Supplemental Materials for Polarized localization of phosphatidylserine in endothelium regulates Kir2.1

Claire A. Ruddiman, Richard Peckham, Melissa A. Luse, Yen-Lin Chen, Maniselvan Kuppusamy, Bruce Corliss, P. Jordan Hall, Chien-Jung Lin, Shayn M Peirce, Swapnil K. Sonkusare, Robert P. Mecham, Jessica E. Wagenseil, Brant E. Isakson*

*Corresponding author. Email: <u>brant@virginia.edu</u>

This PDF file includes: Figs. S1 to S8 Tables S1 to S3

Figure S1: HIEL are randomly distributed with respect to endothelial signaling hubs in first order mesenteric arteries. (A) Representative stitched confocal image of a first order mesenteric artery prepared *en face* and stained for nuclei (blue) via DAPI, the IEL (grey) via Alexa-Fluor 488-linked hydrazide, and interendothelial junctions (green) via claudin-5. Scale bar is 30µm in both directions. Quantification of HIEL per EC and correlation of HIEL per EC versus EC area. N=4 mice, n=4 arteries, n=12 ROIs, and n=155 ECs. (B) Representative *en face* confocal image of endoplasmic reticulum (ER, yellow) detected via calnexin and IEL (grey), (C) box and whiskers plot of minimum distance of real-world HIEL centers to ER compared to Matlab-simulated HIEL centers. N=1 mouse, n=1 artery, n=2 ROIs, Area= $6.96 \times 10^4 \mu m^2$, and n=315 HIEL. (D) Representative *en face* confocal image of interendothelial junctions (green) detected via claudin-5 and IEL (grey), (E) box and whiskers plot of minimum distance of real-world HIEL centers to ER compared to Matlab-simulated HIEL centers to interendothelial junctions compared to Matlab-simulated HIEL centers. N=6 mice, and n=10 arteries, n=15 ROIs, Area= $1.66 \times 10^5 \mu m^2$, and n=1200 HIEL. Statistical test: Brown-Forsythe and

Welch ANOVA. # indicates a p <0.0001 significant difference to real-world HIEL distribution, * indicates a p <0.0001 significant difference to RAND, \$ indicates a p <0.0001 significant difference to NC distribution, and & indicates a p <0.0001 significant difference to PC. (F) Circumference (C) of first order mesenteric arteries measured as the width of the artery in an *en face* preparation. N=4 mice, n=4 arteries. (G) HIEL per area taken from *en face* images that were used for HIEL spatial pattern analysis with respect to claudin-5. Number of HIEL was determined via the in-house Matlab program. (H) HIEL radius measurements obtained from in-house Matlab program.

Figure S2: Quantitative data obtained from third order mesenteric artery *en face* **preparations.** (A) Circumference of third order mesenteric arteries measured as the width of the artery in an *en face* preparation. N=5 mouse, n=6 arteries. (B) HIEL radius measurements obtained from in-house Matlab program. N=6 mice, and n=10 arteries, n=22 ROIs, Area=1.48x10⁵µm², and n=2166 HIEL. (C) HIEL per area taken from *en face* images used in Matlab analysis. Number of HIEL was determined via the in-house Matlab program. N=4 mice, n=4 arteries, n=12 ROIs, and Area=1.67x10⁵µm².

Figure S3: Validation of PS antibody. (A) Transverse cross-sections of an *in vitro* vascular cell co-culture model where EC and SMC are plated on either side of a Transwell. Nuclei (blue) are detected via DAPI and PS (magenta). Brightfield image of Transwell is shown in the bottom panel. Arrowheads indicate PS localization to *in vitro* MEJs. (B) HeLa cells transfected with Lact-C2-GFP plasmid (white) and co-stained with PS antibody or (C) IgG control. Nuclei (blue) are detected via DAPI. Scale bars are 10µm.

Figure S4: Validation of Kir2.1 antibody. (A) HEK293T cells transfected with Kir2.1-T2A-tdTomato plasmid (red) and co-stained with PS antibody or (B) IgG control. Nuclei (blue) are detected via DAPI. Scale bar is $30\mu m$. (C) Western blot detection of Kir2.1 protein in HEK293T cells that were untreated or transfected with Kir2.1-T2A-tdTomato plasmid. Total protein was used as a loading control.

Figure S5: Validation of Cx40 antibody. (A) HeLa cells transfected with a connexin plasmid, either connexin 37 (Tx Cx37), connexin 40 (Tx Cx40), or connexin 43 (Tx Cx43), then stained using a Cx40 antibody or IgG control to evaluate Cx40 antibody specificity. Nuclei (blue) are detected via DAPI. Scale bar is $30\mu m$. (C) Western blot detection of Cx40 protein in HeLa cells that were transfected with plasmids for Cx37, Cx40, Cx43, and Panx1. Total protein was used as a loading control.

Figure S6: Exogenous application of TopFluor-PS localizes to the MEJ in intact third order mesenteric arteries. Live third order mesenteric arteries prepared *en face* after treatment with (A) 10 μ M TopFluor-PS in the bath solution of a pressure myography setup or (B) without treatment. Nuclei (blue) are detected via DAPI and IEL (grey) is detected via Alexa Fluor linked hydrazide. Arrowheads indicate TopFluor-PS localization to MEJ. Scale bars are 10 μ m.

Figure S7: EC-specific knockout of elastin disrupts IEL in resistance arteries and not large conduit arteries. Representative images of cross-sections from third order mesenteric arteries taken from (A) $Eln^{fl/fl}/Cre^-$ and (B) $Eln^{fl/fl}/Cre^+$ mice where nuclei (blue) are detected via DAPI, IEL (grey) is detected via autofluorescence, and interendothelial junctions (green) are detected via claudin-5. Scale bar is 30µm. N=2 mice per group. (C) Quantification of cross-sectional IEL area detected via autofluorescence. Representative images of cross-sections from the abdominal aorta (AA) and carotid artery (CA) of (D) $Eln^{fl/fl}/Cre^-$ and (E) $Eln^{fl/fl}/Cre^+$ mice. Scale bar is 30µm. Quantification of Verhoeff stain in (F) AA and (G) CA. N= 3-5 mice per group. Student's t-test.

Figure S8: Determination of optimal pressure for myography experiments on $Eln^{fl/fl}/Cre^+$ mice. Pressure myography experiments on third order mesenteric arteries from $Eln^{fl/fl}/Cre^-$ and $Eln^{fl/fl}/Cre^+$ mice, where (A) is myogenic tone, (B) is the active diameter, and (C) is the passive diameter. Dotted line indicates the optimal pressure for $Eln^{fl/fl}/Cre^+$ arteries. N=3 mice per group, n=4-6 arteries per group. Students t-test was performed at each pressure. * indicates p<0.050, and ** indicates p<0.010.

Variable	Value	Unit	Source	Description	
С	298.6	μm	N=4, n=6 arteries	Circumference of 3 rd order mesenteric	
			Fig. S2A	arteries	
CIEL	298.6	μm	Assume that it is Circumference of IEL		
			equal to C		
d	2.1	μm	N=5 mice, n=2166	Average diameter of HIEL	
			HIEL		
			Fig. S2B		
Å _{xy}	13,942.9	μm^2	Experimental	Area of en face images	
			parameter		
Ñ _{HIEL}	190.7	HIEL /	N=4, n=4 arteries,	Average number of HIEL	
		image	n=12 images		
			Fig. S2C		
ρηιεί	13.6	HIEL per	Eq. 1	Density of HIEL per 1000µm ²	
		$1000 \mu m^2$			

Table S1: Summary of quantitative data obtained from *en face* **images.** Measurements taken from third order mesenteric arteries, either manually, automatically via in-house Matlab program, or calculated from direct measurements.

Variable	Value	Units	Source	Description	
Y _{TEM}	0.070	μm	Experimental parameter	Thickness of transverse TEM sections	
A _{TEM,1}	20.902	μm ²	Eq. 2	Artery area spanning Y _{TEM}	
A _{TEM} , d	627.06	μm ²	Eq. 4	Artery area spanning the length d	
L _{IEL}	1791.6	μm	Eq. 5	Length of IEL across 6 TEM sections	
HIEL _{TEM}	9	HIEL per A _{TEM}	Eq. 6	Number of HIEL expected across A _{TEM,d}	

 Table S2: Calculated parameters of arterial cross-sections imaged via TEM. Experimental and calculated parameters for converting *en face* quantitative data to be interpretable in a TEM geometry.

Case Definition	Variable	Value	Units	Equation	Description
Case1: <u>Maximum</u> <u>case</u> , assumes HIEL are evenly distributed	D _{HIEL, E}	54	TEM detections	Eq. 7	HIEL detections over 6 sections for Case 1
Case 2: Assumes HIEL are <u>randomly</u> distributed	D _{HIEL, R}	32		Adjusted Eq. 7 (see text)	HIEL detections over 6 sections for Case 2
Case 3: <u>Minimum</u> <u>case</u> , represents the <u>rare</u> case where each HIEL only appear on 1/6 of sections	D _{HIEL, S}	9		Adjusted Eq. 7 (see text)	HIEL detections over 6 sections for Case 3
Normalized Case 1	D _{HIEL, EN}	30	TEM detections <u>per</u> <u>1000μm IEL</u>	Eq. 8	HIEL detections over 6 sections for Case 1 normalized to IEL length
Normalized Case 2	D _{HIEL, RN}	17.8		Eq. 9	HIEL detections over 6 sections for Case 2 normalized to IEL length
Normalized Case 3	D _{HIEL, SN}	5		Eq. 10	HIEL detections over 6 sections for Case 3 normalized to IEL length

Table S3: Case scenarios that consider the potential spatial distributions of HIEL. Prediction of HIEL incidence in TEM sections with consideration of spatial distributions of evenly distributed (**Case 1**), randomly distributed (**Case 2**), or sparsely distributed (**Case 3**). Predictions are then normalized to obtain ratios with respect to IEL length, a metric that can be reproducibly measured in TEM images (**Normalized Cases 1-3**).