# Supplemental Materials for <br> Polarized localization of phosphatidylserine in endothelium regulates Kir2.1 

Claire A. Ruddiman, Richard Peckham, Melissa A. Luse, Yen-Lin Chen, Maniselvan Kuppusamy, Bruce Corliss, P. Jordan Hall, Chien-Jung Lin, Shayn M Peirce, Swapnil K. Sonkusare, Robert P. Mecham, Jessica E. Wagenseil, Brant E. Isakson*
*Corresponding author. Email: brant@virginia.edu

This PDF file includes:
Figs. S1 to S8
Tables S1 to S3


Figure S1: HIEL are randomly distributed with respect to endothelial signaling hubs in first order mesenteric arteries. (A) Representative stitched confocal image of a first order mesenteric artery prepared en face and stained for nuclei (blue) via DAPI, the IEL (grey) via Alexa-Fluor 488linked hydrazide, and interendothelial junctions (green) via claudin-5. Scale bar is $30 \mu \mathrm{~m}$ in both directions. Quantification of HIEL per EC and correlation of HIEL per EC versus EC area. N=4 mice, $\mathrm{n}=4$ arteries, $\mathrm{n}=12$ ROIs, and $\mathrm{n}=155$ ECs. (B) Representative en face confocal image of endoplasmic reticulum (ER, yellow) detected via calnexin and IEL (grey), (C) box and whiskers plot of minimum distance of real-world HIEL centers to ER compared to Matlab-simulated HIEL centers. $\mathrm{N}=1$ mouse, $\mathrm{n}=1$ artery, $\mathrm{n}=2$ ROIs, Area $=6.96 \times 10^{4} \mu \mathrm{~m}^{2}$, and $\mathrm{n}=315$ HIEL. (D) Representative en face confocal image of interendothelial junctions (green) detected via claudin5 and IEL (grey), (E) box and whiskers plot of minimum distance of real-world HIEL centers to interendothelial junctions compared to Matlab-simulated HIEL centers. N=6 mice, and $\mathrm{n}=10$ arteries, $\mathrm{n}=15$ ROIs, Area $=1.66 \times 10^{5} \mu \mathrm{~m}^{2}$, and $\mathrm{n}=1200$ HIEL. Statistical test: Brown-Forsythe and

Welch ANOVA. \# indicates a p $<0.0001$ significant difference to real-world HIEL distribution, * indicates a $p<0.0001$ significant difference to RAND, \$ indicates a $p<0.0001$ significant difference to NC distribution, and $\&$ indicates a $p<0.0001$ significant difference to PC. (F) Circumference (C) of first order mesenteric arteries measured as the width of the artery in an en face preparation. $\mathrm{N}=4$ mice, $\mathrm{n}=4$ arteries. (G) HIEL per area taken from en face images that were used for HIEL spatial pattern analysis with respect to claudin-5. Number of HIEL was determined via the in-house Matlab program. (H) HIEL radius measurements obtained from in-house Matlab program.


Figure S2: Quantitative data obtained from third order mesenteric artery en face preparations. (A) Circumference of third order mesenteric arteries measured as the width of the artery in an en face preparation. $\mathrm{N}=5$ mouse, $\mathrm{n}=6$ arteries. (B) HIEL radius measurements obtained from in-house Matlab program. $\mathrm{N}=6$ mice, and $\mathrm{n}=10$ arteries, $\mathrm{n}=22$ ROIs, Area $=1.48 \times 10^{5} \mu^{2}$, and $\mathrm{n}=2166$ HIEL. (C) HIEL per area taken from en face images used in Matlab analysis. Number of HIEL was determined via the in-house Matlab program. $\mathrm{N}=4$ mice, $\mathrm{n}=4$ arteries, $\mathrm{n}=12$ ROIs, and Area $=1.67 \mathrm{x} 10^{5} \mu \mathrm{~m}^{2}$.


C


Figure S3: Validation of PS antibody. (A) Transverse cross-sections of an in vitro vascular cell co-culture model where EC and SMC are plated on either side of a Transwell. Nuclei (blue) are detected via DAPI and PS (magenta). Brightfield image of Transwell is shown in the bottom panel. Arrowheads indicate PS localization to in vitro MEJs. (B) HeLa cells transfected with Lact-C2-GFP plasmid (white) and co-stained with PS antibody or (C) IgG control. Nuclei (blue) are detected via DAPI. Scale bars are $10 \mu \mathrm{~m}$.


Figure S4: Validation of Kir2.1 antibody. (A) HEK293T cells transfected with Kir2.1-T2AtdTomato plasmid (red) and co-stained with PS antibody or (B) IgG control. Nuclei (blue) are detected via DAPI. Scale bar is $30 \mu \mathrm{~m}$. (C) Western blot detection of Kir2.1 protein in HEK293T cells that were untreated or transfected with Kir2.1-T2A-tdTomato plasmid. Total protein was used as a loading control.


Figure S5: Validation of Cx40 antibody. (A) HeLa cells transfected with a connexin plasmid, either connexin 37 ( Tx Cx 37 ), connexin 40 (Tx Cx40), or connexin 43 (Tx Cx43), then stained using a Cx40 antibody or IgG control to evaluate Cx40 antibody specificity. Nuclei (blue) are detected via DAPI. Scale bar is $30 \mu \mathrm{~m}$. (C) Western blot detection of Cx40 protein in HeLa cells that were transfected with plasmids for Cx37, Cx40, Cx43, and Panx1. Total protein was used as a loading control.


Figure S6: Exogenous application of TopFluor-PS localizes to the MEJ in intact third order mesenteric arteries. Live third order mesenteric arteries prepared en face after treatment with (A) $10 \mu \mathrm{M}$ TopFluor-PS in the bath solution of a pressure myography setup or (B) without treatment. Nuclei (blue) are detected via DAPI and IEL (grey) is detected via Alexa Fluor linked hydrazide. Arrowheads indicate TopFluor-PS localization to MEJ. Scale bars are $10 \mu \mathrm{~m}$.


Figure S7: EC-specific knockout of elastin disrupts IEL in resistance arteries and not large conduit arteries. Representative images of cross-sections from third order mesenteric arteries taken from (A) $E l n^{\mathrm{fl} / \mathrm{f}} / \mathrm{Cre}^{-}$and (B) $E l n^{\mathrm{fl} / \mathrm{f} /} / \mathrm{Cre}^{+}$mice where nuclei (blue) are detected via DAPI, IEL (grey) is detected via autofluorescence, and interendothelial junctions (green) are detected via claudin-5. Scale bar is $30 \mu \mathrm{~m}$. N=2 mice per group. (C) Quantification of cross-sectional IEL area detected via autofluorescence. Representative images of cross-sections from the abdominal
 Quantification of Verhoeff stain in (F) AA and (G)CA. N=3-5 mice per group. Student's t-test.


Figure S8: Determination of optimal pressure for myography experiments on $\boldsymbol{E l n}^{\mathbf{f 1 / f} /} / \mathbf{C r e}^{+}$ mice. Pressure myography experiments on third order mesenteric arteries from $E l n /{ }^{\mathrm{fl} / \mathrm{fl}} / \mathrm{Cre}^{-}$and $E l^{\mathrm{fl} / \mathrm{fl}} / \mathrm{Cre}^{+}$mice, where $(\mathbf{A})$ is myogenic tone, $(\mathbf{B})$ is the active diameter, and $(\mathbf{C})$ is the passive diameter. Dotted line indicates the optimal pressure for $E l n^{\mathrm{fl} / \mathrm{fl}} / \mathrm{Cre}^{+}$arteries. $\mathrm{N}=3$ mice per group, $\mathrm{n}=4-6$ arteries per group. Students t -test was performed at each pressure. * indicates $\mathrm{p}<0.050$, and ** indicates $\mathrm{p}<0.010$.

| Variable | Value | Unit | Source | Description |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{C}$ | 298.6 | $\mu \mathrm{~m}$ | $\mathrm{N}=4, \mathrm{n}=6$ arteries <br> Fig. S2A | Circumference of $3^{\text {rd }}$ order mesenteric <br> arteries |
| $\mathbf{C}_{\text {IEL }}$ | 298.6 | $\mu \mathrm{~m}$ | Assume that it is <br> equal to C | Circumference of IEL |
| d | 2.1 | $\mu \mathrm{~m}$ | $\mathrm{N}=5$ mice, $\mathrm{n}=2166$ <br> HIEL <br> Fig. S2B | Average diameter of HIEL |
| $\tilde{\mathbf{A}}_{\mathbf{x y}}$ | $13,942.9$ | $\mu \mathrm{~m}^{2}$ | Experimental <br> parameter | Area of en face images |
| $\tilde{\mathbf{N}}_{\text {HIEL }}$ | 190.7 | HIEL / <br> image | $\mathrm{N}=4, \mathrm{n}=4$ arteries, <br> $\mathrm{n}=12$ images <br> Fig. S2C | Average number of HIEL |
| $\boldsymbol{\rho}_{\text {HIEL }}$ | 13.6 | HIEL per <br> $1000 \mu \mathrm{~m}^{2}$ | Eq. 1 | Density of HIEL per $1000 \mu \mathrm{~m}^{2}$ |

Table S1: Summary of quantitative data obtained from en face images. Measurements taken from third order mesenteric arteries, either manually, automatically via in-house Matlab program, or calculated from direct measurements.

| Variable | Value | Units | Source | Description |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{Y}_{\text {TEM }}$ | 0.070 | $\mu \mathrm{~m}$ | Experimental <br> parameter | Thickness of transverse TEM sections |
| $\mathbf{A}_{\text {TEM }, \mathbf{1}}$ | 20.902 | $\mu \mathrm{~m}^{2}$ | $\mathbf{E q . ~ 2}$ | Artery area spanning $\mathbf{Y}_{\text {TEM }}$ |
| $\mathbf{A}_{\text {TEM, d }}$ | 627.06 | $\mu \mathrm{~m}^{2}$ | Eq. 4 | Artery area spanning the length d |
| LIEL $^{\text {IEL }}$ | 1791.6 | $\mu \mathrm{~m}$ | Eq. 5 | Length of IEL across 6 TEM sections |
| HIEL TEM | 9 | HIEL per A | Eq. $\mathbf{6}$ | Number of HIEL expected across <br> A TEM,d |

Table S2: Calculated parameters of arterial cross-sections imaged via TEM. Experimental and calculated parameters for converting en face quantitative data to be interpretable in a TEM geometry.

| Case Definition | Variable | Value | Units | Equation | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Case1: Maximum <br> case, assumes HIEL <br> are evenly <br> distributed | DHIEL, | 54 | TEM <br> detections | Eq. 7 | HIEL detections over 6 <br> sections for Case 1 |
| Case 2: Assumes <br> HIEL are randomly <br> distributed | DHIEL, R | 32 |  | Adjusted <br> Eq. 7 <br> (see text) | HIEL detections over 6 <br> sections for Case 2 |
| Case 3: Minimum <br> case, represents the <br> rare case where <br> each HIEL only <br> appear on 1/6 of <br> sections | DHIEL, S | 9 |  | Adjusted <br> Eq. 7 <br> (see text) | HIEL detections over 6 <br> sections for Case 3 |
| Normalized Case 1 | DHIEL, EN | 30 | TEM <br> detections per <br> 1000 | Eq. IEL |  |

Table S3: Case scenarios that consider the potential spatial distributions of HIEL. Prediction of HIEL incidence in TEM sections with consideration of spatial distributions of evenly distributed (Case 1), randomly distributed (Case 2), or sparsely distributed (Case 3). Predictions are then normalized to obtain ratios with respect to IEL length, a metric that can be reproducibly measured in TEM images (Normalized Cases 1-3).

