor and neuronal populations, and performed a systematic comparison with the spinal cord cell types of the developing mouse spinal cord. Zhang and colleagues (Q. Zhang et al., 2021) profiled the early and mid-stages of fetal development with an important focus on glial development and cellcell communication. For the adult human spinal cord, Zhang and colleagues performed single nucleus RNA-seq on the spinal cord from two donors and identified coarse glial and neuronal cell types (D. Zhang et al., 2021). However, they did not characterize human neurons to the same degree as this study, especially with respect to motoneurons, nor did they validate predicted gene expression patterns in tissue or provide a web resource for researchers to interact with the data.

Comparison of the human neuronal populations that we described here to their mouse
 counterparts can drive two major advances in our understanding of human spinal cord
 biology. First, the alignment of human cell types to mouse homologues for which the
 behavioral contributions and circuit information is available will allow us to extrapolate
 the function of human cell types. Together with overlaid human molecular data on
 disease markers or pharmacological responsiveness, these data will become a powerful
 perspective on pathophysiological mechanisms. Second, the discovery of conserved
 trends can identify core principles of spinal cord function. We previously found that
 dorsal and ventral neuronal populations displayed very different properties in their
 robustness, relatedness, and overall gene expression correlations. In addition, recent

560 perinatal spinal cell types also demonstrated the dominance of dorsal-ventral location in explaining spinal neuron variability. Together with these prior studies in mouse, our work here revealed that dorsal-ventral location is the shared, fundamental axis of spinal neuron transcriptional diversity.

Although we captured all major cell types and most known subclasses of cells in this catalog, we foresee further advances as additional data sets of this type are generated. 565 In particular, the motoneuron population did not segregate into discrete subgroups based on molecular profile. This limitation may be technical, due to the overall signal-tonoise ratio of single-nucleus RNA-seg in key genes within prospective subgroups, or it may be that motoneuron substructure in adult human spinal cord is continuous at the transcriptomic level; studies of cortical and thalamic neurons have suggested the 570 existence of such continuous transcriptomic variation(Bakken et al., 2021b; Tasic et al., 2018). As technological advances allow for higher-sensitivity transcriptomics on large numbers of cells, a clearer picture of the heterogeneity within motoneurons will likely become apparent. The current limitations did not affect our ability to identify robust signals distinguishing motoneurons from other classes of spinal neurons, especially 575 when combining single-nucleus transcriptomics with spatial approaches. Rather, this resource allowed us to observe key aspects of the human motoneuron expression profile that support a model of specific molecular repertoires for motoneuron cell structure that also confer selective vulnerability to degeneration(Castellanos-Montiel et al., 2020; Clark et al., 2016; Hardy and Rogaeva, 2014). 580

An intriguing finding from our analysis, made possible by our extensive profiling of motoneurons, is the enrichment of cytoskeletal gene expression in these cells. All cells require a functional cytoskeleton, raising the question of why spinal motoneurons in particular are so crucially dependent on the proper expression and function of cytoskeletal-related genes. Interestingly, the neurofilament genes that were enriched in 585 human spinal motoneurons compared with other neuronal populations – NEFL, NEFM, NEFH, and PRPH – are precisely those structural components that drive increased axon caliber and cell size (Friede and Samorajski, 1970; Hoffman et al., 1984; Lee and Cleveland, 1996; M. D. Nguyen et al., 2000). Over-expression of mouse NEFL, human NEFM, human NEFH, or mouse PRPH in transgenic mice can each cause enlargement 590 and swellings of motoneuron somas and subsequent axon degeneration (Beaulieu et al., 1999; Côté et al., 1993; Gama Sosa et al., 2003; Marszalek et al., 1996; Xu et al., 1993b; 1993a), linking human motoneuron gene expression and cellular phenotype. Relatedly, these neurofilament genes are found in other large neurons in the brain and peripheral nervous system, suggesting that they may be part of a common signature 595 that permits increased cell size (Bakken et al., 2021a; Limone et al., 2021; M. Q. Nguyen et al., 2021; Tsang et al., 2000; Zeisel et al., 2018). Large soma size and axon caliber may be required to sustain extensive dendritic trees and axons up to a meter long, to support cell energetics, or for firing rate and conduction parameters (Manuel et al., 2019; Perge et al., 2012; Schoenen, 1982). These large cells then rely critically on 600 this protein network and are selectively vulnerable to its abnormal function. Human motoneurons were also distinguished by expression of the microtubule stability factors

TUBA4A and STMN2 (Clark et al., 2016; Klim et al., 2019), potentially highlighting a requirement for structural support in these peripherally projecting cells subject to axonal wear and tear during body movement.

Finally, it is critical to consider the spinal cord as a *community* of cell types that function together in normal health and disease. While we highlight the molecular signature of motoneurons, the single nucleus RNA-sequencing data set that we present provides the first comprehensive resource of all cell types in the adult human spinal cord. We anticipate that this work will have broad implications for understanding spinal cord biology, allowing researchers to parse how ubiquitous genetic alterations interact with diverse cell-type specific molecular profiles in disease and how particular populations may respond to target molecular interventions and pharmacology in chronic pain. We hope that our work will serve as a broad resource and foundation for studying the wide range of cell types involved in sensory and motor function in the human spinal cord.

## STAR★Methods:

#### Key resources table

| REAGENT or RESOURCE                 | SOURCE              | IDENTIFIER |
|-------------------------------------|---------------------|------------|
| Antibodies                          |                     |            |
| KI67                                | Cell Signaling Tech | 9449S      |
| IBA1                                | Synaptic Systems    | 234006     |
| NeuN                                | Millipore Sigma     | ABN90P     |
| SOX9                                | Abcam               | ab185966   |
| OLIG2                               | Millipore Sigma     | MABN50     |
| SOD1                                | Sigma               | HPA001401  |
| OPTN                                | Proteintech         | 10837-1-AP |
| Neurofilament H                     | Cell Signaling      | 2836S      |
| Chat                                | Millpore Sigma      | AB144P     |
| TUBA4A                              | Thermofisher        | PA5-29546  |
| Alexa Fluor® 647 Anti-alpha Tubulin | Abcam               | ab190573   |
| Stathmin-2/STMN2                    | Novus               | NBP1-49461 |
| Peripherin/PRPH                     | Millipore           | AB1530     |
| Biological samples                  |                     |            |

605

| Human spinal cord                                      | Ottawa Hospital<br>Research Institute        | N/A         |
|--------------------------------------------------------|----------------------------------------------|-------------|
| Human spinal cord                                      | Gui de Chauliac<br>Hospital                  | N/A         |
| Human spinal cord                                      | Target ALS<br>Multicenter<br>Postmortem Core | N/A         |
| Chemicals, peptides, and recombinant proteins          |                                              |             |
| ViralBoost Reagent                                     | ALSTEM                                       | #VB100      |
| Lenti-X concentrator                                   | Takara Bio                                   | #631231     |
| Matrigel                                               | Corning Incorporated                         | #354277     |
| Hoechst                                                | Thermo Scientific                            | #62249      |
| ProLong Gold antifade reagent                          | Invitrogen                                   | #P36934     |
| Sucrose                                                | Invitrogen                                   | 15503-022   |
| 1 M HEPES (pH = 8.0)                                   | Gibco                                        | 15630-080   |
| CaCl2                                                  | Sigma Aldrich                                | C1016-100G  |
| MgAc                                                   | Sigma Aldrich                                | M5661-50G   |
| 0.5 M EDTA (pH = 8.0)                                  | Corning                                      | MT-46034CI  |
| Dithiothreitol (DTT)                                   | Sigma Aldrich                                | 10197777001 |
| Triton-X                                               | Sigma Aldrich                                | T8787       |
| 1 M Tris-HCl (pH = 7.4)                                | Sigma Aldrich                                | T2194       |
| 0.04% BSA                                              | New England Biolabs                          | B9000S      |
| 0.2 U/µL RNAse Inhibitor                               | Lucigen                                      | 30281-1     |
| Trypan Blue Stain (0.4%)                               | Thermo Fisher<br>Scientific                  | T10282      |
| Critical commercial assays                             |                                              |             |
| Chromium Single Cell 3' GEM, Library & Gel Bead Kit V3 | 10X Genomics                                 | PN-1000075  |
| Chromium Single Cell B Chip Kit                        | 10X Genomics                                 | PN-1000074  |
| Chromium i7 Multiplex Kit                              | 10X Genomics                                 | PN-120262   |

| Visium Spatial Gene Expression Slide & Reagent Kit | 10X Genomics                                            | PN-1000184                                                                   |  |  |
|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Visium Accessory Kit                               | 10X Genomics                                            | PN-1000194                                                                   |  |  |
| Dual Index Kit TT Set A                            | 10X Genomics                                            | PN-1000215                                                                   |  |  |
| Deposited data                                     |                                                         | ·                                                                            |  |  |
| Anonymized raw sequencing data                     | This paper                                              | GEO: GSE190442                                                               |  |  |
| Raw mass spectrometry datasets                     | This paper                                              | https://www.synap<br>se.org/                                                 |  |  |
| Experimental models: Cell lines                    |                                                         |                                                                              |  |  |
| Human iPSC Line                                    | Tian et al., 2019                                       | N/A                                                                          |  |  |
| Experimental models: Organisms/strains             |                                                         |                                                                              |  |  |
| C57BL/6J                                           | Jackson Laboratory                                      | 000664                                                                       |  |  |
| BALB/cJ                                            | Jackson Laboratory                                      | 000651                                                                       |  |  |
| Recombinant DNA                                    |                                                         |                                                                              |  |  |
| mU6-sgRNA EF1a-puro-T2A-2XmycNLS-BFP               | Addgene                                                 | #127965                                                                      |  |  |
| Software and algorithms                            |                                                         |                                                                              |  |  |
| Seurat 4.0                                         | Hafemeister and<br>Satija, 2019; Stuart et<br>al., 2019 | https://satijalab.org<br>/seurat/index.html                                  |  |  |
| biomaRt                                            | Durinck et al., 2005                                    | https://bioconducto<br>r.org/packages/rel<br>ease/bioc/html/bio<br>maRt.html |  |  |
| Homologene                                         | National Center for<br>Biotechnology<br>Information     | https://CRAN.R-<br>project.org/packag<br>e=homologene                        |  |  |
| Silhouette Function from the Cluster Library       | Maechler et al., 2022                                   | https://cran.r-<br>project.org/web/pa<br>ckages/cluster/ind<br>ex.html       |  |  |

| Neurodegenerative disease gene analysis | This paper                     | https://colab.resear<br>ch.google.com/driv<br>e/19Ty97LOwT3A<br>maVCJGKA8BXX<br>NFYH_iSZ4?usp=<br>sharing<br>and<br>https://colab.resear<br>ch.google.com/driv<br>e/1BDJaiwhYnhM<br>O9VJZNWUn9Iw<br>c87Y7mjr?usp=sh<br>aring |
|-----------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cell2Location                           | Kleshchevnikov et al.,<br>2022 | https://cell2location<br>.readthedocs.io/en/<br>latest/                                                                                                                                                                      |
| Fiji/ImageJ                             | Fiji v2.1.0                    | https://imagej.net/s<br>oftware/fiji/                                                                                                                                                                                        |
| Adobe Photoshop                         | Adobe Systems                  | https://www.adobe.<br>com                                                                                                                                                                                                    |
| Adobe Illustrator                       | Adobe Systems                  | https://www.adobe.<br>com                                                                                                                                                                                                    |
| Other                                   |                                |                                                                                                                                                                                                                              |
| Resource website                        | This paper                     | https://vmenon.shi<br>nyapps.io/humans<br>pinalcord/                                                                                                                                                                         |

Human spinal cord acquisition and preparation. Spinal cords for single nucleus RNA sequencing were obtained from neurologic determination of death organ-donor patients (~50-80 years old, 4 men, 3 women) under the approval of the French institution for organ transplantation (Agence de la Biomédecine) or the Ottawa Health Science Network Research Ethics Board, following the template provided by the University of Ottawa and the Tri-Council Policy Statement Guidelines. Both approvals imply consent for using anonymized donor genetic information. Human lumbar spinal cords were retrieved under chilled body and neuroprotective conditions as described previously (Bauchet et al., 2022; Dedek et al., 2019; Galuta et al., 2020). The extraction procedure took 20-40 minutes and was done within three hours of cessation of circulation by aortic
 cross-clamp. Lumbar spinal cord tissue was flash frozen on liquid nitrogen in the operating room and stored at -80°C until nuclei isolation.

For immunohistochemistry experiments, lumbar spinal cord tissue was isolated from organ-donor patients (~55-65 years old, 3 men, 1 woman). The tissue was immediately

fixed in 4% paraformaldehyde for 24-48 hours, then washed in PBS, and placed in 30% sucrose for 2-4 days at 4°C before being embedded in OCT medium for sectioning.

635

640

645

650

655

For Visium spatial transcriptomics, postmortem lumbar spinal cord from a nonneurological control subject (~75 years old, male) was acquired from the Target ALS Multicenter Postmortem Core as part of the New York Genome Center (NYGC) Amyotrophic Lateral Sclerosis (ALS) Consortium. Informed consent is acquired by each Target ALS member site through its own institutional review board (IRB) protocol and samples are transferred to the NYGC in accordance with all applicable foreign, domestic, federal, state, and local laws and regulations for processing, sequencing and analysis. The Biomedical Research Alliance of New York (BRANY) IRB serves as the central ethics oversight body for the NYGC ALS Consortium. Ethical approval for this study was given by the BRANY IRB.

**Mouse work and spinal cord acquisition.** All procedures and experiments were approved by the Animal Care and Use Committee of NINDS (protocol #1384). Adult mice were of 50:50 mixed background from strains C57BL/6J and BALB/CJ, housed in standard conditions. For basic anatomical experiments, two male and two female mice of approximately 24 weeks old were used. For ALS marker gene expression studies, two male and one female mice of approximately 11 months old were used. To obtain spinal cord tissue, anesthetized mice were transcardially perfused with PBS followed by cold 4% paraformaldehyde (PFA). The spinal cords were harvested and post-fixed in cold 4% PFA overnight at 4°C, cryoprotected by immersion in 30% sucrose overnight at 4°C and embedded in OCT medium for sectioning.

Nuclei isolation. Nuclei were isolated from fresh frozen human spinal cords using a triton-based protocol (Matson et al., 2018). Briefly, after removing the dura, half a segment of spinal cord was placed in a Dounce homogenizer (Kontes Dounce Tissue Grinder) containing 500 µL of lysis buffer (0.32 M sucrose, 10 mM HEPES [pH 8.0], 5 mM CaCl2, 3 mM 586 MgAc, 0.1 mM ETDA, 1 mM DTT, 0.1% Triton X-100). After 660 douncing with 5 strokes of pestle A and 5-10 strokes of pestle B, the lysate was diluted in 3 mL of sucrose buffer (0.32 M sucrose, 10 mM 588 HEPES [pH 8.0], 5 mM CaCl2, 3 mM MgAc, 0.1 mM ETDA, 1 mM DTT) and passed over a 70 µm strainer. The filtered lysate was centrifuged at 3,200 x g for 5 min at 4°C. After centrifugation, the pellet was resuspended in 3 mL of sucrose buffer and centrifuged again at 3,200 x g for 5 min at 665 4°C. After centrifugation, the pellet was resuspended in 3 mL sucrose buffer and incubated for 2 min on ice. The sample was transferred to an Oak Ridge tube and homogenized for 1 min using an Ultra-Turrax Homogenizer (IKA). Then, 12.5 mL of density sucrose buffer (1 M sucrose, 10 mM HEPES [pH 8.0], 3 mM MgAc, 1 mM DTT) was layered below the sample. The tube was centrifuged at 3,200 x q for 20 min and 670 the supernatant immediately poured off. The nuclei on the side of the tube were resuspended with 100 µL of PBS with 0.04% BSA and 0.2 U/µL RNase inhibitor. Nuclei were inspected for visual appearance and quantified with a hemocytometer before proceeding with nuclei capture and sequencing.

675 **Single nucleus RNA sequencing.** Single nucleus RNA sequencing was carried out using Single-cell gene expression 3' v3 kit on the Chromium platform (10X Genomics) according to manufacturer's instructions with one modification. Following reverse-transcription, an additional PCR cycle was added to the number of cycles for cDNA amplification to compensate for decreased cDNA abundance in nuclei compared to

cells. Libraries were sequenced to a minimum depth of 20,000 reads per nucleus using an Illumina HiSeq 3000 (PE 26 – 8 – 98 bp). Raw sequencing reads were demultiplexed, aligned, and a count matrix was generated using CellRanger. For alignment, introns and exons were included in the reference genome (GRCh38).

**Quality check analysis.** All the 10x runs for each human sample were initially filtered with an nUMI cutoff of >1000 and then nuclei with less than 5% mitochondrial gene contamination were retained. Next, the mitochondrial genes were also removed from the matrices.

685

690

695

700

715

720

**Top level UMAP and clustering.** The 8 human datasets were integrated using SCTransform normalization followed by CCA based integration from Seurat 4.0 (Hafemeister and Satija, 2019; Stuart et al., 2019).

The integrated sets were then jointly analyzed to identify optimal Principal Component values based on ElbowPlot and PCheatmaps. PC value of 30 was used for clustering and UMAP. The clusters, obtained using a value of 0.6 for Seurat's resolution parameter, were then manually annotated based on the expression of marker genes for various cell types, namely neurons, astrocytes, microglia, oligodendrocytes, OPCs, endothelial cells, pericytes, meningeal cells, Schwann cells, and lymphocytes.

**Sub clustering of major cell types.** Identification of subclusters within cell types was performed separately for three major cell types (neurons, microglia, astrocytes), with the rest being subclustered as groups (Group 1- oligodendrocytes, OPCs, and Schwann cells; Group 2- endothelial cells, pericytes, meningeal cells, and lymphocytes). For each cell type/group, the subclustering was done in multiple rounds until no putative transcriptomic doublets or contamination of other cell types was observed (described below).

For subclustering of major cell types, the raw counts were extracted from 8 datasets, for each cell type, and then re-normalized (using log normalization) and scaled in order to prepare for integration. The integration of 8 datasets belonging to a particular cell type was performed based on CCA-integration workflow from the Seurat 4.0 package. Optimal PC values were selected based on ElbowPlot and PCheatmaps for each cell type in order to be used for further sub clustering and preparation of UMAPs. Multiple resolutions were interrogated, depending on cell type, ranging from values of 0.08 to 3.

During each round, putative transcriptomic doublet clusters and contamination of other cell types was removed (based on expression of multiple major class genes) and the above steps were performed again. Doublets were identified by clusters that expressed markers for more than one cell type. All clusters were checked for doublets by their markers using wilcox and auroc tests, as well as visually using the FeatureScatter option in Seurat.

**Subclustering of neurons.** Neurons were clustered in 2 stages, first dividing the neurons into motoneurons, ventral neurons and dorsal neurons, followed by a second round of further subclustering within motoneurons, ventral neurons and dorsal neurons. As described in the main text, dorsal and ventral neuronal groups were identified using marker genes from previous studies on mouse neurons.

During the first stage, the log normalization of raw counts and scaling (including regressing out the number of transcripts and mitochondrial percentage) of each dataset

was done followed by integration based on the same steps described above for the glia
 and vascular cells. During the second stage, raw counts were again extracted from
 each group (motoneurons, ventral and dorsal) and normalized using SCTransform (to
 avoid dataset size related limitations) and followed by the standard integration workflow
 in the Seurat 4.0 package. In order to obtain a refined set of neuronal subpopulations,
 all the subclusters were interrogated for 'low quality' (based on gene detection), and
 doublets and other contamination and were subsequently removed from the analysis.
 All the refined clusters were then re-integrated to prepare a combined neuronal UMAP
 and mapped with refined subcluster annotations.

During each subclustering, cluster-specific genes were identified based on Wilcox Rank-Sum test and ROC analysis within the FindMarkers function from Seurat 4.0. Based on these genes, the distinct subpopulations based on expression of candidate markers were manually annotated.

735

**Cluster robustness assessment and silhouette scores.** We used two approaches to assess cluster robustness: a post-hoc machine learning-based classification approach, and a silhouette score approach.

- For the post-hoc machine learning approach, we built a random forest classifier for every pair of neuronal clusters, trained on 80% of the nuclei. This classifier was then used to assign cluster membership for the remaining 20% of the cells, and the entire process repeated such that each cell in every pairwise cluster comparison was classified 100 times. A cell that was classified into its original cluster <90 times was deemed "misclassified". For every pair of clusters, we then calculated the mean percentage of cells that were misclassified among the two clusters to generate pairwise cluster robustness scores. For visualization as a constellation diagram, we only connected cluster pairs with minimum misclassification percentage >3%, representing their connections with the mean misclassification percentage.
- For silhouette score evaluation, we used the 'silhouette' function from the 'cluster' library in R (<u>https://cran.r-project.org/web/packages/cluster/index.html</u>), where the Euclidian distance matrix based on the first 25 PCs was used as input, together with the neuronal cell type annotations.

Tissue processing, Visium data generation, and Visium data preprocessing. Frozen postmortem lumbar spinal cord from a non-neurological control subject was 755 embedded in Tissue Plus OCT Compound (Fisher Healthcare, catalog no. 4585) and cryosectioned at -16°C. Sections of 10 µm thickness were collected onto prechilled Visium Spatial Gene Expression Slides (10x Genomics, catalog no. 1000185) by warming the back of the slide to adhere the tissue. Visium spatially resolved gene expression data was generated according to the Visium Spatial Gene Expression User 760 Guide (10x Genomics, CG000239 Rev F). Briefly, tissue sections were fixed in chilled methanol and stained using hematoxylin and eosin. Brightfield histological images were acquired using an EC Plan-Neofluar 10x/0.3 M27 objective on a Zeiss Axio Observer Z1 fitted with a Zeiss Axiocam 506 mono (Carl Zeiss Microscopy, Germany). Raw CZI images were stitched using Zen 2012 (blue edition) (Carl Zeiss Microscopy, Germany) 765 and exported as JPEGs. Tissue sections were permeabilized for 12 minutes which was selected as the optimal time based on tissue permeabilization time course experiments conducted using the Visium tissue optimization protocol. cDNA libraries were prepared

and quantified according to the Visium Spatial Gene Expression User Guide (10x Genomics, CG000239 Rev F) and pooled at a concentration of 10 nM for sequencing.

770

775

795

800

810

Pooled spatial gene expression libraries were loaded at a concentration of 0.9 nM and sequenced on a NovaSeq 6000 System using a NovaSeq S4 Regent Kit v1.5 (200 cycles, Illumina, catalog no. 20027466) using the following recipe: read 1: 100 reads, i7 index read: 10 cycles, i5 index read: 10 cycles, read 2: 100 cycles. The average sequencing depth for each sample was approximately 200-280 x 106 reads.

Raw FASTQ files and histological images were processed using Space Ranger v.1.3.0, which uses a modified STAR v2.7.2a for genome alignment and performs barcode/UMI counting to generate feature-spot matrices. Reads were aligned to a GRCh38 reference genome filtered to exclude IncRNAs, pseudogenes and mitochondrially encoded genes.

780 **Cross species analysis between human spinal cord vs mouse meta-analysis datasets.** Cross species comparison between human and mouse meta-analysis (Russ et al., 2021) spinal cord datasets were performed at two levels: 1. "Top level" which includes all major cell types and 2. Neurons only.

In both cases, the orthologous genes within mouse data matrix were converted to
 human homologs using biomaRt package (Durinck et al., 2005) from Bioconductor and
 in-house scripts. The raw counts from both human and mouse datasets were then split
 by different samples and then re-normalized, scaled and integrated. For the "top-level"
 analysis, SCTransform based integration was performed whereas for neurons only, log
 normalization-based integration was performed. Subsequently, UMAPs and correlation
 matrices were generated for further cross-species comparison of various cell types at
 top level and neuronal sub-clusters.

**Cross-correlation of human and mouse cluster expression**. Cross-species cluster correlation measures were calculated from PCs in the integrated space (using 20 PCs for the top level comparison of major cell classes, and Pearson's correlation of the top 2,000 highly variable genes. Aggregate correlation values for each pair of clusters (one mouse, one human) were calculated as the mean correlation value across all human-mouse nuclei pairs from the respective clusters.

Quotient graphs using qgraph in R were used to show the correlations greater than 0.8 based on the top 2,000 highly variable genes between human and mouse spinal cord neurons (graph "cor", layout "spring").

**GO analysis of human motoneuron marker genes.** The top markers (based on smallest adjusted p-value) of human spinal motoneurons were determined based on the Wilcox Rank Sum test and were analyzed using DAVID 6.8 GO enrichment analysis (<u>https://david.ncifcrf.gov/summary.jsp</u>). The general categories of

805 GOTERM\_BP\_DIRECT, GOTERM\_CC\_DIRECT, and GOTERM\_MF\_DIRECT were analyzed and functional annotation clustering was performed using default parameters including medium classification stringency.

**Focused comparison of mouse and human motor neurons**. Human motor neurons were compared to mouse lumbar skeletal motor neurons from a recent study (Alkaslasi et al., 2021). Mouse MN genes were converted to human homologs using Homologene (<u>https://CRAN.R-project.org/package=homologene</u>). Only genes with human homologs present in both datasets were included in the analysis (13,574). Raw counts were

extracted from each original dataset, normalized using SCTransform, and integrated based on integration anchors. Clustering was performed as described above (resolution = 0.4), and differentially expressed genes were identified based on Wilcox Rank Sum test and ROC analysis within FindMarkers function from Seurat 4.0.

815

820

Analysis of evolutionarily convergence/divergence scores. All available data on gene expression-based human:mouse divergence scores was downloaded from Pembroke et al (Pembroke et al., 2021). Genes of interest were then extracted, yielding scores for three genes (SOD1, TUBA4A, OPTN) that overlapped with this data. We compared the mean and standard deviation of these three genes to the same metrics for the remainder of the assayed genes from the Pembroke report (N=1426 other genes) using a standard two-sided t-test.

**Neurodegenerative disease gene analysis.** Post-QC scRNAseq count data was extracted for seven major cell classes of interest. For each gene per cell class, mean 825 expression was calculated across all assayed cells of that class. These means were then transformed to a Z scale to facilitate comparisons across multiple cell types. The Z scaling was carried out using the mean and standard deviations as the scaling functions as this is the common convention for this conversion. Additionally, genes that did not have any count based data available for that cell class were set to zero at Z scaling. 830 From this large dataframe of normalized counts per cell type, candidate genes for HSP, PD and ALS were extracted from Genomics England Expert Panel App genes audited at the "green" level of confidence [https://panelapp.genomicsengland.co.uk/]. AD genes were annotated by an expert panel and extracted (Ramos et al., 2021) and the ALS list was also supplemented with genes from the literature, as described in the main text. 835 These extracted genes were then clustermapped using the python package seaborn with Z scores greater than 7 truncated to a value of 7 for display purposes.

 SOD1 antibody validation in human iPS neurons with targeted knockdown. Previously published human inducible pluripotent stem cells (hiPSCs) were used to knock down SOD1 (Tian et al., 2019). A SOD1 or non-targeting control sgRNA was cloned into a mU6-sgRNA EF1a-puro-T2A-2XmycNLS-BFP vector (gift from Martin Kampmann's lab; Addgene #127965). sgRNA sequences are as follows: SOD1: GAGGCACCACGACAGACCCG, non-targeting sgRNA:

GAATATGTGCGTGCATGAAG. Lentivirus was produced via transduction of Lenti-X HEK 293T cells using Lipofectamine 3000 in DMEM high glucose GlutaMAX 845 Supplement media containing 10% FBS. 24 hours post-transfection, media was replaced, including ViralBoost Reagent (ALSTEM, #VB100). 96 hours post-transfection, media was collected and concentrated 1:10 in 1xPBS using Lenti-X concentrator (Takara Bio, #631231), aliquoted, and stored at -80°C. 100 ml of these aliquots was used to transduce 100,000 hiPSCs to generate SOD1 KD and control lines. The cells 850 were split and replated on Matrigel (Corning Incorporated #354277) coated coverslips with the viral concentrate in E8+Y-27632 ROCK Inhibitor and allowed to incubate for 24 hours at 37°C, 5% CO<sub>2</sub>. The media was replaced with E8 and the cells were allowed to grow for another 24 hours before fixation with 4% PFA in PBS for 10 mins at room temperature. Cells were washed with PBS 3 times and permeabilized in block (PBS + 855 3% donkey serum + 0.1% tritonX) for 30 mins at room temperature. Primary antibody targeting SOD1 (Sigma, HPA001401-100UL) was diluted at 1:500 in block and cells

were incubated in primary overnight at 4°C on a rocker. The next day, cells were washed three times with PBST and incubated in block with secondary antibody
 (Jackson ImmunoResearch # 711-625-152) and Hoechst (Thermo Scientific #62249) for 1 hour at room temperature. Following 3 washes with PBST, the coverslips were mounted using ProLong Gold antifade reagent (Invitrogen #P36934). After curing, the coverslips were imaged using Nikon spinning disk confocal using laser wavelengths of 405 nm, 488 nm, 561 nm, and 640 nm at 100ms exposure and 75%, 25%, 25% and 100% power respectively. Images were edited using ImageJ.

Immunohistochemistry antibodies. KI67 (Cell Signaling Tech, 9449S), IBA1 (Synaptic Systems, 234006), NeuN (Millipore Sigma, ABN90), SOX9 (Abcam, ab185966), OLIG2 (Millipore Sigma, MABN50), SOD1 (Sigma, HPA001401-100UL), OPTN (Proteintech, 10837-1-AP), Neurofilament H (Cell Signaling, 2836S), Chat (Millipore Sigma, AB144P), TUBA4A (Thermofisher, PA5-29546), Alexa Fluor® 647 Anti-alpha Tubulin (Abcam, ab190573), Stathmin-2/STMN2 (Novus, NBP1-49461), and Peripherin/PRPH (Millipore, AB1530).

Immunohistochemistry. Immunohistochemistry for human and mouse spinal cords were performed as previously described (Sathyamurthy et al., 2018) with modifications for human spinal cords. Briefly, mouse spinal cords were cut at 50 µm and blocking buffer (1% IgG-free BSA, 10% normal donkey serum, 0.1% Triton-X 100 in PBS) for one hour, prior to incubation in blocking buffer and primary antibody for 48 hours at 4°C. Primary antibody was washed off three times in PBS before a 2-hour incubation in secondary antibody at room temperature. Secondary antibody was washed off three times in PBS before a 2-hour incubation in secondary antibody at room temperature.

870

885

890

895

Human spinal cords were cut at 14 μm, washed twice in TBS and placed in 0.05% sodium azide-TBS at 4°C for 3 days under a LED light to quench autofluorescence.
Human spinal cords were placed in blocking buffer (1% IgG-free BSA, 10% normal donkey serum, in TBS) for one hour prior to incubation in blocking buffer and primary antibody for 48 hours at 4°C. Primary antibody was washed off three times in TBS with 0.025% triton before a 2-hour incubation in secondary antibody at room temperature. Secondary antibody was washed off three times in TBS with 0.025% triton before adding a coverslip.

**Imaging.** Images of immunohistochemistry samples were imaged using a Zeiss 800 LSM confocal microscope.

**Image analysis and quantification.** The images were overlaid in Adobe Photoshop where borders between the gray and white matter and the lamina within the gray matter were drawn. These images were then exported to ImageJ for analysis. The cells were measured manually by outlining each cell using the selection tool and adding them to groups within the ROIManager in ImageJ based on lamina. Feret diameter measurements of all the ROIs for each section were saved in a spreadsheet. The white and gray matter of each subject were outlined in ImageJ and their areas were exported to a spreadsheet.

To identify colocalization of markers with NeuN, each neuron was first outlined with the selection tool in ImageJ and saved into different groups based on whether the cell was in lamina IX or not. Then, each cell that had co-occurrence of the markers were placed

into separate groups (double positive in lamina IX and double positive outside lamina IX). Feret diameter measurements were then saved to a spreadsheet and the number of cells in each group were counted in Python.

**Statistical testing.** Two-way ANOVA (repeated-measures) was used for assessing grouped data, such as the correlation and silhouette scores between human and mouse dorsal vs ventral neurons. Two-tailed t tests (unpaired) were used all for differences in silhouette scores and correlation between clusters as well as expression of protein and soma size, as indicated in figure legends. Bonferroni-adjust Wilcox test p-values and Bhattacharyya Coefficients (BC) were used for comparison of human vs mouse cell diameter. Differences among groups were considered significant if p < 0.05. P values are denoted by asterisks: \*p < 0.05; \*\*p < 0.01; \*\*\*p < 0.001; \*\*\*\*p < 0.0001; n.s - not significant. Data are represented as mean  $\pm$  s.e.m. unless otherwise indicated. Statistical analyses were performed using GraphPad prism software and R.

**Data and code availability:** Anonymized raw sequencing data and counts tables are deposited in the Gene Expression Omnibus (GEO) with accession number GSE190442 and with associated metadata in Data File Table S7. The raw mass spectrometry datasets are deposited with Synapse.org. In addition, visualization of expression data at the cluster and donor level are available through a searchable web resource at <u>https://vmenon.shinyapps.io/hsc\_biorxiv/</u>.

## **Supplemental Materials**

Figures. S1 to S21 925 Data Files Tables S1 to S8

**Acknowledgments:** We gratefully acknowledge the gift of human tissue from the 11 donors included in this work and their families, whose contribution has been critical for this work. We thank Dr. Yue Andy Qi for assistance with protein validation. This work was supported by NINDS Intramural funds through 1ZIA NS003153 (KJEM, LL, IH, AJL), 1ZIANS003155 (SH and MEW) NS116350 (JP, KK, HP); by NICHD Intramural funds through 1ZIAHD008966 (MRA, CELP); by the Intramural Research Program of the NIA project ZO1 AG000535 (MAN); by R01 AG06683 and U54 AG076040 from NIA and the NIH Common Fund (AY, VM); by the Canadian Institutes of Health Research, the University of Ottawa Department of Surgery, the Ontario Neurotrauma Foundation, and the Praxis Spinal Cord Institute (AG, SA, JP, MMA, FAQ, SMA, APW, ECT, MEH); and by ANR-15-CE16-012, FRC-EET-2019 grants, CNRS/INSERM/Montpellier Hospital research supports (PFM, EB, LB) and a AL210154 grant (JP, KK, HP).

## 940 **Author contributions:**

Conceptualization: V.M., A.J.L. Methodology and Investigation: all authors. Formal Analysis: A.Y., K.J.E.M., I.H., M.R.A., M.A.N., V.M., A.J.L. Visualization: A.Y., K.J.E.M., I.H., M.R.A., V.M., A.J.L. Writing: K.J.E.M., M.E.W., C.E.L.P., V.M., A.J.L. Supervision: M.E.W., M.E.H., P.F.M., E.B., L.B., E.C.T., H.P., C.E.L.P., V.M., A.J.L.

905

910

920

915

930

935

Funding acquisition: M.A.N., M.E.W., M.E.H., P.F.M., E.B., L.B., E.C.T., H.P., C.E.L.P., V.M., A.J.L.

950 **Competing interests:** M.A.N.'s participation in this project was part of a competitive contract awarded to Data Tecnica International LLC by the National Institutes of Health to support open science research, he also currently serves on the scientific advisory board for Clover Therapeutics and is an advisor to Neuron23 Inc.

955

960

#### References

- Alkaslasi, M.R., Piccus, Z.E., Hareendran, S., Silberberg, H., Chen, L., Zhang, Y., Petros, T.J., Le Pichon, C.E., 2021. Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat Commun 12, 2471–14, doi:10.1038/s41467-021-22691-2
- Allodi, I., Montañana-Rosell, R., Selvan, R., Löw, P., Kiehn, O., 2021. Locomotor deficits in a mouse model of ALS are paralleled by loss of V1-interneuron connections onto fast motor neurons. Nat Commun 12, 3251–18. doi:10.1038/s41467-021-23224-7
- 965 Arnold, E.S., Fischbeck, K.H., 2018. Spinal muscular atrophy. Handb Clin Neurol 148, 591–601. doi:10.1016/B978-0-444-64076-5.00038-7
  - Averback, P., Crocker, P., 1982. Regular involvement of Clarke's nucleus in sporadic amyotrophic lateral sclerosis. Arch Neurol 39, 155–156. doi:10.1001/archneur.1982.00510150025006
- Bakken, T.E., Jorstad, N.L., Hu, Q., Lake, B.B., Tian, W., Kalmbach, B.E., Crow, M., 970 Hodge, R.D., Krienen, F.M., Sorensen, S.A., Eggermont, J., Yao, Z., Aevermann, B.D., Aldridge, A.I., Bartlett, A., Bertagnolli, D., Casper, T., Castanon, R.G., Crichton, K., Daigle, T.L., Dalley, R., Dee, N., Dembrow, N., Diep, D., Ding, S.-L., Dong, W., Fang, R., Fischer, S., Goldman, M., Goldy, J., Graybuck, L.T., Herb, B.R., Hou, X., Kancherla, J., Kroll, M., Lathia, K., van Lew, B., Li, Y.E., Liu, C.S., Liu, H., 975 Lucero, J.D., Mahurkar, A., McMillen, D., Miller, J.A., Moussa, M., Nery, J.R., Nicovich, P.R., Niu, S.-Y., Orvis, J., Osteen, J.K., Owen, S., Palmer, C.R., Pham, T., Plongthongkum, N., Poirion, O., Reed, N.M., Rimorin, C., Rivkin, A., Romanow, W.J., Sedeño-Cortés, A.E., Siletti, K., Somasundaram, S., Sulc, J., Tieu, M., 980 Torkelson, A., Tung, H., Wang, X., Xie, F., Yanny, A.M., Zhang, R., Ament, S.A., Behrens, M.M., Bravo, H.C., Chun, J., Dobin, A., Gillis, J., Hertzano, R., Hof, P.R., Höllt, T., Horwitz, G.D., Keene, C.D., Kharchenko, P.V., Ko, A.L., Lelieveldt, B.P., Luo, C., Mukamel, E.A., Pinto-Duarte, A., Preissl, S., Regev, A., Ren, B., Scheuermann, R.H., Smith, K., Spain, W.J., White, O.R., Koch, C., Hawrylycz, M., Tasic, B., Macosko, E.Z., McCarroll, S.A., Ting, J.T., Zeng, H., Zhang, K., Feng, G., 985 Ecker, J.R., Linnarsson, S., Lein, E.S., 2021a. Comparative cellular analysis of
- motor cortex in human, marmoset and mouse. Nature 598, 111–119. doi:10.1038/s41586-021-03465-8
   Bakken, T.E., van Velthoven, C.T., Menon, V., Hodge, R.D., Yao, Z., Nguyen, T.N., Graybuck, L.T., Horwitz, G.D., Bertagnolli, D., Goldy, J., Yanny, A.M., Garren, E., Parry, S., Casper, T., Shehata, S.I., Barkan, E.R., Szafer, A., Levi, B.P., Dee, N.,
  - 33

| 995  | <ul> <li>Smith, K.A., Sunkin, S.M., Bernard, A., Phillips, J., Hawrylycz, M.J., Koch, C.,<br/>Murphy, G.J., Lein, E., Zeng, H., Tasic, B., 2021b. Single-cell and single-nucleus<br/>RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in<br/>mice, non-human primates, and humans. Elife 10. doi:10.7554/eLife.64875</li> <li>Bauchet, L., Poulen, G., Lonjon, N., Vachiery-Lahaye, F., Bourinet, E., Perrin, F.E.,<br/>Hugnot, JP., 2022. Isolation and Culture of Precursor Cells from the Adult Human<br/>Spinal Cord. Methods Mol. Biol. 2389, 103–110. doi:10.1007/978-1-0716-1783-0_10</li> </ul> |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000 | Beaulieu, J.M., Nguyen, M.D., Julien, J.P., 1999. Late onset of motor neurons in mice overexpressing wild-type peripherin. J. Cell Biol. 147, 531–544. doi:10.1083/jcb.147.3.531                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | Blackstone, C., 2018. Hereditary spastic paraplegia. Handb Clin Neurol 148, 633–652.<br>doi:10.1016/B978-0-444-64076-5.00041-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1005 | Braak, H., Braak, E., 1976. The pyramidal cells of Betz within the cingulate and precentral gigantopyramidal field in the human brain. A Golgi and pigmentarchitectonic study. Cell Tissue Res. 172, 103–119.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Brown, R.H., Al-Chalabi, A., 2017. Amyotrophic Lateral Sclerosis. N Engl J Med 377,<br>1602. doi:10.1056/NEJMc1710379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1010 | Bruyn, R.P., van Dijk, J.G., Scheltens, P., Boezeman, E.H., Ongerboer de Visser, B.W.,<br>1994. Clinically silent dysfunction of dorsal columns and dorsal spinocerebellar<br>tracts in hereditary spastic paraparesis. J Neurol Sci 125, 206–211.<br>doi:10.1016/0022-510x(94)90037-x                                                                                                                                                                                                                                                                                                                                              |
|      | Castellanos-Montiel, M.J., Chaineau, M., Durcan, T.M., 2020. The Neglected Genes of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1015 | ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Front Cell Neurosci 14, 594975. doi:10.3389/fncel.2020.594975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Clark, J.A., Yeaman, E.J., Blizzard, C.A., Chuckowree, J.A., Dickson, T.C., 2016. A<br>Case for Microtubule Vulnerability in Amyotrophic Lateral Sclerosis: Altered<br>Dynamics During Disease. Front Cell Neurosci 10, 204.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1020 | <ul> <li>doi:10.3389/fncel.2016.00204</li> <li>Côté, F., Collard, J.F., Julien, J.P., 1993. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73, 35–46. doi:10.1016/0092-8674(93)90158-m</li> </ul>                                                                                                                                                                                                                                                                                                                                  |
| 1025 | Dedek, A., Xu, J., Kandegedara, C.M., Lorenzo, LE., Godin, A.G., De Koninck, Y.,<br>Lombroso, P.J., Tsai, E.C., Hildebrand, M.E., 2019. Loss of STEP61 couples<br>disinhibition to N-methyl-d-aspartate receptor potentiation in rodent and human<br>spinal pain processing. Brain 142, 1535–1546. doi:10.1093/brain/awz105                                                                                                                                                                                                                                                                                                         |
|      | Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., Huber, W., 2005. BioMart and Bioconductor: a powerful link between biological databases and                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1030 | microarray data analysis. Bioinformatics 21, 3439–3440.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | Friede, R.L., Samorajski, T., 1970. Axon caliber related to neurofilaments and<br>microtubules in sciatic nerve fibers of rats and mice. Anat. Rec. 167, 379–387.<br>doi:10.1002/ar.1091670402                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1035 | Galuta, A., Sandarage, R., Ghinda, D., Auriat, A.M., Chen, S., Kwan, J.C.S., Tsai, E.C.,<br>2020. A Guide to Extract Spinal Cord for Translational Stem Cell Biology Research:<br>Comparative Analysis of Adult Human, Porcine, and Rodent Spinal Cord Stem<br>Cells. Front Neurosci 14, 607. doi:10.3389/fnins.2020.00607                                                                                                                                                                                                                                                                                                          |

| 1040 | Gama Sosa, M.A., Friedrich, V.L., DeGasperi, R., Kelley, K., Wen, P.H., Senturk, E.,<br>Lazzarini, R.A., Elder, G.A., 2003, Human midsized neurofilament subunit induces |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.0 | motor neuron disease in transgenic mice. Exp. Neurol. 184, 408–419.<br>doi:10.1016/s0014-4886(03)00206-1                                                                 |

- Gregory, J.M., Fagegaltier, D., Phatnani, H., Harms, M.B., 2020. Genetics of Amyotrophic Lateral Sclerosis. Curr Genet Med Rep 8, 121–131. doi:10.1007/s40142-020-00194-8
  - Haberberger, R.V., Barry, C., Dominguez, N., Matusica, D., 2019. Human Dorsal Root Ganglia. Front Cell Neurosci 13, 271. doi:10.3389/fncel.2019.00271
  - Hafemeister, C., Satija, R., 2019. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296–15. doi:10.1186/s13059-019-1874-1
  - Hardesty, I., 1902. Observations on the medulla spinalis of the elephant with some comparative studies of the intumescentia cervicalis and the neurones of the columna anterior.
  - Hardy, J., Rogaeva, E., 2014. Motor neuron disease and frontotemporal dementia: sometimes related, sometimes not. Exp. Neurol. 262 Pt B, 75–83. doi:10.1016/j.expneurol.2013.11.006
  - Häring, M., Zeisel, A., Hochgerner, H., Rinwa, P., Jakobsson, J.E.T., Lönnerberg, P., La Manno, G., Sharma, N., Borgius, L., Kiehn, O., Lagerström, M.C., Linnarsson, S., Ernfors, P., 2018. Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat Neurosci 21, 869–880. doi:10.1038/s41593-018-0141-1
  - Hoffman, P.N., Griffin, J.W., Price, D.L., 1984. Control of axonal caliber by neurofilament transport. J. Cell Biol. 99, 705–714. doi:10.1083/jcb.99.2.705
- Ishihara, A., Ohira, Y., Tanaka, M., Nishikawa, W., Ishioka, N., Higashibata, A., Izumi, R., Shimazu, T., Ibata, Y., 2001. Cell body size and succinate dehydrogenase activity of spinal motoneurons innervating the soleus muscle in mice, rats, and cats. Neurochem Res 26, 1301–1304. doi:10.1023/a:1014245417017
  - Kawamura, Y., Dyck, P.J., 1977. Lumbar motoneurons of man: III. The number and diameter distribution of large- and intermediate- diameter cytons by nuclear columns. J Neuropathol Exp Neurol 36, 956–963. doi:10.1097/00005072-197711000-00007
    - Kawamura, Y., Dyck, P.J., Shimono, M., Okazaki, H., Tateishi, J., Doi, H., 1981. Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 40, 667–675. doi:10.1097/00005072-198111000-00008
  - Klim, J.R., Williams, L.A., Limone, F., Guerra San Juan, I., Davis-Dusenbery, B.N., Mordes, D.A., Burberry, A., Steinbaugh, M.J., Gamage, K.K., Kirchner, R., Moccia, R., Cassel, S.H., Chen, K., Wainger, B.J., Woolf, C.J., Eggan, K., 2019. ALSimplicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 22, 167–179. doi:10.1038/s41593-018-0300-4
- Lee, M.K., Cleveland, D.W., 1996. Neuronal intermediate filaments. Annu. Rev. Neurosci. 19, 187–217. doi:10.1146/annurev.ne.19.030196.001155
  - Limone, F., Mordes, D., Couto, A., Pietiläinen, O., Joseph, B.J., Burberry, A., Ghosh, S.D., Meyer, D., Goldman, M., Bortolin, L., Cobos, I., Therrien, M., Stevens, B., Kadiu, I., McCarroll, S.A., Eggan, K., 2021. Single-nucleus sequencing reveals

1085

1045

1050

1055

1060

1065

1070

1075

enriched expression of genetic risk factors sensitises Motor Neurons to degeneration in ALS. bioRxiv 2021.07.12.452054. doi:10.1101/2021.07.12.452054

- Manuel, M., Chardon, M., Tysseling, V., Heckman, C.J., 2019. Scaling of Motor Output, From Mouse to Humans. Physiology (Bethesda) 34, 5–13. doi:10.1152/physiol.00021.2018
- Marszalek, J.R., Williamson, T.L., Lee, M.K., Xu, Z., Hoffman, P.N., Becher, M.W., Crawford, T.O., Cleveland, D.W., 1996. Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J. Cell Biol. 135, 711–724. doi:10.1083/jcb.135.3.711

1090

1110

1115

1125

- Matson, K.J.E., Russ, D.E., Kathe, C., Maric, D., Hua, I., Krynitsky, J., Pursley, R., Sathyamurthy, A., Squair, J.W., Courtine, G., Levine, A.J., 2021. A Single Cell Atlas of Spared Tissue Below a Spinal Cord Injury Reveals Cellular Mechanisms of Repair. bioRxiv 2021.04.28.441862. doi:10.1101/2021.04.28.441862
- Matson, K.J.E., Sathyamurthy, A., Johnson, K.R., Kelly, M.C., Kelley, M.W., Levine, A.J., 2018. Isolation of Adult Spinal Cord Nuclei for Massively Parallel Singlenucleus RNA Sequencing. J Vis Exp e58413–e58413. doi:10.3791/58413
  - McHanwell, S., Biscoe, T.J., 1981. The sizes of motoneurons supplying hindlimb muscles in the mouse. Proc R Soc Lond B Biol Sci 213, 201–216. doi:10.1098/rspb.1981.0062
- McIlwain, D.L., 1991. Nuclear and cell body size in spinal motor neurons. Advances in neurology 56, 67–74.
  - Morisaki, Y., Niikura, M., Watanabe, M., Onishi, K., Tanabe, S., Moriwaki, Y., Okuda, T., Ohara, S., Murayama, S., Takao, M., Uchida, S., Yamanaka, K., Misawa, H., 2016. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix

Metalloproteinase-9. Sci Rep 6, 27354–19. doi:10.1038/srep27354

- Nguyen, M.D., Larivière, R.C., Julien, J.P., 2000. Reduction of axonal caliber does not alleviate motor neuron disease caused by mutant superoxide dismutase 1. Proceedings of the National Academy of Sciences 97, 12306–12311. doi:10.1073/pnas.97.22.12306
- Nguyen, M.Q., Buchholtz, von, L.J., Reker, A.N., Ryba, N.J., Davidson, S., 2021. Single-nucleus transcriptomic analysis of human dorsal root ganglion neurons. doi:10.7554/eLife.71752
- Osseward, P.J., Amin, N.D., Moore, J.D., Temple, B.A., Barriga, B.K., Bachmann, L.C.,
   Beltran, F., Gullo, M., Clark, R.C., Driscoll, S.P., Pfaff, S.L., Hayashi, M., 2021.
   Conserved genetic signatures parcellate cardinal spinal neuron classes into local and projection subsets. Science 372, 385–393. doi:10.1126/science.abe0690
  - Pardo, C.A., Xu, Z., Borchelt, D.R., Price, D.L., Sisodia, S.S., Cleveland, D.W., 1995. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proceedings of the National Academy of Sciences 92, 954–958. doi:10.1073/pnas.92.4.954
  - Pembroke, W.G., Hartl, C.L., Geschwind, D.H., 2021. Evolutionary conservation and divergence of the human brain transcriptome. Genome Biol. 22, 52–33. doi:10.1186/s13059-020-02257-z
- Perge, J.A., Niven, J.E., Mugnaini, E., Balasubramanian, V., Sterling, P., 2012. Why do axons differ in caliber? J. Neurosci. 32, 626–638. doi:10.1523/JNEUROSCI.4254-11.2012

Ramos, D.M., Skarnes, W.C., Singleton, A.B., Cookson, M.R., Ward, M.E., 2021. Tackling neurodegenerative diseases with genomic engineering: A new stem cell initiative from the NIH. Neuron 109, 1080–1083. doi:10.1016/j.neuron.2021.03.022 1135 Ravits, J., Appel, S., Baloh, R.H., Barohn, R., Brooks, B.R., Elman, L., Floeter, M.K., Henderson, C., Lomen-Hoerth, C., Macklis, J.D., McCluskey, L., Mitsumoto, H., Przedborski, S., Rothstein, J., Trojanowski, J.Q., van den Berg, L.H., Ringel, S., 2013. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph Lateral Scler 1140 Frontotemporal Degener 14 Suppl 1, 5–18. doi:10.3109/21678421.2013.778548 Rayon, T., Maizels, R.J., Barrington, C., Briscoe, J., 2021. Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features. Development 148. doi:10.1242/dev.199711 1145 Romer, S.H., Seedle, K., Turner, S.M., Li, J., Baccei, M.L., Crone, S.A., 2017. Accessory respiratory muscles enhance ventilation in ALS model mice and are activated by excitatory V2a neurons. Exp. Neurol. 287, 192-204. doi:10.1016/j.expneurol.2016.05.033 Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., 1150 Graybuck, L.T., Peeler, D.J., Mukherjee, S., Chen, W., Pun, S.H., Sellers, D.L., Tasic, B., Seelig, G., 2018. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176-182. doi:10.1126/science.aam8999 Routal, R.V., Pal, G.P., 1999. A study of motoneuron groups and motor columns of the 1155 human spinal cord. J. Anat. 195 (Pt 2), 211-224. doi:10.1046/j.1469-7580.1999.19520211.x Russ, D.E., Cross, R.B.P., Li, L., Koch, S.C., Matson, K.J.E., Yadav, A., Alkaslasi, M.R., Lee, D.I., Le Pichon, C.E., Menon, V., Levine, A.J., 2021. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun 12, 5722-1160 20. doi:10.1038/s41467-021-25125-1 Salamatina, A., Yang, J.H., Brenner-Morton, S., Bikoff, J.B., Fang, L., Kintner, C.R., Jessell, T.M., Sweeney, L.B., 2020. Differential Loss of Spinal Interneurons in a Mouse Model of ALS. Neuroscience 450, 81–95. doi:10.1016/j.neuroscience.2020.08.011 1165 Sathyamurthy, A., Johnson, K.R., Matson, K.J.E., Dobrott, C.I., Li, L., Ryba, A.R., Bergman, T.B., Kelly, M.C., Kelley, M.W., Levine, A.J., 2018. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Rep 22, 2216–2225. doi:10.1016/j.celrep.2018.02.003 Schoenen, J., 1991. Clinical anatomy of the spinal cord. Neurol Clin 9, 503–532. 1170 Schoenen, J., 1982. Dendritic organization of the human spinal cord: the motoneurons. The Journal of Comparative Neurology 211, 226–247. doi:10.1002/cne.902110303 SCHWARZ, G.A., Liu, C.N., 1956. Hereditary (familial) spastic paraplegia; further clinical and pathologic observations. AMA Arch Neurol Psychiatry 75, 144–162. doi:10.1001/archneurpsyc.1956.02330200038005 1175 Sobue, G., Matsuoka, Y., Mukai, E., Takayanagi, T., Sobue, I., 1981a. Pathology of myelinated fibers in cervical and lumbar ventral spinal roots in amyotrophic lateral sclerosis. J Neurol Sci 50, 413-421. doi:10.1016/0022-510x(81)90153-2 Sobue, G., Matsuoka, Y., Mukai, E., Takayanagi, T., Sobue, I., Hashizume, Y., 1981b. Spinal and cranial motor nerve roots in amyotrophic lateral sclerosis and X-linked 1180 37

recessive bulbospinal muscular atrophy: morphometric and teased-fiber study. Acta Neuropathol 55, 227–235. doi:10.1007/BF00691322

Squair, J.W., Gautier, M., Kathe, C., Anderson, M.A., James, N.D., Hutson, T.H., Hudelle, R., Qaiser, T., Matson, K.J.E., Barraud, Q., Levine, A.J., La Manno, G., Skinnider, M.A., Courtine, G., 2021. Confronting false discoveries in single-cell differential expression. Nat Commun 12, 5692–15. doi:10.1038/s41467-021-25960-2

1185

1190

1205

- Stephens, B., Guiloff, R.J., Navarrete, R., Newman, P., Nikhar, N., Lewis, P., 2006. Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J Neurol Sci 244, 41–58. doi:10.1016/j.jns.2005.12.003
- Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M., Smibert, P., Satija, R., 2019. Comprehensive Integration of Single-Cell Data. Cell. doi:10.1016/j.cell.2019.05.031
- Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, E., Economo, M.N., Viswanathan, S., Penn, O., Bakken, T., Menon, V., Miller, J., Fong, O., Hirokawa, K.E., Lathia, K., Rimorin, C., Tieu, M., Larsen, R., Casper, T., Barkan, E., Kroll, M., Parry, S., Shapovalova, N.V., Hirschstein, D., Pendergraft, J., Sullivan, H.A., Kim, T.K., Szafer, A., Dee, N., Groblewski, P.,
- Wickersham, I., Cetin, A., Harris, J.A., Levi, B.P., Sunkin, S.M., Madisen, L., Daigle, T.L., Looger, L., Bernard, A., Phillips, J., Lein, E., Hawrylycz, M., Svoboda, K., Jones, A.R., Koch, C., Zeng, H., 2018. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78. doi:10.1038/s41586-018-0654-5
  - Taylor, J.P., Brown, R.H., Cleveland, D.W., 2016. Decoding ALS: from genes to mechanism. Nature 539, 197–206. doi:10.1038/nature20413
    - The Human Nervous System, 2004. The Human Nervous System.
    - Theunissen, F., Anderton, R.S., Mastaglia, F.L., Flynn, L.L., Winter, S.J., James, I., Bedlack, R., Hodgetts, S., Fletcher, S., Wilton, S.D., Laing, N.G., MacShane, M., Needham, M., Saunders, A., Mackay-Sim, A., Melamed, Z., Ravits, J., Cleveland, D.W., Akkari, P.A., 2021. Novel STMN2 Variant Linked to Amyotrophic Lateral Sclerosis Risk and Clinical Phenotype. Front Aging Neurosci 13, 658226. doi:10.3389/fnagi.2021.658226
      - Tian, R., Gachechiladze, M.A., Ludwig, C.H., Laurie, M.T., Hong, J.Y., Nathaniel, D., Prabhu, A.V., Fernandopulle, M.S., Patel, R., Abshari, M., Ward, M.E., Kampmann, M., 2019. CRISPR Interference-Based Platform for Multimodal Genetic Screens in
- 1215 M., 2019. CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. Neuron 104, 239–255.e12. doi:10.1016/j.neuron.2019.07.014
  - Tsang, Y.M., Chiong, F., Kuznetsov, D., Kasarskis, E., Geula, C., 2000. Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS. Brain Res. 861, 45–58. doi:10.1016/s0006-8993(00)01954-5
- alterations in ALS. Brain Res. 861, 45–58. doi:10.1016/s0006-8993(00)01954-5
   Watson, C., Paxinos, G., Kayalioglu, G., 2009. The Spinal Cord. Academic Press.
   Williams, C., Kozlowski, M.A., Hinton, D.R., Miller, C.A., 1990. Degeneration of spinocerebellar neurons in amyotrophic lateral sclerosis. Ann Neurol 27, 215–225. doi:10.1002/ana.410270302
- 1225 Xu, Z., Cork, L.C., Griffin, J.W., Cleveland, D.W., 1993a. Involvement of neurofilaments in motor neuron disease. J Cell Sci Suppl 17, 101–108. doi:10.1242/jcs.1993.supplement\_17.15

- Xu, Z., Cork, L.C., Griffin, J.W., Cleveland, D.W., 1993b. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23–33. doi:10.1016/0092-8674(93)90157-I
- Yamamoto, T., Murayama, S., Takao, M., Isa, T., Higo, N., 2017. Expression of secreted phosphoprotein 1 (osteopontin) in human sensorimotor cortex and spinal cord: Changes in patients with amyotrophic lateral sclerosis. Brain Res. 1655, 168– 175. doi:10.1016/j.brainres.2016.10.030
- Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Häring, M., Braun, E., Borm, L.E., La Manno, G., Codeluppi, S., Furlan, A., Lee, K., Skene, N., Harris, K.D., Hjerling-Leffler, J., Arenas, E., Ernfors, P., Marklund, U., Linnarsson, S., 2018. Molecular Architecture of the Mouse Nervous System. Cell 174, 999–1014.e22. doi:10.1016/j.cell.2018.06.021
- Zhang, D., Wei, Y., Liu, J., Chen, H., Li, J., Zhu, T., Zhou, C., 2021. Single-nucleus transcriptomic atlas of spinal cord neuron in human. bioRxiv 2021.09.28.462103. doi:10.1101/2021.09.28.462103
- Zhang, Q., Wu, X., Fan, Y., Jiang, P., Zhao, Y., Yang, Y., Han, S., Xu, B., Chen, B., Han, J., Sun, M., Zhao, G., Xiao, Z., Hu, Y., Dai, J., 2021. Single-cell analysis reveals dynamic changes of neural cells in developing human spinal cord. EMBO Rep 22, e52728. doi:10.15252/embr.202152728
  - Zottoli, S.J., 1978. Comparison of Mauthner cell size in teleosts. The Journal of Comparative Neurology 178, 741–757. doi:10.1002/cne.901780409

1250

1230

1235

1240

1245

# Supplemental Materials for

# A Cellular Taxonomy of the Adult Human Spinal Cord

Authors: Archana Yadav<sup>†</sup>, Kaya J.E. Matson<sup>†</sup>, Li Li, Isabelle Hua, Joana Petrescu, Kristy Kang, Mor R. Alkaslasi, Dylan I. Lee, Saadia Hasan, Ahmad Galuta, Annemarie Dedek, Sara Ameri, Jessica Parnell, Mohammad M. Alshardan, Feras Abbas Qumqumji, Saud M. Alhamad, Alick Pingbei Wang, Gaetan Poulen, Nicolas Lonjon, Florence Vachiery-Lahaye, Mike A. Nalls, Yue A. Qi, Michael E. Ward, Michael E. Hildebrand, Pierre-Francois Mery, Emmanuel Bourinet, Luc Bauchet, Eve C. Tsai, Hemali Phatnani, Claire E. Le Pichon, Vilas Menon<sup>\*</sup>, Ariel J. Levine<sup>\*</sup>

† These authors contributed equally to this work. \*Correspondence to: Email: vm2545@cumc.columbia.edu and ariel.levine@nih.gov

#### This PDF file includes:

Materials and Methods Supplemental Figs. S1 to S21

#### Other Supplemental Materials for this manuscript include the following:

Data File Tables S1 to S8



Supplemental Fig. S1. Integration at the top level and identification of major cell types. A, UMAP representation of the 55,420 nuclei after integration of the 7 human datasets. B, UMAP from panel A split by datasets to depict the overlap between datasets. C, Number of nuclei before and after quality check analysis (includes removal of doublets, low quality and other cell-type based contaminations). The number of nuclei in panel A are equal to total post QC. D, Bar plot showing the proportion of nuclei assigned as a particular cell type per dataset. E, Dot plot showing the expression of 28 canonical marker genes in all the major cell types and their subclusters (also depicted as UMAP representation in figure 1B in main manuscript. Microglia-1-5, Meninges-1-4, Endothelial-1-2 corresponds to Micro-1-5, Men-1-4, Endo1-2, respectively; in Fig1B). Ex- Excitatory, Inh- Inhibitory, M- Mid, V- Ventral.



**Supplemental Fig. S2**. Expression of marker genes in all human spinal cord cell. Box plot representation of per-cluster and per-sample expression (Counts per Million) of top-level marker genes in all cell types. Ex- Excitatory, Inh- Inhibitory, MV- Mixed ventral.



**Supplemental Fig. S3. Expression of marker genes in all human spinal cord cell.** Box plot representation of per-cluster and per-sample expression (Counts per Million) of top-level marker genes in all cell types.



**Supplemental Fig. S4. Expression of marker genes in all human spinal cord cell.** Box plot representation of per-cluster and per-sample expression (Counts per Million) of top-level marker genes in all cell types.



**Supplemental Fig. S5. Expression of marker genes in all human spinal cord cell**. Box plot representation of per-cluster and per-sample expression (Counts per Million) of top-level marker genes in all cell types.

| Schwann-1   | Schwann-2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPC                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oligo Progenitor                                                                                                 | Oligo-1                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oligo-2                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oligo-3                                                                                                          | • 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oligo-4                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.0        | 5                                 | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                              |                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a star in                                                                                                        | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 4                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 14 1. 22                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4                                                                                                              |                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0         | 2                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                              | - 金融                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AL O                                  | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S ST ST                                                                                                          | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.0        | •                                 | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                              | A REAL PROPERTY.                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CASE STREET                           | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALC: NOT THE REAL                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AND THE PARTY                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0         | 0                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,1                                                                                                              |                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Oligo-5     | Oligo-6                           | .0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Meninges-1                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Meninges-2                                                                                                       | Meninges-3                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Meninges-4                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ependymal Cell                                                                                                   | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Astro-1                                                                                                          | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.0        | 17<br>16                          | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.                                                                                                              | 80                                                             | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · ·                       | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 5                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.                                                                                                              | 15                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the                               | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 0.25<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0         | 3                                 | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                               | 10                                                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The second                                                                                                       | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | n Kalan                           | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 1 2 2                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                              | 05                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the set                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C. A. S.                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 and and                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0         | 0                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                               | 20                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Astro-2     | Astro-3                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Endothelial-1                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Endothelial-2                                                                                                    | Pericytes                                                      | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lymphocytes                           | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | roliferating Micro                                                                                               | oglia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Microglia-1                                                                                                      | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.3        | 10<br>15                          | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.                                                                                                              | 35                                                             | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 0.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.          | 10 E                              | -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                               | 25                                                             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A CONTRACT                            | 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a start and                                                                                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.1         | o                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.                                                                                                               | 15                                                             | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 後、自己執行                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CALL REPORT                                                                                                      | 0.06<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -0.0        | 5                                 | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2357 (alignet                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                              | 05                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Electropy</b>                      | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Service Comments                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1999                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Microglia-2 | Microglia-3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Microglia-4                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Microglia-5                                                                                                      | Microglia-6                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Motoneurons                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ex-Dorsal-1                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ex-Dorsal-2                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 25                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.                                                                                                              | 10                                                             | -0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second second                 | - 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | July 1                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 20                                | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0                                                                                                               | 08                                                             | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | - 0.30<br>- 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 10                                | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | 04                                                             | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Seland Com                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The start of the                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.         | 05                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0                                                                                                               | 02                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | state which                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | A STATE OF THE OWNER OF THE OWNER | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second second second second                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second | and the second second second second second                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and a start of the start of the start | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 00                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                | 00                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Concernant Constant                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contract a Dares                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ex-Dorsal-3 | Ex-Dorsal-4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ex-Dorsal-5                                                                                                     | L 0.00 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-8                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-9                                                                                                      | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ex-Dorsal-10                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-5                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-8                           | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-9                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ex-Dorsal-10                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-8                           | -0.04<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ex-Dorsal-9                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ex-Dorsal-10                                                                                                     | 0.00<br>0.14<br>0.12<br>0.10<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08<br>-0.08<br>-0.06<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7                                                    | - 0.06<br>- 0.05<br>- 0.04<br>- 0.03<br>- 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ex-Dorsal-8                           | 0.00<br>0.04<br>0.03<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>0.020<br>0.015<br>0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ex-Dorsal-10                                                                                                     | 0.00<br>0.14<br>0.12<br>0.10<br>0.08<br>0.06<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06<br>-0.04<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7                                                    | 0.00<br>0.05<br>0.03<br>0.02<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-8                           | 0.00<br>- 0.04<br>- 0.03<br>- 0.02<br>- 0.01<br>- 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>-0.020<br>-0.015<br>-0.010<br>-0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ex-Dorsal-10                                                                                                     | 0.00<br>0.14<br>0.12<br>0.08<br>0.06<br>0.04<br>0.02<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08<br>-0.06<br>-0.04<br>-0.02<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7                                                    | -0.00<br>-0.05<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ex-Dorsal-8                           | 0.00<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>-0.020<br>-0.015<br>-0.010<br>-0.005<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ex-Dorsal-10                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02<br>-0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7                                                    | 0.00<br>0.05<br>0.04<br>0.03<br>0.02<br>0.01<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-8                           | -0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00<br>-0.08<br>-0.07<br>-0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-9                                                                                                      | -0.025<br>-0.020<br>-0.015<br>-0.010<br>-0.005<br>-0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ex-Dorsal-10                                                                                                     | 0.00<br>0.14<br>0.12<br>0.00<br>0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>0.25<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.00<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02<br>-0.00<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Ex-Dorsal-7<br>Inh-Dorsal-3                     | - 0.06<br>- 0.05<br>- 0.04<br>- 0.03<br>- 0.02<br>- 0.01<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ex-Dorsal-8                           | 0.00<br>0.04<br>0.03<br>0.02<br>0.01<br>0.00<br>0.00<br>0.06<br>0.07<br>0.06<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>0.020<br>0.015<br>0.010<br>0.005<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ex-Dorsal-10                                                                                                     | 0.00<br>0.14<br>0.12<br>0.00<br>0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02<br>-0.00<br>-0.08<br>-0.08<br>-0.06<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02<br>-0.00<br>-0.06<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7                                                    | - 0.06<br>- 0.05<br>- 0.04<br>- 0.03<br>- 0.02<br>- 0.01<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-8                           | 0.00<br>0.04<br>0.03<br>0.02<br>0.01<br>0.00<br>0.08<br>0.07<br>0.06<br>0.05<br>0.04<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-9                                                                                                      | - 0.02<br>- 0.025<br>- 0.020<br>- 0.015<br>- 0.010<br>- 0.005<br>- 0.000<br>- 0.007<br>- 0.06<br>- 0.05<br>- 0.05<br>- 0.05<br>- 0.05<br>- 0.02<br>- 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ex-Dorsal-10                                                                                                     | 0.00<br>0.14<br>0.12<br>0.00<br>0.08<br>0.06<br>0.04<br>0.02<br>0.25<br>0.20<br>0.15<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ex-Dorsal-3 | Ex-Dorsal-12                      | -0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02<br>-0.00<br>-0.08<br>-0.06<br>-0.04<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.00<br>-0.00<br>-0.00<br>-0.05<br>-0.04<br>-0.03<br>-0.03<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Ex-Dorsal-7                                     | - 0.00<br>- 0.05<br>- 0.04<br>- 0.03<br>- 0.02<br>- 0.01<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.04<br>- 0.03<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05<br>- 0.05<br>- 0.04<br>- 0.05<br>- 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-8                           | 0.00<br>0.03<br>0.02<br>0.01<br>0.00<br>0.08<br>0.07<br>0.06<br>0.07<br>0.05<br>0.04<br>0.03<br>-0.05<br>0.04<br>0.03<br>-0.02<br>-0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ex-Dorsal-9                                                                                                      | - 0.02<br>- 0.025<br>- 0.020<br>- 0.015<br>- 0.005<br>- 0.000<br>- 0.007<br>- 0.06<br>- 0.05<br>- 0.04<br>- 0.03<br>- 0.02<br>- 0.01<br>- 0.020<br>- 0.020<br>- 0.010<br>- 0.020<br>- 0.020<br>- 0.010<br>- 0.020<br>- 0.020<br>- 0.010<br>- 0.020<br>- 0.020<br>- 0.010<br>- 0.005<br>- 0.000<br>- 0.005<br>-                                                                                                                                                                                                                                 | Ex-Dorsal-10                                                                                                     | 0.00<br>0.14<br>0.12<br>0.10<br>0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.00<br>0.06<br>0.04<br>0.02<br>0.00<br>0.00<br>0.00<br>0.08<br>0.08<br>0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-5                                                                                                     | -0.10<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.03<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.07<br>-0.06<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.06<br>-0.07<br>-0.07<br>-0.06<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0                                                                                               | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Ex-Dorsal-7                                     | 0.00<br>0.05<br>0.04<br>0.03<br>0.02<br>0.01<br>-0.01<br>-0.04<br>-0.03<br>-0.02<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ex-Dorsal-8                           | -0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00<br>-0.06<br>-0.06<br>-0.05<br>-0.04<br>-0.03<br>-0.02<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-9                                                                                                      | -0.02<br>-0.020<br>-0.015<br>-0.010<br>-0.005<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ex-Dorsal-10                                                                                                     | 0.00<br>0.14<br>0.12<br>0.10<br>0.08<br>0.06<br>0.02<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.02<br>-0.00<br>-0.08<br>-0.06<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.02<br>-0.04<br>-0.04<br>-0.02<br>-0.04<br>-0.04<br>-0.02<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04<br>-0.04 | Ex-Dorsal-5                                                                                                     | 0.10<br>0.00<br>0.06<br>0.04<br>0.02<br>0.00<br>0.07<br>0.06<br>0.05<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.04<br>0.04<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.04<br>0.04<br>0.05<br>0.04<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2                          | -0.06<br>-0.05<br>-0.04<br>-0.03<br>-0.04<br>-0.01<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-8                           | -0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.06<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05 | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>0.020<br>0.015<br>0.010<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.001<br>0.005<br>0.001<br>0.005<br>0.001<br>0.005<br>0.001<br>0.005<br>0.001<br>0.000<br>0.001<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0                                                                                                       | Ex-Dorsal-10<br>Inh-Dorsal-6<br>Inh-M-1                                                                          | 0.00<br>0.14<br>0.12<br>0.10<br>0.08<br>0.06<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00<br>0.05<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.00<br>0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>0.00<br>0.00<br>0.08<br>0.06<br>0.04<br>0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-5<br>Inh-Dorsal-1<br>Inh-Dorsal-9                                                                     | 0.10<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2<br>Ex-M-2                | -0.06<br>-0.05<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.01<br>-0.01<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ex-Dorsal-8                           | -0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.06<br>-0.05<br>-0.05<br>-0.06<br>-0.05<br>-0.05<br>-0.04<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.02<br>-0.01<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>0.020<br>0.015<br>0.000<br>0.005<br>0.005<br>0.06<br>0.06<br>0.05<br>0.04<br>0.03<br>0.02<br>0.01<br>0.05<br>0.06<br>0.05<br>0.06<br>0.05<br>0.06<br>0.05<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.0                                                                                           | Ex-Dorsal-10<br>Inh-Dorsal-6<br>Inh-M-1                                                                          | 0.00<br>0.14<br>0.12<br>0.10<br>0.08<br>0.06<br>0.04<br>0.02<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00<br>0.05<br>0.00<br>0.025<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | -0.08<br>-0.08<br>-0.04<br>-0.02<br>-0.02<br>-0.00<br>-0.08<br>-0.06<br>-0.06<br>-0.06<br>-0.04<br>-0.02<br>-0.08<br>-0.06<br>-0.04<br>-0.02<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08 | Ex-Dorsal-5<br>Inh-Dorsal-1<br>Inh-Dorsal-9                                                                     | 0.10         0.08           0.00         0.06           0.04         0.02           0.00         0.04           0.02         0.04           0.05         0.05           0.04         0.02           0.05         0.04           0.02         0.04           0.03         0.04           0.04         0.04           0.05         0.04           0.00         0.04           0.010         0.04           0.06         0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2<br>Ex-M-2 | -0.06<br>-0.05<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-8                           | -0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00<br>-0.00<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.04<br>-0.03<br>-0.05<br>-0.04<br>-0.03<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>0.020<br>0.015<br>0.005<br>0.005<br>0.04<br>0.02<br>0.07<br>0.06<br>0.05<br>0.04<br>0.02<br>0.02<br>0.07<br>0.05<br>0.04<br>0.02<br>0.02<br>0.07<br>0.05<br>0.00<br>0.07<br>0.05<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0 | Ex-Dorsal-10<br>Inh-Dorsal-6<br>Inh-M-1                                                                          | 0.00<br>0.14<br>0.12<br>0.10<br>0.08<br>0.06<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15<br>0.00<br>0.05<br>0.00<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.008<br>0.058<br>0.064<br>0.02<br>0.000<br>0.04<br>0.02<br>0.000<br>0.06<br>0.04<br>0.02<br>0.000<br>0.04<br>0.02<br>0.000<br>0.04<br>0.02<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-5                                                                                                     | 0.00         0           0.10         0.08           0.06         0.04           0.02         0.05           0.05         0.05           0.05         0.05           0.05         0.05           0.05         0.05           0.05         0.05           0.05         0.05           0.06         0.01           0.07         0.06           0.01         0.05           0.05         0.04           0.06         0.01           0.06         0.04           0.07         0.06           0.08         0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2<br>Ex-M-2                | -0.06<br>-0.05<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.06<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05 | Ex-Dorsal-8                           | -0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00<br>-0.05<br>-0.05<br>-0.05<br>-0.04<br>-0.02<br>-0.05<br>-0.04<br>-0.02<br>-0.05<br>-0.04<br>-0.02<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.05<br>-0.01<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05 | Ex-Dorsal-9                                                                                                      | 0.025<br>-0.025<br>-0.020<br>-0.015<br>0.010<br>-0.005<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.01<br>-0.00<br>-0.01<br>-0.02<br>-0.02<br>-0.00<br>-0.02<br>-0.00<br>-0.02<br>-0.00<br>-0.00<br>-0.02<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.01<br>-0.00<br>-0.01<br>-0.00<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.01<br>-0.00<br>-0.01<br>-0.01<br>-0.01<br>-0.00<br>-0.01<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.0                                                                                                                     | Ex-Dorsal-10<br>Inh-Dorsal-6                                                                                     | 0.00<br>0.14<br>0.12<br>0.00<br>0.08<br>0.00<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15<br>0.20<br>0.15<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.030<br>0.025<br>0.00<br>0.05<br>0.00<br>0.030<br>0.025<br>0.00<br>0.05<br>0.00<br>0.030<br>0.05<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030                                                                                    |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.08<br>0.08<br>0.04<br>0.02<br>0.00<br>0.04<br>0.02<br>0.00<br>0.06<br>0.04<br>0.06<br>0.04<br>0.06<br>0.04<br>0.06<br>0.04<br>0.06<br>0.04<br>0.06<br>0.04<br>0.06<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-5<br>Inh-Dorsal-1<br>Inh-Dorsal-9                                                                     | 0.10         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0           0.00         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2<br>Ex-M-2                | -0.06<br>-0.05<br>-0.04<br>-0.03<br>-0.04<br>-0.03<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.00<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05 | Ex-Dorsal-8                           | -0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0.00<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex-Dorsal-9                                                                                                      | 0.025<br>0.025<br>0.025<br>0.015<br>0.015<br>0.010<br>0.005<br>0.06<br>0.06<br>0.05<br>0.04<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.05<br>0.02<br>0.00<br>0.05<br>0.05<br>0.05<br>0.02<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05    | Ex-Dorsal-10                                                                                                     | 0.000<br>0.14<br>0.12<br>0.10<br>0.08<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.000<br>0.030<br>0.025<br>0.000<br>0.05<br>0.020<br>0.030<br>0.025<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.00<br>0.00<br>0.00<br>0.04<br>0.02<br>0.00<br>0.06<br>0.04<br>0.02<br>0.00<br>0.06<br>0.04<br>0.02<br>0.00<br>0.06<br>0.04<br>0.02<br>0.00<br>0.06<br>0.04<br>0.02<br>0.00<br>0.08<br>0.04<br>0.02<br>0.00<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-5                                                                                                     | 0.10<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2<br>Ex-M-2<br>Inh-V-1     | 0.00<br>0.00<br>0.05<br>0.04<br>0.02<br>0.01<br>0.02<br>0.04<br>0.03<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-8                           | -0.04<br>-0.03<br>-0.02<br>-0.01<br>-0.06<br>-0.05<br>-0.05<br>-0.04<br>-0.05<br>-0.05<br>-0.04<br>-0.01<br>-0.05<br>-0.05<br>-0.01<br>-0.01<br>-0.02<br>-0.01<br>-0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.01<br>-0.05<br>-0.02<br>-0.05<br>-0.02<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.055<br>-0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-9                                                                                                      | 0.000<br>0.025<br>0.020<br>0.015<br>0.010<br>0.005<br>0.005<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.01<br>0.05<br>0.03<br>0.05<br>0.03<br>0.05<br>0.00<br>0.05<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.15<br>0.05<br>0.15<br>0.05<br>0.15<br>0.05<br>0.15<br>0.05<br>0.15<br>0.05<br>0.15<br>0.05<br>0.15<br>0.05<br>0.15<br>0.05<br>0.15<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05    | Ex-Dorsal-10                                                                                                     | 0.000<br>0.14<br>0.12<br>0.10<br>0.08<br>0.06<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15<br>0.20<br>0.15<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                                                                                                               |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.00<br>0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-5                                                                                                     | 0.10<br>0.00<br>0.00<br>0.04<br>0.02<br>0.00<br>0.04<br>0.02<br>0.00<br>0.04<br>0.02<br>0.00<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2<br>Inh-V-1               | 0.00<br>0.06<br>0.05<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.00<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-8                           | 0.00<br>0.03<br>0.02<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.03<br>0.02<br>0.01<br>0.03<br>0.02<br>0.01<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.04<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>0.020<br>0.015<br>0.001<br>0.005<br>0.005<br>0.02<br>0.005<br>0.02<br>0.02<br>0.005<br>0.02<br>0.02<br>0.02<br>0.05<br>0.02<br>0.05<br>0.02<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055                                                                   | Ex-Dorsal-10                                                                                                     | 0.000<br>0.14<br>0.12<br>0.00<br>0.06<br>0.06<br>0.02<br>0.00<br>0.25<br>0.20<br>0.20<br>0.15<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.025<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.000000<br>0.0000<br>0.000000<br>0.0000<br>0.0000000<br>00                                                             |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>0.06<br>0.02<br>0.00<br>0.04<br>0.06<br>0.06<br>0.04<br>0.04<br>0.04<br>0.02<br>0.00<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-5                                                                                                     | 0.10<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2<br>Inh-V-1               | 0.00<br>0.05<br>0.05<br>0.05<br>0.04<br>0.02<br>0.01<br>0.05<br>0.04<br>0.03<br>0.02<br>0.01<br>0.05<br>0.04<br>0.03<br>0.02<br>0.01<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-8                           | 0.00<br>0.04<br>0.03<br>0.02<br>0.01<br>0.06<br>0.05<br>0.05<br>0.04<br>0.07<br>0.06<br>0.05<br>0.04<br>0.06<br>0.05<br>0.04<br>0.06<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0                                                                                                                                                                                                                                                                                                                                                 | Ex-Dorsal-9                                                                                                      | 0.000<br>0.025<br>0.020<br>0.015<br>0.010<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.0000<br>0.0000                                                                                                           | Ex-Dorsal-10                                                                                                     | 0.000<br>0.14<br>0.12<br>0.00<br>0.08<br>0.00<br>0.02<br>0.00<br>0.25<br>0.20<br>0.15<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.000<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005                                                   |
| Ex-Dorsal-3 | Ex-Dorsal-4                       | 0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>0.04<br>0.02<br>0.00<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ex-Dorsal-5                                                                                                     | 0.10 0<br>0.00 0                                                                                                                                                                         | Ex-Dorsal-6                                                                                                      | Ex-Dorsal-7<br>Inh-Dorsal-3<br>Ex-M-2<br>Inh-V-1               | 0.00<br>0.05<br>0.05<br>0.04<br>0.02<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.02<br>0.01<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-8                           | 0.00<br>0.04<br>0.03<br>0.02<br>0.01<br>0.00<br>0.05<br>0.04<br>0.03<br>0.05<br>0.05<br>0.04<br>0.03<br>0.05<br>0.05<br>0.05<br>0.05<br>0.02<br>0.05<br>0.05<br>0.02<br>0.05<br>0.05<br>0.02<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                      | Ex-Dorsal-9                                                                                                      | 0.00<br>0.025<br>0.020<br>0.015<br>0.010<br>0.005<br>0.010<br>0.005<br>0.04<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.00<br>0.05<br>0.04<br>0.02<br>0.01<br>0.02<br>0.02<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.25<br>0.05<br>0.05<br>0.25<br>0.05<br>0.25<br>0.05<br>0.25<br>0.05<br>0.25<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15    | Ex-Dorsal-10                                                                                                     | 0.000<br>0.14<br>0.12<br>0.08<br>0.06<br>0.02<br>0.00<br>0.25<br>0.00<br>0.25<br>0.00<br>0.15<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.000<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 |

**Supplemental Fig. S6.** Spatial mapping of estimated cell abundances (color intensity) for 64 clusters from human spinal cord single nucleus RNA sequencing data (Cell2Location). Estimated cell abundance is colored from yellow (low) to purple (high).



**Supplemental Fig. S7. A,** Multiplex immunohistochemistry of the lumbar human spinal cord, stained for IBA1 (green), OLIG2 (pink), SOX9 (turquoise), and NeuN (yellow). Scale bar is 250  $\mu$ m. **B**, Multiplex immunohistochemistry of the lumbar human spinal cord, stained for IBA1 (green) and KI67 (purple). Scale bar is 250  $\mu$ m. **C**, Bar plot showing the percent of DAPI-expressing cells in the human spinal cord that express NeuN, OLIG2, IBA1, SOX9 and KI67. Error bars are ± SEM, N=2.

| Dorsal-1<br>Dorsal-2<br>Dorsal-3<br>Dorsal-3<br>Dorsal-5<br>Dorsal-6<br>Dorsal-8<br>Dorsal-1<br>Dorsal-10<br>Dorsal-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dorsal-1<br>Dorsal-1<br>Dorsal-3<br>Dorsal-4<br>Dorsal-6<br>Dorsal-6<br>Dorsal-6<br>M-1<br>M-1<br>M-1<br>M-1<br>M-1<br>M-2<br>M-1<br>M-2<br>M-1<br>M-2<br>M-1<br>M-1<br>M-2<br>M-1<br>M-2<br>M-1<br>M-1<br>M-1<br>M-1<br>M-1<br>M-2<br>M-1<br>M-2<br>M-1<br>M-1<br>M-2<br>M-1<br>M-1<br>M-2<br>M-1<br>M-2<br>M-1<br>M-2<br>M-1<br>M-2<br>M-1<br>M-2<br>M-1<br>M-2<br>M-2<br>M-1<br>M-2<br>M-2<br>M-2<br>M-2<br>M-2<br>M-2<br>M-2<br>M-2<br>M-2<br>M-2 |                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                 | E ACLY                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - PRPH<br>- MYO10<br>- COL6A2<br>- SYTL4<br>- SRPX2<br>- SLC24A4                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - SAMD3<br>- CBLN1<br>- NTNG1<br>- NR2F1<br>- NTS<br>- GABRB2                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                    | - MAFA<br>- PRMT8<br>- ADARB2<br>- IGSF21<br>- GABRQ<br>- HMGA2                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - IQGAP2<br>- BNC2<br>- PDE11A<br>- ALPK2<br>- NMUR2<br>- MEGF6                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - IGF1<br>- CTXND1<br>- SOX5<br>- TAC1<br>- TRPC3<br>- NPTX1                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - CARTPT<br>- CHRNA7<br>- ADAMTS6<br>- LMO3<br>- KITLG<br>- TLL2<br>- NMU                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - TAC3<br>- CALCB<br>- RHBDL3<br>- LINC01197<br>- NR2F2<br>- CAPN8                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - STR32B<br>- RORB<br>- LHX1<br>- PENK<br>- P2RY1<br>- CBLN4<br>- PSG11                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - FSHR<br>- SHISA8<br>- NFATC1<br>- PAPSS2<br>- ADARB2<br>- ADAMTS17                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - AMIGO2<br>- SULF1<br>- IGFBP5<br>- COLEC12<br>- RELL1<br>- PDYN                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - CCK<br>- LEF1<br>- ITGA11<br>- SLC24A4<br>- PROX1<br>- SSTR1<br>- HMCN1                                              |
| 880080080000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - NPY<br>- SAMD3<br>- LMX1B<br>- POU4F1<br>- MDGA1<br>- MEGF11                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - IAC3<br>- SATB2<br>- PROX1<br>- NFIX<br>- PRDM8<br>- GPR149<br>- CDH23                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - GAS1RR<br>- ISL1<br>- COL11A1<br>- RARB<br>- TFAP2B<br>- NXPH2<br>- NXPH2                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - POU6F2<br>- PAX8<br>- PAX5<br>- KCNMB1<br>- DRD2<br>- IGF1                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - ONECUT1<br>- ONECUT2<br>- CHAT<br>- PITX2<br>- LINC01568<br>- CALB1<br>- PCSK1                                       |
| • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - POU6F2<br>- NDST4<br>- SIM1<br>- RNF220<br>- NR4A2<br>- LHX9<br>- CDU2                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - NFIX<br>- CHD7<br>- PROX1<br>- NFIB<br>- BHLHE22<br>- FOXP2                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>NR5A2</li> <li>GSTT2B</li> <li>CHRM5</li> <li>FAM163A</li> <li>SAMD5</li> <li>GATA2</li> <li>GATA2</li> </ul> |
| •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         • |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASAH2<br>ARC<br>FOS<br>JUNB                                                                                            |

**Supplemental Fig. S8.** Dot plot depicting expression of genes within neuronal subpopulations. Expression is indicated by color, purple (low) to yellow (high).



Supplemental Fig. S9. Integration and sub clustering of Neuronal sub-types in human spinal cord. A, Bar plot showing the proportion of a given neuronal cluster in each donor. Error bars are ± SEM, N=7. B, Box plot showing distribution of silhouette scores per nucleus per neuron population in order to assess cluster robustness. A high silhouette score indicates distinctiveness of a cluster.



**Supplemental Fig. S10.** Constellation plot depicting the connections between different neuronal clusters, based on 100 iterations of post-hoc classification. The nodes are different clusters and the edges correspond to proportion of nuclei that were ambiguously predicted and are shared between the clusters during multiple iterations. The genes in each box represent a unique combination of markers to identify each cluster. Ex- Excitatory, Inh- Inhibitory, M- Mid, V- Ventral.



Supplemental Fig. S11. Cross species analysis between Human spinal cord and harmonized mouse spinal cord atlas (Russ et al., 2021). A, Integration of the human and mouse spinal cord datasets (includes all cell types) **B**, Plot showing correlation between mouse and human cell types. Correlation is colored from purple (low) to yellow (high) and was calculated using principal components. **C**, All the human spinal cord cell types colored and labeled on integrated cross-species UMAP. Cells of the oligodendrocyte lineage are shown in blue/purple and include oligodendrocyte precursor cells (OPC), progenitors (Oligo Progen), six groups of oligodendrocytes (Oligo-1 through Oligo-6), as well as two populations of Schwann cells (Schwann-1 and -2). Microglia cells are shown in seafoam and includes a putatively proliferating population (Prolif Micro) and six groups of microglia (Micro-1 through Micro-6). Astrocytes are shown in salmon and orange and include three populations (Astro-1 through Astro-3). Meninges are shown in green and include four populations (Men-1 through Men-4). Vascular cells include two groups of endothelial cells (Endo-1 and -2) in olive and pericytes (Peri) are shown in pink. Ependymal cells are shown in khaki. Neurons are shown in teal. **D**, All the mouse spinal cord cell types colored and labeled on integrated cross-species UMAP. Cells of the oligodendrocyte lineage are shown in blue/purple and include oligodendrocyte precursor cells (OPC), two groups of progenitors (Oligo Progen-1 and Oligo-Progen-2), two groups of oligodendrocytes (Oligo-1 and Oligo-2), as well as a population of Schwann cells (Schwann-1 and –2). Microglia cells are shown in green. Astrocytes are shown in salmon and orange and include two populations (Astro-1 and Astro-2). Meninges are shown in green and include two populations (Meninges-1 and Meninges-2). Vascular cells include two groups of endothelial cells in olive and pericytes (Peri) are shown in pink. Ependymal cells are shown in khaki. Neurons are shown in teal.



Supplemental Fig. S12. Cross species analysis of human spinal cord and harmonized mouse spinal cord neuronal subtypes based on PC 1-22. A, Heatmap of the human neurons vs mouse spinal cord neuronal subtypes from Russ et al. 2021. B, Heatmap of the human neurons vs mouse spinal cord neuronal subtypes from young adult (Sathyamurthy at el. dataset from Russ et al. 2021). C, Heatmap of the human neurons vs mouse spinal cord neuronal subtypes from a juvnile age (Haring and Zeisel datasets from Russ et al. 2021). D, Heatmap of the human neurons vs mouse spinal cord neuronal subtypes from a juvnile age (Haring and Zeisel datasets from Russ et al. 2021). D, Heatmap of the human neurons vs mouse spinal cord neuronal subtypes from a postnatal age (Rosenberg, Hayashi and Baek datasets from Russ et al. 2021). Correlation was calculated by principal component and is indicated by color, ranging from purple (low) to yellow (high).



**Supplemental Fig. S13. Spatial expression of human motor neuron markers. A,** Spatial expression of Cell2Location motoneuron predicted gene signature in 4 lumbar cord sections from a single donor spinal cord. Expression is indicated by color ranging from yellow (low) to purple (high). **B,** Spatial expression of motoneuron markers in a section of lumbar human spinal cord. Expression is indicated by color, ranging from purple (low) to red (high).



**Supplemental Fig. S14**. **Human and mouse motor neurons differentially express ALS risk genes**. **A**, UMAP representation of integrated human and mouse MN data (46) by dataset. **B**, UMAP representations of co-clustering of human and mouse MN data revealing potential alpha and gamma MN subtypes in human. **C**, Dot plot showing expression of known ALS risk genes across human and mouse MNs. The size of the dot corresponds to the percentage of cells that belong to particular category. The color corresponds to Average expression across all cells for a particular class.



Supplemental Fig. S15. Expression of ALS-related genes in human spinal cord neurons. Log-normalized expression of NEFH, OPTN, PRPH, SOD1, STMN2, TUBA4A, CHCHD10, KIF5A, SPP1, FUS, C9orf72, TARDBP in the neurons represented in a UMAP plot. Color intensity from grey to dark blue corresponds to the amount of log normalized expression with dark blue being highest and grey being the lowest expression.



Supplemental Fig. S16. Expression of ALS-related genes in all human spinal cord cell types. Box plot shows per-cluster and per-sample expression (Counts per Million) of ALS-related genes (NEFH, OPTN, PRPH, SOD1, STMN2, TUBA4A, RBFOX3) in order to examine consistency/variability across subjects.



**Supplemental Fig. S17. Expression of ALS-related genes in all human spinal cord cell types**. Box plot shows per-cluster and per-sample expression (Counts per Million) of ALS-related genes (CHCHD10, KIF5A, SPP1, FUS, C9orf72, TARDBP), in order to examine consistency/variability across subjects.



**Supplemental Fig. S18**. Expression of ALS-related genes in embryonic human spinal cord. Plot showing the level (color) and percent expression (location on x-axis) of 12 selected ALS-related genes in human embryonic progenitor and post-mitotic cell-types, based on <u>https://shiny.crick.ac.uk/scviewer/neuraltube/</u> from (*25*). Motoneurons (MN) are indicated by a black arrow.



Supplemental Fig. S19. Expression of ALS-related genes in mouse lumbar spinal cord tissue. A, Antibody staining on lumbar spinal cord from aged mice (11 months old) for the orthologous proteins to those shown in Fig3C in main manuscript. Gray matter outlines are shown in teal and boundaries of lamina I/II, III/IV, V/VI, VII/VIII, IX, and X are shown in gray. The boxes indicate the enlarged images in panel B. **B**, Inset of the images in panel A from the boxed region in laminae III/IV or lamina IX. Scale bars are 200 µm and the width of the enlarged images is 200 µm. **C**, Quantification of the percent of NeuN+ neurons that co-expressed the indicated proteins in either all neurons not in lamina IX (non-IX) or those in lamina IX. The mean +/-s.e.m.are shown. The plotted values and number of cells counted in each subject and category are available in Supplemental Table 5. Paired t-test results are shown where \* indicates p < 0.05, \*\* indicates p < 0.005. **D**, Representative images of human inducible pluripotent stem cells (hiPSCs) with SOD1 knockdown and control guides 2 days after knockdown. Cells have nuclear-localizing GFP (green) and cytosolic RFP (red). BFP (blue) signifies guide uptake. Cells were stained for SOD1 (magenta). Scales bar are 50 µm.



**Supplemental Fig. S20.** Gross anatomical and neuronal measurements of the human and mouse lumbar spinal cords. **A**, Measures of body mass, nerve length, total area, white matter (wm) area and grey matter (gm) area in the human (pink)and mouse (teal) lumbar spinal cord. Sources for human body mass

(https://www.cdc.gov/nchs/fastats/body-measurements.htm) and for human nerve length (56). **B**, Median size of human and mouse neurons ( $\mu$ m). **C**, Percent of lumbar spinal cord neurons that reside in a given Rexed lamina. Error bars are  $\pm$  s.e.m.



**Supplemental Fig. S21.** Comparison of the z-scores (mean  $\pm$  s.e.m.) for genes associated with the degenerative diseases Alzheimer's disease, Parkinson's disease, HSP, and ALS in seven different broad classes of cells: oligodendrocytes (Olig.), microglia (Micro.), astrocytes (Astro.), endothelial cells (Endo.), dorsal horn neurons (Dorsal), ventral horn neurons (Ventral), and motoneurons (MN, orange). Gene lists for each disease are available in Data File Table S6. One-way non-parametric Friedman's test was used to determine whether any cell types varied within each panel of disease genes and subsequently, non-parametric Wilcoxon tests were used to test each pair of cell types for significant differences. Friedman's test p = 0.0278. \* indicates p < 0.05, \*\* indicates p < 0.005. Error bars are  $\pm$  s.e.m.