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S1 Flux Balance Analysis

Flux balance analysis (FBA) is a computational technique that allows the simulation of metabolism from in-
formation about its structure. This information is now available for many organisms through genome-scale
reconstructions of metabolic networks. Networks are represented in this formalism by a stoichiometric matrix of
metabolites and reactions. Using computational methods, FBA calculates an optimal solution which comprises
the quantitative values of the fluxes through all reactions. Such a solution is obtained by optimizing an objective
function, which in most cases is the maximization of biomass production. Prior to this calculation, the flows of
these reactions can be restricted, which ultimately delimit the space of possible solutions influencing the predicted
phenotype. Also, nutrient exchange reactions are included in metabolic models and their bounds define the growth
medium of the metabolism. See (Orth et al., 2010) for a primer description of this formalism.

S2 Local sensitivity analysis

Previous works on metabolism resorted to local sensitivity analysis to assess the impact of a model variable on any
given metabolic flux (Kacser and Burns, 1981; Kacser et al., 1995). Analogously, we here compute the "control
parameters" 𝑍𝑖 of the i-eth gene on growth as

𝑍𝑖 =
Δ ln(`)
Δ ln(𝑔𝑖)

, (1)

where ` is the growth rate in h−1 and g𝑖 is the dosage of the i-eth gene relative to the wild type (Methods).
Sensitivity values 𝑍𝑖 quantify the individual (normalized) impact that each gene has on biomass production.
As this measure is strongly dependent on the genetic context, we compute its average value across the entire
population. Figure S7 shows that the control parameters of most genes (98%) are null, and only for a few 𝑍𝑖 > 0.
These genes with non-null 𝑍𝑖 are precisely those with large effects in the polygenic score (PGS).

Moreover, for a better understanding of the implications of large 𝑍𝑖 , we directly simulated the growth rate
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of >102 individuals when varying individual gene dosages from 𝑔𝑖 = 0 to 𝑔𝑖 = 1, while keeping their genetic
background constant. The large response coefficients of the best predictors reflect that they are all strong limiting
factors of growth under the range of dosages found in the population (recall that they follow a normal distribution
with unit mean and 𝜎 = 0.1). Whereas the rest, with low 𝑍𝑖 , become limiting in only very rare events (Fig. S8).

S3 Global sensitivity analysis

Global sensitivity analysis (GSA) is a mathematical toolset that contributes to the interpretability of complex
models by decomposing an output variance into partial variances of input variables, or subsets of these. These
methods have rapidly grown and have been widely used, for example in risk and model assessment. They have
also been previously used in the context of flux balance analysis, but to assess the contribution of reactions instead
of genes (Nobile et al., 2021). We summarize in the following the main ideas behind Sobol’s approach to GSA
and the protocol that we used (Sobol, 1993, 2007; Saltelli et al., 2008, 2010).

Imagine any model that takes 𝑝 input parameters ®𝑥 = {𝑥𝑖}𝑝𝑖=1 and outputs a scalar value 𝑦 = 𝑓 (®𝑥). Here
parameters and variables can be considered equivalent. Then the variance of the output Var(𝑦) can be decomposed
as:

Var(𝑦) =
𝑝∑︁
𝑖=1

𝑉𝑖 +
𝑝∑︁
𝑖=1

𝑝∑︁
𝑗>𝑖

𝑉𝑖 𝑗 + ... +𝑉®𝑥 , (2)

which, dividing all terms by Var(𝑦), can be simplified and rewritten as a function of the Sobol indices 𝑆:

1 =

𝑝∑︁
𝑖=1

𝑆𝑖0 +
𝑝∑︁
𝑖=1

𝑝∑︁
𝑗>𝑖

𝑆𝑖 𝑗 + ... + 𝑆 ®𝑥 . (3)

This decomposition is particularly revealing as 𝑆0 are the first order, fractional, contributions of each individual
parameter to the total variance, while the rest include contributions of gradually increasing order, i.e. interactions
between pairs of parameters, then triplets, etc. Apart from 𝑆0, the total effects index is of particular interest, and
it can be written as:

𝑆𝑖𝑇 =
∑︁
®𝑤𝑖

𝑆 ®𝑤𝑖
, (4)

where all ®𝑤𝑖 contain the i-eth parameter. In this way, 𝑆𝑖
𝑇

quantifies the fraction of variation associated to the
i-eth parameter and all of its interactions with other parameters.

To compute these values, common approaches include Monte Carlo estimates and Fourier amplitude estimate
testing (Saltelli et al., 2008). We focus on the former due to its simplicity and satisfactory convergence. Among
different Monte Carlo estimators (Saltelli et al., 2010), we used the following for 𝑆0 and 𝑆𝑇 :
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𝑆𝑖0 =
1

𝑁 V𝑎𝑟 ( 𝑓 (𝐴))

𝑁∑︁
𝑘=1

𝑓 (𝐵𝑘)
(
𝑓 (𝐴𝑘

𝐵𝑖) − 𝑓 (𝐴𝑘)
)
, and (5)

𝑆𝑖𝑇 =
1

2𝑁 V𝑎𝑟 ( 𝑓 (𝐴))

𝑁∑︁
𝑘=1

(
𝑓 (𝐴𝑘) − 𝑓 (𝐴𝑘

𝐵𝑖)
)2

, with (6)

Var ( 𝑓 (𝐴)) = 1
𝑁

𝑁∑︁
𝑘=1

𝑓 (𝐴𝑘)2 −
(

1
𝑁

𝑁∑︁
𝑘=1

𝑓 (𝐴𝑘)
)2

(7)

where 𝑘 is the sample, 𝑁 is the total number of samples, 𝑓 (𝐴𝑘) is the growth rate of genotype 𝐴𝑘 , 𝑓 (𝐵𝑘) is
that of genotype 𝐵𝑘 , and 𝑓 (𝐴𝑘

𝐵𝑖
) is that of genotype 𝐴𝑘 but with the dosage of the i-eth gene taken from genotype

𝐵𝑘 . Also, A and B are genotypes sampled from our default population.
Therefore, the Monte Carlo protocol can be summarized in the following steps per sample:

1. Obtain two genotypes 𝐴 = {𝑔𝐴
𝑖
}𝑙
𝑖=1 and 𝐵 = {𝑔𝐵

𝑖
}𝑙
𝑖=1, where 𝑙 is the number of genes.

2. Create 𝑙 new genotypes {𝐴𝑖
𝐵
}𝑙
𝑖=1 such that all dosages are from A except for the i-eth

which is taken from B, that is 𝐴𝑖
𝐵
= (𝑔𝐴

0 , 𝑔
𝐴
1 , ...𝑔

𝐴
𝑖−1 + 𝑔𝐵

𝑖
+ 𝑔𝐴

𝑖+1 + ... + 𝑔𝐴
𝑙
).

3. Compute 𝑓 (𝐴), 𝑓 (𝐵) and 𝑓 (𝐴𝑖
𝐵
) for i=0,...,l.

4. Use Eq.(5) and Eq.(6) to compute 𝑆0 and 𝑆𝑇, respectively.

S4 Additivity on genotype to phenotype metabolic maps

Our goal here is to clarify the apparent contradiction between the substantial fraction of additivity found in the
metabolic genotype-phenotype (GP) map and the relatively small values of R2 of PGSs. According to Gjuvsland
et al. (Gjuvsland et al., 2011, 2013), the monotonicity, or order preservation, of a GP map leads to a significant
fraction of additive variation that should favor predictability (large R2). We argue that the R2 values we found are
the result of a trade-off between the order-preserving nature of the GP metabolic maps (Gjuvsland et al., 2011)
and the substructure of the population in terms of which genes are “predictors” in each individual (Hill et al.,
2008).

To start, we observe that the monotonicity of the metabolic reconstruction is highly additive, i.e., order-
preservation is not "broken" in any case [dosage-response profiles in Fig. S8 show a degree of monotonicity 𝑚=1,
following (Gjuvsland et al., 2013)]. In addition, using global sensitivity analysis, we demonstrate that the sum
of the first-order indices represents ∼75% of total variance. Therefore, our model has a large fraction of additive
variance. Why, then, is R2 = 0.27 "only"?

First, despite displaying full monotonicity, our GP map is not fully additive as dosage-response curves show a
general pattern of partial dominance (this does not contradict analytically that 𝑚=1, but it might reflect a possible
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limitation of such measure). Second, phenotype prediction using a training population is certainly population
dependent. In the main text, we demonstrate that in these models, predictors arise when they are rate-limiting, that
is, when they effectively limit the flux through the biomass reaction (the phenotype). Which enzyme is limiting
depends on the individual and its genetic context (Fig. S9).

To find which is limiting in which individual we perform small "virtual" mutations in each enzyme sequentially
(ideally they would be infinitesimal in likeliness with virtual displacements in Classical Mechanics) to identify
which one incurs in growth costs (i.e., this denoting that the enzyme is limiting). In Fig. S9EF we show the
results of the growth costs (colorbar) of individual virtual mutations of enzymes (rows, most rows are all 0s and
irrelevant which we hid) in 103 different individuals (columns) in two different populations, one in which the
PGS’s performance is worse than the other (Fig. S9E with R2 = 0.26 and Fig. S9F with R2 = 0.84). By applying
an agglomerative clustering algorithm, we identify the population substructure already in 103 individuals: there
is a broader structure in the dendrogram of Fig. S9F than in Fig. S9E.

This explicitly demonstrates that the PGS does not only depend on the additivity of the GP map itself, but it
also loses predictive power due to the integration of results of different subpopulations. The number of predictors
in a population is likely a proxy of the number of subpopulations present. Therefore, the fewer the number of
subpopulations the better the PGS’ performance (Fig. S9C).
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S5 Supplementary Table and Figures

GO term Cluster frequency Genome frequency p-value (corrected) FDR False positives
cellular BP 100,0% 55,6% 5,01E-07 0,0% -

organic substance BP 100,0% 58,5% 2,76E-06 0,0% -
BP 100,0% 59,2% 4,03E-06 0,0% -

histidine BP 21,9% 1,2% 5,54E-07 0,0% -
histidine MP 21,9% 1,2% 5,54E-07 0,0% -

lipid BP 43,8% 10,0% 4,23E-05 0,0% -
organic acid BP 59,4% 20,1% 8,53E-05 0,0% -

carboxylic acid BP 59,4% 20,1% 8,53E-05 0,0% -
small molecule BP 68,8% 30,0% 5,30E-04 0,0% -

glycerolipid BP 21,9% 2,5% 5,70E-04 0,0% -
glycerophospholipid BP 21,9% 2,5% 5,70E-04 0,0% -

lipid MP 46,9% 14,1% 6,20E-04 0,0% -
cellular lipid MP 46,9% 14,1% 6,20E-04 0,0% -

glycerophospholipid MP 25,0% 3,6% 6,90E-04 0,0% -
glycerolipid MP 25,0% 3,7% 9,40E-04 0,0% -
phospholipid BP 25,0% 4,0% 1,68E-03 0,0% -

alpha-amino acid BP 43,8% 13,7% 2,56E-03 0,0% -
phospholipid MP 21,1% 5,9% 4,60E-03 0,0% -

cellular amino acid BP 43,8% 14,8% 6,37E-03 0,0% -
GDP-mannose BP 9,4% 0,4% 8,85E-03 0,1% 0,02
GDP-mannose MP 9,4% 0,4% 8,85E-03 0,1% 0,02

long-chain fatty acid BP 9,4% 0,4% 8,85E-03 0,1% 0,02

Table S1. GO enrichment analysis of predictors with the largest effect sizes. We further confirm that the top
genetic predictors cluster into only a few biosynthetic and metabolic processes (BP and MP, respectively). They
are mainly related with amino acids, phospholipids, fatty acids and mannose (Cherry et al., 2012).
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Figure S1. Modeling of quantitative mutations. We characterize mutations by a decrease in enzyme efficiency
with respect to a wild type, "reference", or "maximum" value. (A) To find the wild type bounds, we expose
the yeast metabolism to a series of environmental and genetic adaptations and compute the maximum fluxes
observed in the solutions. Specifically, we compute pairs of optimal solutions in 104 random media from a totally
unbounded and a randomly bounded yeast metabolisms (random bounds change in every medium; Methods).
(B) Then, the bounds for a given reaction of a given mutant is the product of the wild type bounds and a fractional
value resulting from the quantitative interpretation of gene reaction rules. (C) These rules describe how enzymes
control the reaction. Namely, isozymes (and coenzymes) are modeled by an "OR" (and an "AND") operator which
we translate by the sum (and the minimum) of gene dosages. The "AND" means that both enzymes are necessary,
and thus the minimum dosage of both will be the limiting factor; in contrast, the "OR" operator means that either
enzyme can carry out the reaction, hence we use the sum of gene dosages. We repeat this process iteratively until
the entire reaction rule is translated into a fractional bound.
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Figure S2. Genetic variation leads to flux variability, which is well described by the mean metabolism.
(A) Fluxes that are accessible in the population, i.e. maximal bounds (vertical black lines) and range of values
observed in the population (vertical red lines) for each reaction (x-axis). Blue lines represent 70% of such maximal
bounds, which is approximately the largest restriction in the default population (with dosages sampled from a
normal distribution with unit mean and 𝜎 = 0.1). We find that the genetic variation with which the population
was generated leads to variability in some solution fluxes of the individuals, which ultimately translate into growth
variability. (B) Despite this variability in solution fluxes, we can define a "mean" metabolism in which the flux
through each reaction is the observed mean across the population. Black dots depict data of the reactions of all
individuals in the population, and the inset shows the distribution of linear correlations between each individual’s
solution and the mean metabolism.
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Figure S3. Genetic predictors belong to a handful of metabolic subsystems. (A) Manhattan-like plot showing
the effect sizes (y-axis) of genes grouped by yeast metabolic subsystems (x-axis; arbitrary colors). We find that
genes with large effect sizes belong to a handful of subsystems related to protein synthesis, cell membrane and
organelle compartmentalization. (B) Effect sizes of all predictors identified in the PGS of the Results section 2
(colors as in Fig.2) and their corresponding metabolic subsystem.

8



Figure S4. Biomass precursors and their stoichiometric coefficients in the biomass reaction. The biomass
reaction involves 43 precursor metabolites (x-axis) but with stoichiometric coefficients spanning several orders of
magnitude (y-axis, in log scale). For example, the most consumed precursors are ATP and water.
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Figure S5. Contribution of genetic predictors to the mean production or depletion of biomass precursors.
Each genetic predictor (x, axis; sorted by effect size) participates in a number of reactions that might involve
biomass precursors (y-axis). We here show the mean consumption (red circles) or production (blue circles) across
the entire population (104 individuals). Circle sizes are proportional to the absolute value of the mean contribution
relative to the biomass consumption. Figure at full size available online (?).

Figure S6. Effect sizes correlate with global sensitivity indices. We show (A) the first order index 𝑆0, (B) the
total epistasis 𝜖𝑇 and (C) the total effects 𝑆0 + 𝜖𝑇 as a function of effect size (Methods). The linear correlations
among all genes are 𝜌𝑎𝑙𝑙

𝑆0
= 0.63, 𝜌𝑎𝑙𝑙𝜖𝑇

= 0.48 and 𝜌𝑎𝑙𝑙+ = 0.98 respectively; or among only large effect predictors
𝜌
𝑝𝑟𝑒𝑑

𝑆0
= 0.19, 𝜌𝑝𝑟𝑒𝑑

𝜖𝑇 = −0.08 and 𝜌
𝑝𝑟𝑒𝑑
+ = 0.57. We show the mean values and a standard deviation of > 106

simulations for each gene (Methods).
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Figure S7. Control parameters 𝑍𝑖 of growth. (A) Control parameters quantify the relative impact of individual
changes of a gene’s dosage on growth, and they are highly context-dependent. We show individual values, for
every genetic background (black dots), and the mean values across the population (colored dots, colors as in
Figure 2). (B) Mean values of the control parameters across different backgrounds anticipates predictor genes
within a PGS.
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Figure S8. Dosage-response profiles of all predictor genes. We computed the dosage-response profiles for all
predictor genes in 200 genetic backgrounds by individually tuning the corresponding dosage from 𝑔 = 0 to 𝑔 = 1
and computing the growth rate with FBA. Observe that i) all top predictors (with 𝛽 > 0.01) are essential. That
is, growth is null if 𝑔 = 0; ii) that only top predictors display a recurrent dosage-response profile and that iii) the
profiles of genes with 𝛽 < 0.01 are constant in the range mostly accessed by the population 0.7 < 𝑔 < 1.
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Figure S9. Genetic variation and the optimal functional mode in the growth medium determine the predictor
character of a gene in metabolism. (A) Cartoon of three different reactions depicting the flux range available
in the wild type (white), and their optimal flux in the current growth medium (purple; functional mode). In a
population, genetic variation translates into a range of flux constraints (cyan) but it can become cryptic if it does
not constrain the optimal flux or if gene reaction rules filter it out as in reactions 𝑖 and 𝑗 . Only if genetic variation
limits the flux of the functional mode, its associated gene(s) can become growth predictors (as in reaction 𝑘).
(B) We confirmed this in two experiments. In the first, we artificially increase the wild type bounds of reactions
associated to his1 and his2. In the second, on the contrary, we decrease the bounds of reactions controlled by
genes ipp1 and tpi1. In the former and latter experiments, we successfully uncoupled and coupled the genes to
growth prediction, respectively. We show the effect sizes of large effect predictors in the original PGS (blue)
and after both experiments (red and green, respectively). (C) If we iterate the previous experiment by randomly
selecting between 10 and 60 reactions, and randomly (un)coupling them from growth prediction, we find that
the performance of a PGS correlates negatively with the number of large effect predictors (linear 𝜌 = −0.94).
Thus, the more growth-limiting reactions, the more predictors and the worse is predictability within a PGS. (D) In
another experiment, we study the impact of "disabling" the metabolism to activate new reactions that are inactive
in the wild type solution. This leads to a better performance of a PGS (Δ𝑅2) at the expense of fitness costs (Δ`),
which negatively correlate (linear 𝜌 = −0.60). (E-F) Growth costs (colorbar) of individual virtual mutations of
enzymes identify the structure of limiting reactions in two populations for which the PGS performance differs
(𝑅2 = 0.26 and 𝑅2 = 0.84 in E and F respectively). Enzyme mutations in rows, 103 different individuals in
columns. There is a simpler structure in the dendrogram of panel F (with larger R2) than in panel E (with smaller
R2).
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