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I. PLM FUNDAMENTAL EQUATIONS

In this section we derive and discuss the three physical constraints we used throughout our paper to study cell
volume regulation. These results are classical and can be found in a reference textbook such as [1].

A. Electroneutrality

The intrinsic length scale associated to the Poisson equation is the Debye length. It appears explicitly in the
linearized version of the Poisson equation also called the Debye-Huckel equation. It reads:

λD =

(
1

4π · lb · (n+ + n−)

) 1
2

(S.1)

Where: lB = e2

4πkTϵrϵ0
is the Bjerrum length - which qualitatively corresponds to the distance between two elementary

charges at which the electrostatic energy will be comparable to the thermal energy. lB ≈ 0.7nm in water at 300K. In
the unit used in this paper (concentrations in mMol) the Debye length can be estimated using the following formula:

λD ≈ 9.7√
n+(mM) + n−(mM)

· nm (S.2)

For a typical mammalian cell n+(mM) + n−(mM) ≈ 180mM (Fig.1) which leads to a Debye length λD ≈ 0.7nm.
Thus, the Debye length is at least 3 orders of magnitude smaller than the typical radius of a cell or of a nucleus. This
justifies the approximation of electroneutrality used throughout the main paper for length scales much larger than
the Debye length.

B. Balance of water chemical potential

We define the osmotic pressure as:

Π = − 1

vw
· (µw − µ∗

w) (S.3)

where : vw is the molecular volume of water, µw, µ
∗
w are the chemical potential of water respectively in the real

solution and in a pure water solution. Assuming that water is incompressible, µ∗
w = µ0(T ) + vw · P , where P is the

hydrostatic pressure. When water is equilibrated, thermodynamics imposes that the chemical potential of water is
equal on both sides of the membrane. From the previous equations it is straightforward to derive Eq.2 in the main
text.
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C. Balance of ionic fluxes

The total flux J of cations - respectively anions - is decomposed between 3 main contributions: active pumping,
electrical conduction and entropic diffusion. For simplicity we assumed that only cations are pumped out of the cell.
This simplifying choice was made to model the Na/K pump which is one of the most relevant cationic pumps. Though,
we show in subsection.II that this assumption is not critical since the equations keep the same functional form if it
is relaxed. As a convention, we choose J to be positive when ions are entering the cell. At steady-state, the fluxes
vanish:

 J+,tot = g+ ·
[
−e · Uc − kT · ln

(
n+

n0

)]
− p = 0

J−,tot = g− ·
[
e · Uc − kT · ln

(
n−

n0

)]
= 0

(S.4)

where p is the pumping flux, g± are the membrane conductivities for cations and anions, and Uc is the cell transmem-
brane potential, which can be expressed as:

Uc = −kT
e

· ln
(
n+

n0

)
− p

g+
=
kT

e
· ln

(
n−

n0

)
(S.5)

For Eq.S.5 to be verified, the following relationship between n+ and n− must be imposed :

{
n+ · n− = α0 · n20

α0 = e
− p

g+
(S.6)

The latter equation takes the form of a generalized Donnan ratio that includes the active pumping of cations. The
usual Donan ratio [1] is recovered when p = 0. The generalized Donnan ratio Eq.3 together with the electroneutrality
condition Eq.1 yield analytic expressions for the ionic densities n+ and n− (the notations are defined in the main
text):

 n+ =
zx+

√
(zx)2+4α0n2

0

2

n− =
−zx+

√
(zx)2+4α0n2

0

2

(S.7)

The cell osmotic pressure can thus be expressed as:

π

kT
=
√
(zx)2 + 4α0n20 + x (S.8)

II. GENERAL EXPRESSIONS OF THE VOLUME IN THE PLM MODEL

The system of equation formed by Eq.1,2,3 is nonlinear and cannot be solved analytically in its full generality.
One complexity arises from the difference of hydrostatic pressure ∆P . Intuitively, if the volume increases, the surface
increases which may in some situations increase the tension of the envelope and in turn impede the volume growth.
Mathematically, Laplace law relates the difference of hydrostatic pressure to the tension γ and the mean curvature
of the interface - which simplifies to the radius of the cell R in a spherical geometry. The difference of hydrostatic
pressure then reads:

∆P =
2γ

R
(S.9)

In the case where the interface exhibits a constitutive law which is elastic γ = K · S−S0

S0
, it is easy to see that ∆P

exhibits power of V which makes the problem non analytical. However, we can get around this limitation in two
biologically relevant situations :
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• When ∆P is negligible. As shown in Fig1.B this happens for mammalian cells that do not possess cellular walls.

• When ∆P is buffered by biological processes. We argue that this situation applies for yeasts and bacteria
during growth. Indeed, if the volume increase is sufficiently slow, one can hypothesize that cells have time to
add materials to their cellular walls such that the tension does not increase during growth.

We give the corresponding analytical expressions under these two hypotheses in the next two paragraphs.

A. Analytical expression of the volume when hydrostatic pressure difference is negligible

The balance of water chemical potential Eq.2, neglecting the difference of pressure and injecting the expressions for
the ionic densities Eq.S.7 leads to the following equation for the density of impermeant molecules x :

(z2 − 1) · x2 + 4n0 · x− 4 · (1− α0) · n20 = 0 (S.10)

Solving this equation and using the definition of the density of impermeant molecules x = X
V−R yield the expression

for the volume of the cytoplasm :

 V −R = kT ·Ntot

Π0

N tot = X · (z2−1)

−1+
√

1+(1−α0)(z2−1)

(S.11)

The volume can thus be written as an ideal gas law with a totel number of free osmolytes N tot. This number takes
into account the different ions and is thus larger than the actual number of impermeant molecules X. In the limit of
very fast pumping - α0 → 0 - Eq.S.11 reduces to the expression given in the main text Eq.4

B. Analytical expression of the volume when ∆P is buffered

The same procedure can be used when ∆P is buffered (independent of the volume). The final expression reads:


V −R = kT ·Ntot(∆P )

(π0+∆P )

N tot(∆P ) = X · z2−1

−1+

√√√√√1+(z2−1)·

1− α0

(1+ ∆P
kT ·2n0

)
2


(S.12)

Interestingly, the wet volume V −R remains proportional to the number of impermeant molecules X in this limit.

C. Analytical expression of the volume for an arbitrary number of ions and active transports

In this subsection, we generalize the PLM to any type of ions and any ionic transport. Each ion can be actively
transported throughout the membrane. Importantly, we show that - as long as ions are monovalent - the PLM
equations and solutions take the same functional form as the two-ions model used in the main text. We use the same
notations as in the main text (Section IIA and Fig.1), except that we now add subscript i to refer to the ion of type
i. For instance, z−i - respectively n−i - refers to the valancy - respectively the concentration - of the anion i. The
densities of positive / negative charges in the cell read:

{
d+ =

∑
j z

+
j · n+j

d− =
∑

j z
−
j · n−j

(S.13)

Electroneutrality thus simply reads:
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d+ − d− − z · x = 0 (S.14)

Balancing ionic fluxes for each ion types, as in Eq.S.4, leads to :

{
n
+/−
j = n0j · αj · e(−/+)·zj · e·Uc

kT

αj = e
−

pj
gj

(S.15)

Using Eqs.S.13,S.14, S.15 and assuming that all ions are monovalent, the product of the cationic and anionic densities
can be expressed as :

d+ · d− =

∑
j

n+,0
j · αj

 ·

(∑
i

n−,0
i · αi

)
︸ ︷︷ ︸

≡
def

α̃(n0
i )

(S.16)

and the analytical solution of the full problem reads:


d+ =

zx+
√

(zx)2+4α̃(n0
i )

2

d− =
−zx+

√
(zx)2+4α̃(n0

i )

2

(S.17)


V −R = kT ·Ntot(∆P )

(π0+∆P )

N tot(∆P ) = X · z2−1

−1+

√√√√1+(z2−1)·
(
1−

4α̃(n0
i
)

( 1
kT

·Π0+ 1
kT

·∆P)
2

) (S.18)

which shows a similar form as the two-ion model, Eqs.S.7,S.12.

III. ORDER OF MAGNITUDES

Throughout the main text, we used order of magnitudes to guide our investigations and justify our approximations.
For the sake of readability we gather all the parameter significations, values, and origins in Table S1.

A. Protein concentration

We use data published in [2] to estimate the typical concentration of proteins in mammalian cell ptot as :

ptot = %mass
p · ρ

Ma · lp · (1− R
V )

∼ 2mMol (S.19)

where, %mass
p is the fraction of dry mass occupied by proteins Fig.1.D.

B. mRNA to protein fraction

In figure 1.C we neglected the contribution of mRNAs to the wet volume of the cell. The rationale behind this
choice is twofold. (1) Proteins represent less than 1% of the wet volume (2) The mRNA to protein number fraction is
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estimated to be small, due to the fact that the mass of one mRNA is 9 times greater than the one of a protein while
the measured fraction of mRNA to dry mass is of the order 1% [3] :

Mtot

Ptot
=

Mp

MmRNA
· %

mass
mRNA

%mass
p

∼ 1

500
(S.20)

Thus, mRNAs contribute even less than proteins to the wet volume.

C. Metabolite concentration

We find the metabolite concentration self-consistently by enforcing balance of osmotic pressure at the plasma
membrane Eq.2 :

af = 2n0 − ptot − n+ − n− ∼ 118mMol (S.21)

where the concentrations of ions were reported in [3] (see Fig.1). This high value of metabolite concentration is
coherent with reported measurements [4].

D. Contribution of osmolytes to the wet volume of the cell Fig.1.C

The contribution of osmolytes to the wet volume fraction is simply equal to the ratio of the osmolyte concentration
to the external osmotic pressure, here equal to 2n0 Eq.4. The concentration of specific amino-acids and metabolites
were estimated using their measured proportion in the metabolite pool [4] times the total concentration of metabolites
af (Eq.S.21).

E. Amino-acids contribution to the dry mass

One of the main conclusions from our order of magnitude estimates is that amino-acids play an essential role in
controlling the volume but have a negligible contribution to the cell’s dry mass. This originates from the large average
size of proteins lp ∼ 400a.a. The contribution of amino-acids to the dry mass reads:

%mass
a.a = %number

a.a · a
f

ptot
·
%mass

p

lp
∼ 6% (S.22)

where, %number
a.a ∼ 73% is the number fraction of amino-acids among metabolites.

F. Effective charge of chromatin

The average effective charge per nucleosome is estimated to be:

Qeff
pernucleosome = LLink · Qbp

uDNA
+ Lwrap ·Qbp −Qhist −Qwrap = 71 (S.23)

where, the right hand side can be understood as the total negative charge of pure DNA, screened in part by histone
positive charges and by the manning condensed counterions. Note that the number of condensed counterions Qwrap

around the wrapped DNA simulated in [5] is similar to the value expected by the manning theory which we estimate
to be 164 elementary charges.

The number of nucleosomes is simply Nhist =
Ltot

Lnucleosomes
= 3 · 107 such that the effective charge of chromatin is

estimated to be :

Qeff = 2 · 109 (S.24)
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G. Condensed counterions on chromatin

The condensed counterions on chromatin can simply be found from the effective charge of the chromatin, the total
charge of pure DNA and the charge of histones. We obtain:

Qcond = Qbp · Ltot −Qeff −Qhist ·Nhist ∼ 8 · 109 (S.25)

H. Estimation of the amplitude of the Mitotic Swelling

At mitosis cells have doubled their genome content such that we double the number of condensed counterions
estimated earlier for a diploid mammalian cell. Using the PLM, we compute the amplitude of swelling if all the
chromatin condensed counterions were released at the same time, assuming an external osmolarity of n0 = 100 −
150mM.

∆V =
2 ·Qcond

2n0
∼ 100µm3 (S.26)

Note that ∆V must scale with the number of genome duplications. For instance, for tetraploid cells, the previous
amplitude must be doubled.

I. Average charge of proteins and metabolites

The average charge of proteins used in the paper, zp ∼ 0.8, was estimated from [6] assuming that Histidines are
neutral. This is reasonable because their Pka is of order 6 while typical physiological pH is of order 7.4, so that only
4% of histidines are charged in the cell.

The average charge of metabolites is assumed to be za ∼ 1 since glutamate is the most abundant [4]. We have
checked that changing this parameter does not alter our conclusions.

J. Absolute number of osmolytes

To obtain the Figure.4, we had to estimate the parameter NC1 = Pn

Pc
and thus, the number of protein trapped

inside the nucleus Pn at the beginning of interphase. The total number of proteins and metabolites at the beginning of
interphase is simply obtained by multiplying the concentration of proteins ptot, mtot estimated earlier by the volume
at the beginning of interphase, measured to be equal to 1250µm3, minus the dry volume which roughly represent 30%
of the total volume [2] and Fig.1.B.

Ptot = ptot · (V −R) ∼ 109 (S.27)

Af =
af

ptot
· Ptot ∼ 60 · 109 (S.28)

In the regime where the chromatin is diluted (large amount of metabolites), the NC ratio can be well approximated
by NC1 = Pn

Pc
. Usual values of NC reported in the literature typically range from 0.3 to 0.6 [7], [8]. We thus estimate

reasonable values of Pn as:

Pn =
NC

1 +NC
· Ptot ∼ 3 · 108 (S.29)

Note that we also used the numerical solutions of Eq.S.52 in Section VI to infer NC1 from NC exactly. This method
made no qualitative difference to the results plotted in Fig.4.
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K. Estimation of an upper bound for the hydrostatic pressure difference of the nucleus

Even though the stiffness of the lamina layer is susceptible to vary according to the tissue the cell is belonging to
[9], its stretching modulus was reported to range from 1 to 25mN/m [10], [11]. Also, Lamina turnover rate is much
slower than the actin turnover rate. Together, this suggests that Lamina - at the difference to the cortical actin -
can sustain bigger pressure difference on longer timescales. This solid-like behavior of Lamina was observed during
micropipette aspiration of Oocyte nuclei through the formation of membrane wrinkles at the pipette entrance [10].
We thus chose to mathematically model lamina with an elastic constitutive equation when it is tensed Eq.S.71. Using
Laplace law, we estimate an upper bound for ∆Pn, assuming a typical nuclear radius of 5 µm, to be:

∆Pn ∼ 2K

R
∼ 104Pa (S.30)

L. Estimation of the second virial term in the osmotic pressure

We estimate the steric term in the osmotic pressure to be:

πsteric ∼ kT · vp · p2tot ∼ 2kPa (S.31)

where, vp is the excluded volume per protein, estimated to be vp ∼ R
Ptot

∼ 375nm3. This corresponds to a protein

radius of 4.5nm, a value coherent with observations [3]. This steric contribution in the osmotic pressure may thus
safely be neglected, as πsteric << π0.

IV. A CELL GROWTH MODEL

We summarize here the equations derived and discussed in the main text (Eqs.6,7). The rates of production of
mRNAs and proteins in the non-saturated and saturated regimes read:

Ṁj =

{
k0 · ϕj · Pp − Mj

τm
, if Pp ≤ P ∗

p

k0 · gj · Nmax
p − Mj

τm
, if Pp ≥ P ∗

p

(S.32)

Ṗj =

{
kt · Mj∑

Mj
· Pr − Pj

τp
, if Pr ≤ P ∗

r

kt ·Mj · Nmax
r − Pj

τp
, if Pr ≥ P ∗

r

(S.33)

The cut-off values - P ∗
p , P

∗
r - above which the substrates become saturated are obtained by imposing continuities of

the production rates at the transition:

{
P ∗
p = Nmax

p ·
∑
gj

P ∗
r = Nmax

r ·
∑
Mj

(S.34)

A. Neither DNA nor mRNAs are saturated: Pp ≤ P ∗
p and Pr ≤ P ∗

r

The fast degradation rate of mRNAs ensures that their number reach steady-state during growth (Eq.8 which with
Eq.7 yield an exponential growth for the number of ribosomes Pr = Pr,0 · ekr·t (with kr = kt · ϕr − 1/τp) and of any

other protein, Pj =
ϕj

ϕr
· Pr; where we neglected the initial conditions on proteins other than ribosomes due to the

exponential nature of the growth. Incorporating the dynamics of growth of the enzyme catalyzing the amino-acid
biosynthesis Pe into Eq.9, we obtain the number of free amino-acids in the cell:

Af =

(
ϕe ·

kcat
kr

− lp

)
· Pr

ϕr
(S.35)
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Using the expression of the volume Eq.4 derived from the PLM coupled to our quantitative order of magnitudes, it is
straightforward to show that the volume grows exponentially :

V =

vp + (zA,f + 1) ·
(
ϕe · kcat

kr
− lp

)
2n0

 · Pr

ϕr
(S.36)

where we assumed the dry volume to be mainly accounted by proteins. Incorporating the previous expressions in
the equation for the dry mass density Eq.5, we obtain the homeostatic dry mass density written in the main text
Eq.10. These expressions were obtained assuming that neither the DNA nor the mRNA were saturated. Importantly,
mRNAs cannot be saturated if DNA is not saturated because the cut-off value P ∗

r for which ribosomes saturates

mRNAs grows at the same speed as the number of ribosomes : P ∗
r = Nmax

r ·k0 ·τm · ϕp

ϕr
·Pr. Hence, DNA will saturate

before mRNAs during interphase, at a time t∗ given by:

t∗ =
1

kr
· ln

(
gr
gp

·
Nmax

p ·
∑
gj

Pr,0

)
(S.37)

B. DNA is saturated but not mRNAs: Pp ≥ P ∗
p and Pr ≤ P ∗

r

The only difference with the previous regime is that mRNA number saturates to the value Mj = k0 · gj · τm ·Nmax
p .

Hence, the threshold P ∗
r will saturate to the value:

P ∗
r = Nmax

r · Nmax
p · k0 · τm ·

∑
gj (S.38)

This allows for the subsequent saturation of mRNAs by ribosomes after a time t∗∗; whose expression can be derived
after simple algebra as :

t∗∗ = t∗ +
1

kr
· ln

(
gp
gr

· Nmax
r · k0 · τm

)
(S.39)

However, before reaching this time, there won’t be any consequence on the proteomic dynamics, which still scales

with the number of ribosomes Pj =
ϕj

ϕr
· Pr. This regime thus still corresponds to an exponential growth and the dry

mass density remains at its homeostatic value Eq.10.

C. Both DNA and mRNAs are saturated: Pp ≥ P ∗
p and Pr ≥ P ∗

r

The dynamics of growth is profoundly impacted by mRNA saturation. The protein number no longer grows
exponentially, but saturates to the stationary value P stat

j = kt · k0 · τp · τm · Nmax
r · Nmax

p · gj after a typical time
t∗∗ + τp according to:

Pj = P stat
j +

(
Pj(t

∗∗)− P stat
j

)
· e−

t−t∗∗
τp (S.40)

The loss of the exponential scaling of proteins implies a breakdown of the proportionality between amino-acid and
protein numbers as predicted by the amino-acid biosynthesis equation Eq.9. The total amino-acid pool in the cell
Atot = Af + lp · Ptot now scales as:

Atot = Atot(t
∗∗) + kcat ·

(
P stat
e · (t− t∗∗)− τp · (Pe(t

∗∗)− P stat
e ) · e−(t−t∗∗)/τp

)
(S.41)

with, Atot(t
∗∗) = ϕe

ϕr
· kcat

kr
· Nmax

r · Nmax
p · k0 · τm ·

∑
gj . Although, expressions still remain analytical in the transient

regime and were implemented in Fig.2 in order to quantitatively test our theory, we avoid analytical complications
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here, by writing expressions after saturation has been reached, i.e., after a typical time t∗∗ + τp. The volume thus
increases linearly with time:

V lin = vp · P stat
tot +

(zAf + 1) · (Atot(t
∗∗) + kcat · P stat

e · (t− t∗∗)− lp · P stat
tot )

2n0
(S.42)

As emphasized in the main text, the fundamental property of this regime is that the dry mass density is predicted to
decrease with time with no other mechanism than a simple crowding effect on mRNAs (see Eq.11 in the main text).

D. Quantification of the model of growth with published data

Many of the parameters involved in the growth model can be obtained independently, so that four parameters suffice
to fully determine the volume, the amount of protein and the dry mass density during interphase growth. Here, we
summarize the equations used to fit the data displayed in Fig.2. The volume can be expressed as:

V =

{
v1 · ekr·t, if t ≤ t∗∗

v2 · (t− t∗∗) + v3 · e−(t−t∗∗)/τp + v4, if t ≥ t∗∗
(S.43)

in which (v1, v2, v3, v4) are volumes that can be, if needed, expressed function of the previously defined parameters.
We obtain (v2, v3, v4) as a function of v1, τp and t∗∗ by imposing regularity constraints on the volume and growth
rate:


v3 = τ2p · k2r · v1 · ekr·t∗∗

v2 = v3
τp

+ kr · v1 · ekr·t∗∗

v4 = v1 · ekr·t∗∗ − v3

(S.44)

Similarly, the normalized total number of protein can be expressed as:

Ptot

Ptot(1h)
=

{
ekr·(t−1), if t ≤ t∗∗

p1 + p2 · e−(t−t∗∗)/τp , if t ≥ t∗∗
(S.45)

Again imposing regularity constraints at the mRNA saturating transition, allows us to relate p1 and p2 to kr, τp and
t∗∗.

{
p2 = −τp · kr · ekr·(t∗∗−1)

p1 = ekr·(t∗∗−1) − p2
(S.46)

Finally, we can express the buoyant mass density ρb of the cell (see Fig.2 for a definition) using the expressions of
total protein number and volume Eq.S.45,S.43 :

ρb − ρw

ρb,0 − ρw
=

{
1, if t ≤ t∗∗

Ptot

Ptot(0h)
· v1
V , if t ≥ t∗∗

(S.47)

We use a density of water 4% larger than that of pure water (ρw,eff = 1.04kg/L instead of ∼ 1kg/L) to compensate
for our approximation to consider the dry mass as entirely made of proteins. Proteins are known to only occupy
%mass

p = 0.6 of the dry mass, itself being of order ρ = 0.1kg/L Tab.S1. Thus, we simply use as the effective water

mass density, ρw,eff = ρw + (1−%mass
p ) · ρ ∼ 1.04kg/L.

E. Fitting procedure

We detail in this appendix the method used to determine the four fitting parameters: τp, t
∗∗, kr, v1 from the cell

volume data Fig.2.B. Our model (Eq.S.43,S.44) displays two different regimes of growth according to the saturation
state of mRNAs. Our fitting procedure is thus divided into two steps. First, we impose an arbitrary transition time
t∗∗ to determine by a least mean square minimization the three other parameters. Then, we minimize the variance
between the obtained solution with the data to determine t∗∗. The optimal values of the fitting parameters are:

t∗∗ = 2h44min , τp = 1h9min , kr = 0.62h−1 , v1 = 30fL (S.48)
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V. MANNING CONDENSATION

We give a simple description of the phenomenon of Manning condensation, based on [12]. The electrostatic potential
close to an infinitely charged thin rod, in a salt bath, reads:

ψ =
2 · lb
A

· ln(κr) (S.49)

where, lb is the Bjerrum length. It is the length at which the elecrostatic interaction between two elementary particles
is on the order of kT. Its value in water at room temperature is lB ≈ 0.7nm. A is the average distance between two
charges on the polymer. κ2 = 8πlB(n

+ + n−) is the inverse of the Debye length. At equilibrium, the distribution of
charges around the rod follows a Boltzmann distribution:

n+ = n0 · e−Ψ =
n0

(κr)2·
lb
A

(S.50)

The total number of positive charges per unit length of the rod reads within a distance R:

N(R) =

∫ R

0

n+2πrdr =
2π · n0
κ2·

lb
A

·
∫ R

0

1

(r)2
lb
A −1

dr (S.51)

When u = lB
A < 1, N(R) is dominated by its upper bond and goes to 0 close to the rod. On the other hand, when

u = lB
A > 1, N(R) diverges as R → 0 indicating a strong condensation of the counterions on the rod. This singularity

is symptomatic of the breakdown of the linear Debye-Huckel theory. The solution of the nonlinear Poisson-Boltzmann
equation shows that there is formation of a tighly bound layer of counterions very near the rod, which effectively
decreases the charge density (increases A) up to the value ueff = 1 [13]. It means that if A is smaller than lB the
manning condensation will renormalize A to Aeff = lB . The rationale behind this renormalization is to decrease
the electrostatic energy of the system by condensing free ions on the polymer. Note that there is an energy penalty
associated to the loss of entropy of the condensed counterions. For weakly charged polymers this loss of entropy is not
energetically favorable - case where u = lB

A < 1 and no condensation occurs. If the density of charge of the polymer

increases, Manning condensation becomes energetically favorable - case where u = lB
A > 1. By virtue of the high

lineic charge of DNA, Manning condensation will be favorable, uDNA ∼ 4.

VI. THE NESTED PLM MODEL

The nested PLM is described by a set of non-linear equations, i.e., the electroneutrality, the balance of pressures,
and the balance of ionic fluxes, in the cytoplasm, subscript c, and in the nucleus, subscript n. In its most general
form the system reads:



n+c − n−c − zp · pc − za · ac = 0
n+n − n−n − zp · pn − za · an − q = 0
∆Πc = ∆Pc

∆Πn = ∆Pn

n+c · n−c = α0 · n20
n+n · n−n = α0 · n20
(n+n )

za · an = (n+c )
za · ac

(S.52)

Here, we apply the nested PLM to mammalian cells, such that we can neglect the cytoplasmic difference of hydrostatic
pressure with respect to the external osmotic pressure. If the NE is not under tension, the condition of osmotic balance
at the NE simply implies that the volume of each compartment takes the same functional form as in the PLM model:

{
Vn = Rn +

Ntot
n

2n0

Vc = Rc +
Ntot

c

2n0

(S.53)

It is thus straightforward to show that both the volume of the nucleus and the volume of the cytoplasm scale with
each other Eq.12.
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A. Dry volumes in the nucleus and in the cytoplasm

We assume that the dry volumes in the nucleus and in the cytoplasm are proportional to the total volumes of each
compartments and are equal to each other: Rn = r · Vn and Rc = r · Vc. Under this assumption the NC ratio simply
becomes the ratio of the wet volumes:

NC =
Vn
Vc

=
Vn −Rn

Vc −Rc
(S.54)

This hypothesis is practical rather than purely rigorous. It is based on experiments that suggest that dry mass
occupies about 30% of the volume of both the nucleus and the cytoplasm for several cell types and conditions [14],
[15],[16]. Nonetheless, even if this assumption were to be inexact, our discussion would then rigorously describe the
slope of the linear relationship between nucleus and cell volume (Eq.12) which was shown to be robust to perturbation
[7].

B. Membrane potential in the simple PLM model

Using the results provided earlier we find that a transmembrane potential exists as soon as there are trapped
charged particles. The plasma membrane potential reads:

 U = ln

(
−z·(−1+r)+

√
z4+α0−z2·(−1+α0+2·r)

z2−1

)
With, r =

√
1 + (z2 − 1) · (1− α0)

(S.55)

We find that U monotonically increases (in absolute value) with the average charge of the cell trapped components.
This differs from the nuclear membrane potential that vanishes when the charge of the chromatin is diluted regardless
of the properties of the trapped proteins Eq.14.

C. General Formula for the regime NC2, i.e., no metabolites

As stated in the main text an important limit regime, NC2, is achieved when there are no metabolites in the cell.
Specifically, the previous system of equations becomes uncoupled with respect to the nuclear and cytoplasmic set of
variables such that we can solve the system analytically. Using the exact same algebra as used in the simple PLM we
express the volumes and the NC ratio as:



Vtot = (Rc +Rn) +
Ntot

n +Ntot
c

2n0

N tot
c = Pc ·

z2
p−1

−1+
√

1+(1−α0)·(z2
p−1)

N tot
n = Pn · (z2

n,eff−1)

−1+
√

1+(1−α0)(z2
n,eff−1)

zn,eff = zp +
Qeff

Pn

NC2 = NC1 ·
(z2

n,eff−1)

(z2
p−1) · −1+

√
1+(1−α0)(z2

p−1)

−1+
√

1+(1−α0)(z2
n,eff−1)

(S.56)

D. Analytical solutions in the regime zp = 1, za = 1, and α0 ∼ 0

In this regime of high pumping, no anions occupy the cell. We simplify the notations by denoting by n the
concentration of cations. The system of equation to solve is stated in the main text Eq.13. We first express the
concentrations of cations and metabolites in the cytoplasm and nucleus as a function of n0, q, and p thanks to the
electroneutrality equations and balance of osmotic pressures:
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nn = n0 +

q
2

afn =
(
n0 − q

2

)
− pn

nc = n0
afc = n0 − pc

(S.57)

This allows us to write the NE potential as Eq.14 in the main text. Using the balance of nuclear osmotic pressure we
express the nuclear volume function of the number of nuclear osmolytes:

Vn −Rn =
Qeff + 2Af

n + 2Pn

2n0
(S.58)

This implies that the NE potential can be written without the dependence on n0 as in Eq.14. We then express the NC
ratio in two different manners. First, using the interpretation of wet volumes namely, the total number of osmolytes
in the compartments over 2n0. Second, we take advantage of the concentrations of metabolites and cations in Eq.S.57
to express the ratio of protein concentrations. After simple algebra we obtain:


NC = Pn

Pc
· pc

pn
= NC1 ·

(
1 + Qeff

2Pn+2Af
n+Qeff

+ Qeff2

2Pn+2Af
n+Qeff

)
NC = 1

2 · 2Af
n+2Pn+Qeff

Af
tot−Af

n+Pc

(S.59)

For clarity, we now normalize each number by 2Pn, e.g, Atot =
Atot
2Pn

. Equating both expressions of the NC ratio leads

to a second order polynomial in An :

2(1 +
1

NC1
) ·A2

n +

(
−2Atot + (1 +Q

eff
)2 +

1

NC1
· (1 + 2Q

eff
)

)
·An −Atot · (1 +Q

eff
)2 = 0 (S.60)

The solution An now reads:

An =
2Atot− 1

NC1
·(1+2Q

eff
)−(1+Q

eff
)2+

√(
2Atot− 1

NC1
·(1+2Q

eff
)−(1+Q

eff
)2
)2

+8·(1+ 1
NC1

)·Atot·(1+Q
eff

)2

4·(1+ 1
NC1

)
(S.61)

Which leads to the following expression for NC:

NC = NC1 ·
2Atot+

1
NC1

+(1+Q
eff

)2+

√(
2Atot− 1

NC1
·(1+2Q

eff
)−(1+Q

eff
)2
)2

+8·(1+ 1
NC1

)·Atot·(1+Q
eff

)2

2·
(
1+2Atot+

1
NC1

+Q
eff
) (S.62)

As a sanity check, we verify some asymptotic expressions discussed in the main text. For example, when Q
eff

<< 1
or Atot >> 1 we recover that NC becomes equal to NC1. On the other hand, when Atot << 1, we recover that

NC = NC1 · (1 +Q
eff

) = NC2

E. Control parameters of the nested PLM during growth

The precise value of the parameter NC1 = Pn

Pc
is biologically set by an ensemble of complex active processes

ranging from transcription, translation to the Ran GTPase cycle and nuclear transport. The precise modelling of
nucleo-cytoplasmic transport is out of the scope of this paper but could easily be incorporated to our framework.
Nonetheless, we can safely assume that nucleo-cytoplasmic transport is fast compared to the typical timescale of
growth. In this case, neglecting protein degradation on the timescale of the G1 phase, the total number of proteins in
the nucleus is simply the number of proteins assembled that possessed a nuclear import signal (NIS) in their sequence.
Using the same notation as earlier, in the exponential growth regime, the total number of proteins in the nucleus
reads:
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Ptot,n(t) =
∑

j∈NIS

ϕj
ϕr

· Pr(t) (S.63)

where Pr(t) accounts for the number of ribosomes, ϕj is the fraction of genes coding for the protein j (see Appendix
IV). The subscript j is summed over the genes coding for proteins having nuclear import signals in their sequence.
Proteins in the nucleus can either be DNA bound or unbound. For example, histones or DNA polymerases bind to
the DNA. Only the unbound proteins contribute to the osmotic pressure. Denoting ku,j and kb,j the reaction rate of
binding and unbinding of protein j and assuming that the reactions of binding and unbinding are fast compared to
the timescale of growth, we finally express the number of free proteins in the nucleus as :

Pfree,n(t) =
∑

j∈NIS

ku,j
kb,j + ku,j

· ϕj
ϕr

· Pr(t) (S.64)

It is then straightforward to express NC1 as:

NC1 =

∑
j∈NIS

ku,j

kb,j+ku,j
· ϕj

ϕr∑
j /∈NIS

ku,j

kb,j+ku,j
· ϕj

ϕr

(S.65)

An important result of this abstract modelling is that NC1 is independent of time during the exponential growth
due to the fact that both Pn(t) and Pc(t) are proportional to Pr(t), which is why we adopted it as a control parameter.
The same goes for our second control parameter Atot

2Pn
, which is also constant during exponential growth.

F. Phase Diagram

In this paragraph we address the case ∆Pn ̸= 0 and assume that the cell does not adhere to the substrate such
that we consider the nucleus to be spherical. For simplicity, we neglect the dry volume because we want to consider
hypo-osmotic shock experiment where dry mass will be diluted, making a dry volume a second order effect of the order
10%. We first make the problem dimensionless. There are two dimensions in our problem: an energy and a length.
This means that we can express all our parameters that possess a dimension with a unit energy and a unit length.
Moreover, we have three parameters with physical dimensions: the extracellular osmolarity n0, the NE tension γ,
and the thermal energy kT . The theorem of Buckingham [17] tells us that we can fully describe our problem with a
single dimensionless parameter and the 3 parameters with by definition no dimensions. In this geometry, we choose,

[
(
4π
3

)1/3 · γ0

kTX
1/3
n n

2/3
0

, α0, zn, Xn]. Laplace law reads:

∆Pn =
2γn

( 3
4πVn)

1/3
(S.66)

Using the following dimensionless quantities:

{
V n = 2n0

Xn
· Vn

γn =
(
4π
3

)1/3 · γ0

kTX
1/3
n n

2/3
0

(S.67)

Equality of pressures becomes:

√(
zn

V n

)2

+ α0 +
1

V n

− 1− γn

V
1/3

n

= 0 (S.68)

Eq.S.68 cannot be solved analytically for V n. However, five asymptotic regimes can be identified (see Fig.S1):
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V1 =
(

3
16π

) 1
2 ·
(

kTXn

zn·γn

) 3
2

V2 =
(

3
210·π

) 1
5 ·
(

kT ·z2
n·X

2
n

n0·
√
α0·γn

) 3
5

V3 =
(

3
16π

) 1
2 ·
(

kT ·Xn

γn

) 3
2

V4 = Xn

2n0
· 1
1−√

α0

V5 = Xn

2n0
· zn√

1−α0

(S.69)

• V4 and V5 are the limit regimes where osmotic pressure is balanced at the NE.

• V3 is the limit regime where the difference of osmotic pressure is dominated by the impermeant molecules trapped
inside the nucleus. This happens when the proteins are not or very weakly charged. This difference of osmotic
pressure is balanced by the Laplace pressure of the lamina.

• V1 is the limit regime where the difference of osmotic pressure is dominated by the counterions of the impermeant
molecules. This difference of osmotic pressure is balanced by the Laplace pressure of the lamina.

• V2 is an intermediate regime that can arise when α0 ≈ 1. The difference of osmotic pressure takes the form

of ∆Πn ≈ kT · 1√
α0

· (zn·xn)
2

4n0
. This osmotic pressure defines an effective virial coefficient between monomers of

DNA and proteins vel =
1√
α0

z2
n

2n0
. This difference of osmotic pressure is balanced by the Laplace pressure at the

NE.

• Note that when α0 ≈ 0 (strong pumping), only the counterion necessary for electroneutrality remain in the
nucleus. Πn is simply (zn + 1) · xn and is either balanced by the Laplace pressure of the lamina or the external
osmotic pressure (see Fig.S1)

Finally, the analytical expressions for the crossover lines γi,j between regime of volume Vi and volume Vj , plotted
in Fig.S1 read :



γ1,2 = (4 · α0 · zn)
1
3

γ1,4 = zn · (1−√
α0)

2
3

γ1,5 = z
1
3
n · (1− α0)

1
3

γ2,5 = z
1
3
n ·(1−α0)

5
6

2·√α0

γ2,4 =
z2
n·(1−

√
α0)

5
3

2·√α0

γ2,3 = z
− 4

3
n · (4 · α0)

1
3

γ3,5 = z
− 2

3
n · (1− α0)

1
3

γ3,4 = (1−√
α0)

2
3

z1,3 = 1

z4,5 =
√
1−α0

1−√
α0

(S.70)

G. Saturating volume after a hypo-osmotic shock

The saturation occurs when the nuclear osmotic pressure is balanced by the Laplace pressure making nuclear volume
insensitive to the external osmolarity Eq.S.69. We assume that the NE behaves elastically with a stretching modulus
K beyond a surface area S∗ for which NE folds are flattened:

γn =

{
0 , if Sn ≤ S∗

K ·
(
Sn

S∗ − 1
)

, if Sn ≥ S∗ (S.71)

As justified in the main text, metabolites tend to leave the nucleus with decreasing external osmolarity. The
saturating volume is obtained when ∆Pn >> π0 and Af

n << Pn. From Eq.S.12 applied to the volume of the nucleus,
we thus obtain :
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∆P = (zeffn + 1) · Pn

V max
n

(S.72)

where, zeffn = zp + Q
Pn

. Similarly to the last subsection, we normalize tensions by ( 3
4π )

1/3 · kT · P 1/3
n · n2/30 and

volumes by 2·Pn

2n0
. Eq.S.72 leads to the equation ruling the saturating volume :

(vmax
n )4/3 − (vison )2/3 · (1 + s) · ( n0

niso0

)2/3 · (vmax
n )2/3 − (vison )2/3 · (1 + s) · ( n0

niso0

)2/3 ·
1
2 · (zeffn + 1)

K
= 0 (S.73)

where, s = S∗

Siso
n

− 1 is the fraction of folds that the nucleus possesses at the isotonic osmolarity. vmax
n =

2n0·V max
n

2Pn

is the normalized saturating nuclear volume and vison the normalized nuclear volume at the isotonic osmolarity.
K = K

( 3
4π )1/3·kT ·P 1/3

n ·n2/3
0

is the normalized effective stretching modulus of the NE. Solving the previous equation,

coming back to real volumes
V max
n

V iso
n

=
vmax
n

viso
n

· niso
0

n0
and taylor develop the result for n0 −→ 0 leads to Eq.17 in the main

text.

H. Geometrical impact

The previous equations were conducted for a spherical geometry. Interestingly, while the precise geometry does not
qualitatively change our results, we expect the saturation of nuclear volume to occur more easily for a pancake shape -
a shape closer to the shape of adhered cells. Indeed, the scaling between surface and volume is approximatively linear
in this case: V ∼ h · S, while it is sub-linear for spheres S ∼ V 2/3. Thus, smaller osmotic shocks will be required to
tense the NE and so as to reach the saturating regime.

VII. ELECTROSTATIC INTERACTIONS ARE ENCOMPASSED WITHIN OUR FRAMEWORK

We directly compute the contribution of electrostatic interactions to the osmotic pressure based on [12]. The total
interaction energy of a solution of charged particles of average density x within a volume V is, using the Poisson-
Boltzmann framework:

Eel

kT
=
lB · z2

2

∫ ∫
x(r⃗) · x(r⃗′) · e

−κ|r⃗−r⃗′|

|r⃗ − r⃗′|
d3r⃗ · d3r⃗′ (S.74)

where x(r⃗) is the local density of impermeant molecules in the cell. Fourier analysis allows us to rewrite this equation:

Eel

kT
=
lB · z2

2

∫
x(k⃗) · x(−⃗k) · 4π

k2 + κ2
d3k⃗ ≈ lB · z2

2
· x2 · 4π

κ2
· V (S.75)

From which we derive the expression of the osmotic pressure:

πel
kT

≈ 1

2
· z

2

2n0
· x2 (S.76)

We now show that this term is already encompassed within our framework. For the simplicity of the discussion we
neglect pumping, i.e., α0 ∼ 1. The difference of osmotic pressure then reads (see Eq.S.8):

∆π

kT
=
√
(zx)2 + 4n20 + x− 2n0 (S.77)

which, under the right regime, i.e., zx << 2n0, leads to the same term. As mentioned above, this osmotic pressure
defines an effective electrostatic virial coefficient between monomers:

vel =
z2

2n0
(S.78)
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VIII. POSSIBLE EXTENSION TO EXPLAIN THE SCALING OF OTHER ORGANELLES

Organelles are also known to display characteristic scaling trends with cell size ([18]). Eventhough these scalings
may be of different origins and would require much careful treatment with respect to the specificity of the organelle,
we highlight in this subsection that our model can easily be extended to also include organelles.
We model an organelle in our theory by a compartment bound by a membrane that trap some molecules. For the sake
of generality we assume that there is an active transport of cations through this membrane. As a matter of coherence

with the previous notations we will call by αorg = e−
porg
g+ the parameter that compares the active pumping through

the organelle’s membrane versus the passive leakage. Donnan Equilibrium on both side of the organelle reads :

n+org · n−org = αorg · (n+c · n−c ) = αorg · α0 · n20 (S.79)

Hence, the results derived previously also apply to the organelle provided the parameter α0 is changed into αorg · α0.
Interestingly, in the case of osmotic balance at the membrane of the organelle, it is straightforward to show that the
the volume of the organelle also scales with the cell volume:



Vorg =
(

Ntot
org

Ntot

)
· Vtot +

[(
Ntot

c +Ntot
n

Ntot

)
·Rorg −

(
Ntot

org

Ntot

)
· (Rc +Rn)

]
N tot = N tot

c +N tot
n +N tot

org

N tot
org = Xorg ·

(z2
org−1)

−1+
√

1+(1−α0·αorg)(z2
org−1)

(S.80)
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FIG. S1. Additional results of the Nested PLM. (A) Variation of the NC ratio during growth after blocking nuclear import.
(B) Variations of the NC ratio according to the effective charge of the chromatin normalized by the number of trapped proteins
in the nucleus Q

2Pn
. The NC ratio is bounded by two limit regimes. NC1, if the number of metabolites is assumed infinite.

NC2, if there are no metabolites. The vertical black dashed line depicts the value of Q
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estimated in Appendix III for diploid

mammalian cells (C) to (E) Log-Log plot of the different regimes of V Eq.S.69 in the plan (zn, γn) for α0 fixed (C) α0 = 0.99
(D) α0 = 0.8 (E) α0 = 0.001. The crossover lines plotted are given in Eq.S.70
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TABLE S1. Description and values of the parameters used for the order of magnitudes.

Symbol Typical Value Meaning

ρ 0.1kg.L−1 Typical dry mass density in a mam-
malian cell [2]

Ma 100Da Average mass of an amino-acid [3]
lp 400a.a Average length of an eukaryotic

protein [3]
MmRNA 3 · Ma Average mass of a mRNA [3]
lmRNA 3 · lp Average length of a mRNA [3]
lbp 1/3nm Average length of one base pair
Qbp 2 Average number of negative charge

per base pair
Lnucleosome 200bp Average length of DNA per

nucleosome
Llink 53bp Length of the DNA linking two

histones
Lwrap 147bp Length of the DNA wrapped

around one histone
uDNA 4 Manning parameter for pure DNA,

i.e., 75% of the charges will be
screened by manning condensation.

Ltot 6 · 109bp Total length of the DNA within a
diploid human cell

Qhist 76 Average number of positive charges
per histone at less than 1nm from
the wrapped DNA backbone [5]

Qwrap 174 Average number of condensed coun-
terions around the wrapped DNA
[5]

lb 0.7nm Bjerrum length in water at 300k
K 25mN/m Stretching modulus of Lamina [10]
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Garcia Arcos, A. Diz-Muñoz, M. Balland, J.-F. Joanny, D. Cuvelier, P. Sens, and M. Piel, eLife 11, e72381 (2022).
[16] A. Rowat, J. Lammerding, and J. Ipsen, Biophysical Journal 91, 4649 (2006).
[17] E. Buckingham, Phys. Rev. 4, 345 (1914).
[18] Y.-H. M. Chan and W. F. Marshall, Organogenesis 6, 88 (2010), pMID: 20885855, https://doi.org/10.4161/org.6.2.11464.

http://dx.doi.org/ 10.1083/jcb.201505056
http://arxiv.org/abs/https://rupress.org/jcb/article-pdf/211/4/765/1370799/jcb_201505056.pdf
http://dx.doi.org/10.1038/nchembio.2077
http://dx.doi.org/10.1038/nchembio.2077
http://dx.doi.org/10.1021/ja905376q
http://dx.doi.org/10.1371/journal.pcbi.1005549
http://dx.doi.org/10.1371/journal.pcbi.1005549
http://dx.doi.org/10.1073/pnas.1705179114
http://dx.doi.org/10.1073/pnas.1705179114
http://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1705179114
http://dx.doi.org/ 10.1371/journal.pcbi.1009400
http://dx.doi.org/10.1126/science.1240104
http://dx.doi.org/10.1242/jcs.01357
http://arxiv.org/abs/https://journals.biologists.com/jcs/article-pdf/117/20/4779/1531517/4779.pdf
http://dx.doi.org/10.1091/mbc.e16-09-0653
http://dx.doi.org/10.1091/mbc.e16-09-0653
http://arxiv.org/abs/https://doi.org/10.1091/mbc.e16-09-0653
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470141533.ch1
http://dx.doi.org/10.7554/eLife.76075
http://dx.doi.org/10.7554/eLife.72381
http://dx.doi.org/https://doi.org/10.1529/biophysj.106.086454
http://dx.doi.org/10.1103/PhysRev.4.345
http://dx.doi.org/10.4161/org.6.2.11464
http://arxiv.org/abs/https://doi.org/10.4161/org.6.2.11464

	Supplementary information: "Cell size scaling laws: a unified theory"
	PLM fundamental equations
	Electroneutrality
	Balance of water chemical potential
	Balance of ionic fluxes

	General expressions of the volume in the PLM model
	Analytical expression of the volume when hydrostatic pressure difference is negligible
	Analytical expression of the volume when P is buffered
	Analytical expression of the volume for an arbitrary number of ions and active transports

	Order of magnitudes
	Protein concentration
	mRNA to protein fraction
	Metabolite concentration
	Contribution of osmolytes to the wet volume of the cell Fig.1.C
	Amino-acids contribution to the dry mass
	Effective charge of chromatin
	Condensed counterions on chromatin
	Estimation of the amplitude of the Mitotic Swelling
	Average charge of proteins and metabolites
	Absolute number of osmolytes
	Estimation of an upper bound for the hydrostatic pressure difference of the nucleus
	Estimation of the second virial term in the osmotic pressure

	A cell growth model
	Neither DNA nor mRNAs are saturated: PpP*p and PrP*r
	DNA is saturated but not mRNAs: PpP*p and PrP*r
	Both DNA and mRNAs are saturated: PpP*p and PrP*r
	Quantification of the model of growth with published data
	Fitting procedure

	Manning condensation
	The Nested PLM Model
	Dry volumes in the nucleus and in the cytoplasm
	Membrane potential in the simple PLM model
	General Formula for the regime NC2, i.e., no metabolites
	Analytical solutions in the regime zp = 1, za = 1, and 0 0
	Control parameters of the nested PLM during growth
	Phase Diagram
	Saturating volume after a hypo-osmotic shock
	Geometrical impact

	Electrostatic interactions are encompassed within our framework
	Possible extension to explain the scaling of other organelles
	References


