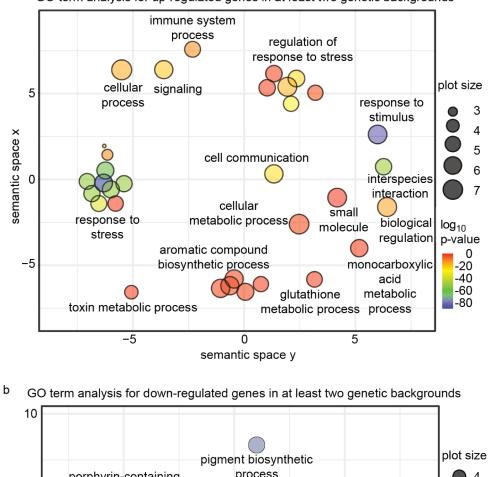
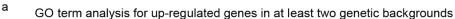
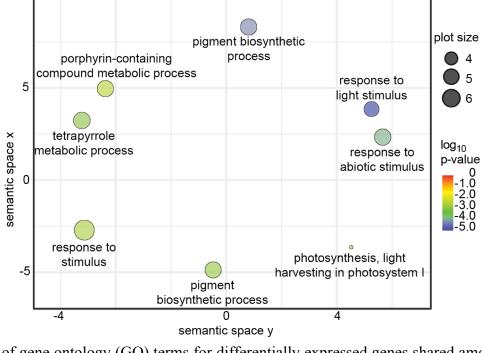
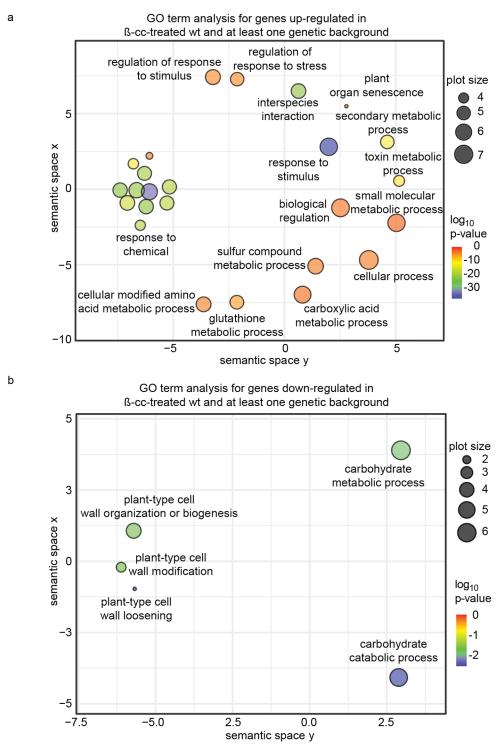

Figure S1. Meta-analysis of transcriptome expression data from three chloroplast ${}^{1}O_{2}$ *-producing*




mutant backgrounds.

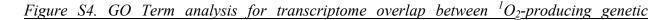

Venn diagram depicting common differentially expressed genes (DEGs) **A**) up-regulated or **B**) down-regulated during chloroplast ${}^{1}O_{2}$ stress in the *fc2* (Woodson et al. 2015), *flu* (op den Camp

et al. 2003), and *ch1* (Ramel et al. 2013) genetic backgrounds compared to wt plants treated with β -cyclocitral (β -cc) (Ramel et al. 2012). **C**) Venn diagram showing common up-regulated genes during chloroplast ${}^{1}O_{2}$ stress in the *fc2* (Woodson et al. 2015), *flu* (op den Camp et al. 2003), and *ch1* (Ramel et al. 2013) genetic backgrounds compared to Early Singlet Oxygen Response Genes (ESORGs) in *flu* mutant seedlings (Dogra et al. 2017). The number of overlapping DEGs (and percent proportion to total DEGs in the analysis) is indicated within each colored area.

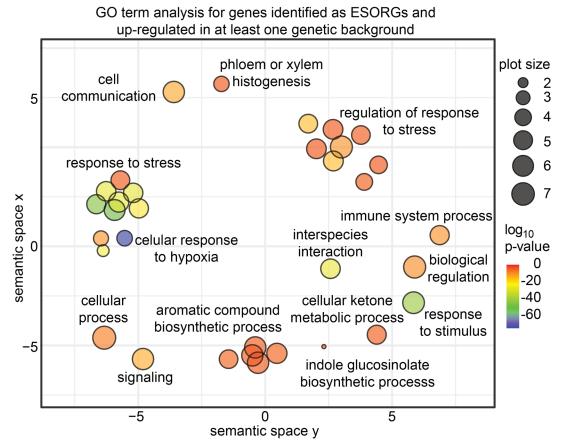


Scatterplot of gene ontology (GO) terms for differentially expressed genes shared among at least two chloroplast ${}^{1}O_{2}$ accumulating mutants; *fc2* (Woodson et al. 2015), *flu* (op den Camp et al.

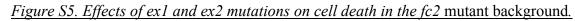
2003), and ch1 (Ramel et al. 2013). Shown are enriched GO terms from shared A) up-regulated or identified using GO::TermFinder B) down-regulated genes. GO terms were (https://go.princeton.edu/cgi-bin/GOTermFinder) (Boyle et al. 2004) and selected based on a pvalue ≤ 0.01 . Qualifying GO terms were exported to REVIGO ("small" option for filtering was applied) to create the scatterplot (http://revigo.irb.hr) (Supek et al. 2011), which shows the GO cluster representatives (i.e., remaining GO terms after removal of redundancies) as circles in a grid representing semantic similarities. The closer the circles are to each other, the more related the GO terms are. The size of the circle indicates the frequency of the GO term in the underlying GO annotation database. As such, larger circles represent more general terms. The color of the circles represents the \log_{10} (p-value) of the GO term.

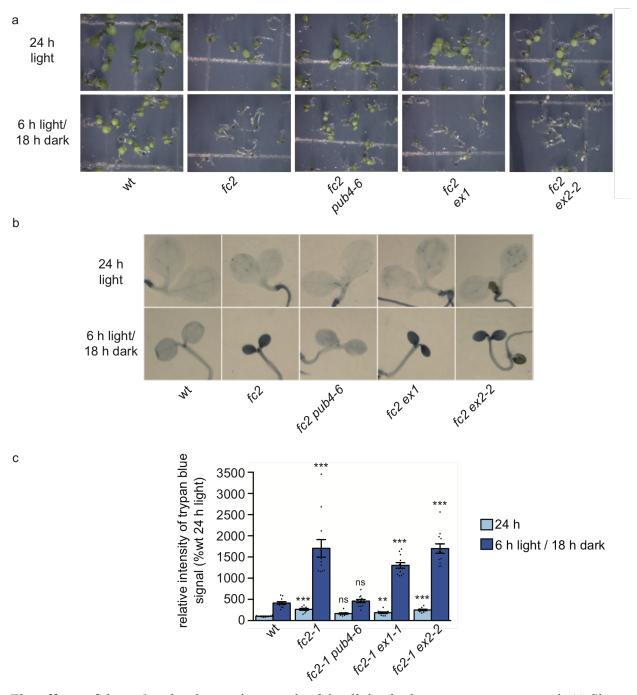

Figure S3. GO Term analysis for transcriptome overlap between ¹O₂-producing genetic

backgrounds and β -cyclocitral treatment.

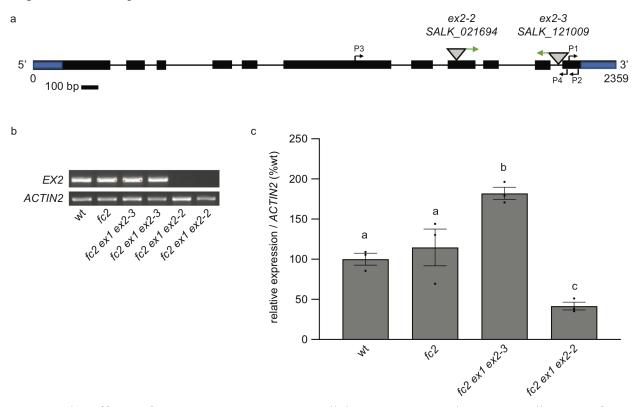


Scatterplot of gene ontology (GO) terms for differentially expressed genes shared among β -cyclocitral (β -cc)-treated wt plants (Ramel et al. 2012) and at least one chloroplast ${}^{1}O_{2}$

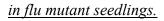

accumulating mutant; *fc2* (Woodson et al. 2015), *flu* (op den Camp et al. 2003), and *ch1* (Ramel et al. 2013). Shown are enriched GO terms from shared **A**) up-regulated or **B**) down-regulated genes. GO terms were identified using GO::TermFinder (<u>https://go.princeton.edu/cgi-bin/GOTermFinder</u>) (Boyle et al. 2004) and selected based on a p-value ≤ 0.01 . Qualifying GO terms were exported to REVIGO ("small" option for filtering was applied) to create the scatterplot (<u>http://revigo.irb.hr</u>) (Supek et al. 2011), which shows the GO cluster representatives (i.e., remaining GO terms after removal of redundancies) as circles in a grid representing semantic similarities. The closer the circles are to each other, the more related the GO terms are. The size of the circle indicates the frequency of the GO term in the underlying GO annotation database. Aa such, larger circles represent more general terms. The color of the circles represents the log₁₀ (p-value) of the GO term.



backgrounds and ESORGS.


Scatterplot of gene ontology (GO) terms for Early Singlet Oxygen Response Genes (ESORGs) in *flu* seedlings (Dogra et al. 2017) found to be significantly induced in at least one chloroplast ${}^{1}O_{2}$ accumulating mutant; *fc2* (Woodson et al. 2015), *flu* (op den Camp et al. 2003), and *ch1* (Ramel et al. 2013). Shown are enriched GO terms from shared **A**) up-regulated or **B**) down-regulated genes. GO terms were identified using GO::TermFinder (<u>https://go.princeton.edu/cgibin/GOTermFinder</u>) (Boyle et al. 2004) and selected based on a p-value ≤ 0.01 . Qualifying GO terms were exported to REVIGO ("small" option for filtering was applied) to create the scatterplot (<u>http://revigo.irb.hr</u>) (Supek et al. 2011), which shows the GO cluster representatives (i.e., remaining GO terms after removal of redundancies) as circles in a grid representing semantic similarities. The closer the circles are to each other, the more related the GO terms are. The size of the circle indicates the frequency of the GO term in the underlying GO annotation database. Aa such, larger circles represent more general terms. The color of the circles represents the log_{10} (p-value) of the GO term.

The effects of the ex1 and ex2 mutations on the fc2 cell death phenotype were assessed. A) Shown are six-day-old seedlings grown under constant light (24h) or diurnal cycling light (6h light / 18h dark) conditions. B) Representative images of the same seedlings stained with trypan blue. The dark blue color indicates cell death. C) Shown are mean intensities of trypan blue signal (+/- SE,


 $n \ge 10$ seedlings) from **B**. Statistical analyses were performed using a one-way ANOVA followed by a Tukey HSD test. Statistical significance in respect to *fc2* is indicated as follows: n.s. = p-value ≥ 0.05 , *** = p-value ≤ 0.001 . Closed circles represent individual data points.

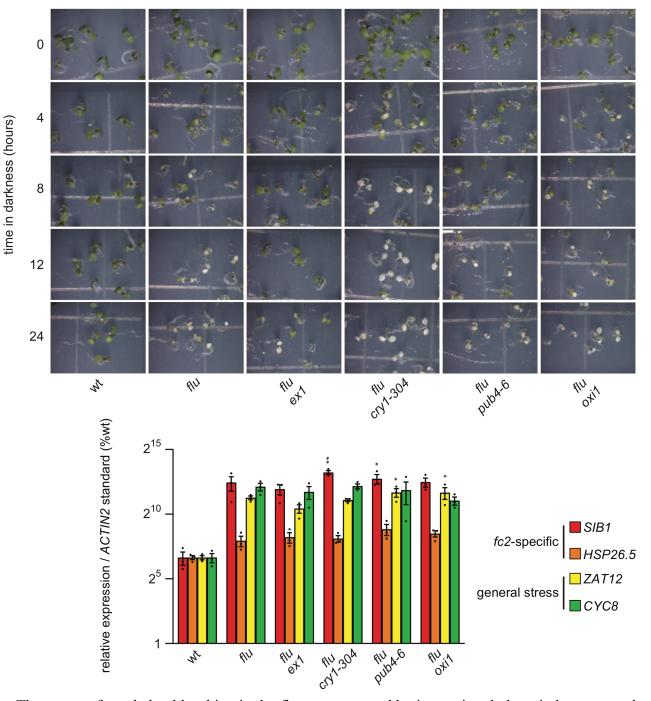
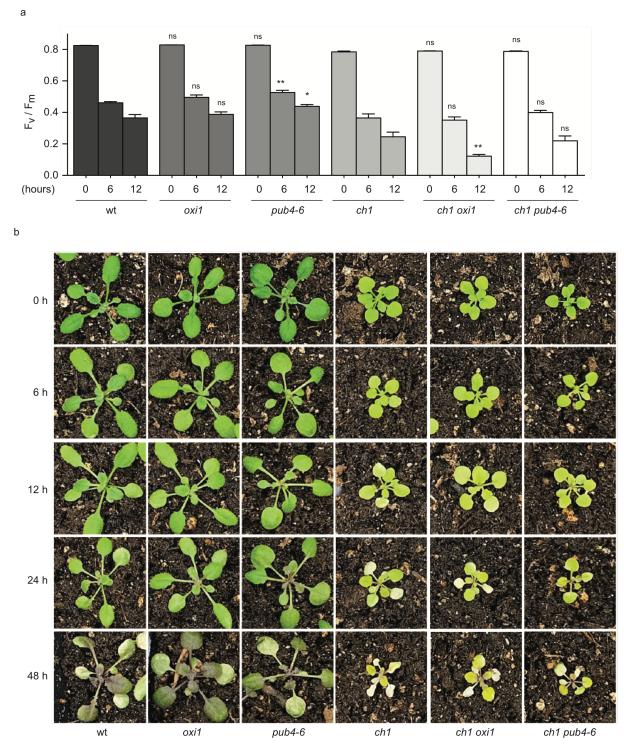


Figure S6. EX2 expression levels in ex2 T-DNA mutants.

The effects of two *ex2* T-DNA mutant alleles were assessed. **A)** Gene diagram of *EX2* (*At1g27510*). Triangles represent T-DNA insertions with the right borders denoted by green arrows. The primers P1 and P2 are WLO1688/1689 used for RT-qPCR (panel **C** in this figure). The primers P3 and P4 are WLO1642/1643 used for semi-RT-qPCR (panel **B** in this figure, primer sequences in Table S2). The 5' and 3' untranslated regions are marked by a blue rectangle in the first and last exons respectively. Scale bar = 100bp. **B**) Shown is a semi-RT-qPCR analysis of cDNA generated from RNA extracted from five-day old seedlings grown in 24h constant light. PCR was repeated for 30 cycles. **C)** Shown is RT-qPCR analysis of cDNA generated from RNA extracted from light / 18h dark cycling diurnal conditions (+/- SE, n = 3 seedling pools). Statistical analyses were performed using a one-way ANOVA followed by a Tukey HSD test. Different letters above bars indicate significant differences within data sets (p-value \leq 0.05). Closed circles represent individual data points.


Figure S7. Analysis of extended dark periods on retrograde signaling and the severity of cell death

The extent of cotyledon bleaching in the *flu* mutant caused by increasing dark periods was tested. **A)** Shown are seedlings grown for five days in constant light, shifted to dark under the indicated amount of time (0-24 hours), and then shifted back to light for 36h (seven days total). Bleaching of cotyledons indicates cell death caused by ${}^{1}O_{2}$ signaling. The row for the 12h dark incubation was used in Fig. 4a. **B**) RT-qPCR of stress gene markers (from *fc2* mutants; *SIB1* and *HSP26.5* (Woodson et al. 2015)) and general stress (*ZAT12* and *CYC8* (Baruah et al. 2009)) of five-day old seedlings grown under 24h constant light then dark-incubated for 12 hours, harvested one hour after re-exposure to light. Shown are mean expression values (+/- SE, n = 3 biological replicates). Statistical analyses were performed using a one-way ANOVA followed by a Tukey HSD test. Statistical significance in respect to wt is indicated as follows: * = p-value ≤ 0.05 , ** = p-value ≤ 0.01 . Closed circles represent individual data points.

Tano et al. 2022 Supplemental information

Figure S8. Effect of singlet oxygen signaling mutations on EL-induced phenotypes.

The effect of the *oxi1* and *pub4-6* mutations were tested in adult plants treated with excess light (EL). A) Time course analysis of maximum PSII quantum efficiency (F_v/F_m) in these plants during

the initial 12 hours of EL (1,300 μ mol sec⁻¹ m⁻²) and 10 degrees C. **B**) Shown are representative images of EL-treated plants at the indicated times.

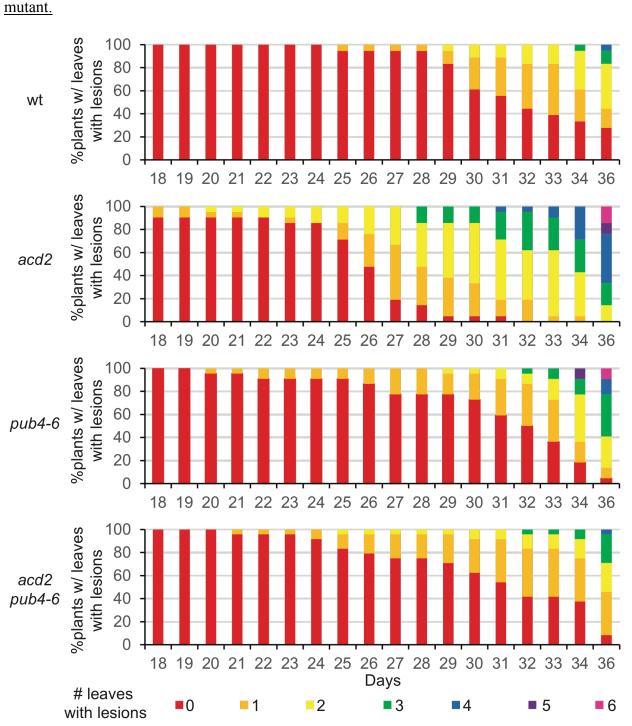


Figure S9. The pub4-6 mutation slows the progression of spontaneous cell death in the acd2

The *acd2* spontaneous cell death and lesion phenotypes were assessed. Shown are the percentage of plants containing different numbers of leaves with lesions from 18 to 36 days old ($n \ge 18$ plants). Any type of discoloring was considered a lesion.

Tano et al. 2022 Supplemental information

Table S1. Mutant lines used in study

Mutant	Gene Name	Gene #	DNA/Protein Change	Notes	Ref.
acd2-2	ACCELERATED CELL DEATH 2 ARABIDOPSIS THALIANA RED CHLOROPHYLL CATABOLITE REDUCTASE	At4g37000	G to A substitution in the intronic splice site	Generated by ethyl methanesulfonate treatment	(Mach et al. 2001)
ch1-1	CHLORINA 1; CHLOROPHYLL A OXYGENASE	At1g44446	Deletion	Generated by X- ray Diffraction	(Havaux et al. 2007)
cry1- 304	CRYPTOCHROME 1	At4g08920	Deletion	Generated by neutron mutagenesis	(Bruggemann et al. 1996)
ex1	EXECUTER 1	At4g33630	SALK_002088 T-DNA in 2 nd exon		(Lee et al. 2007)
ex2-2	EXECUTER 2	At1g27510	SALK_021694 T-DNA in 8 th exon		(Uberegui et al. 2015)
ex2-3	EXECUTER 2	At1g27510	SALK_121009 T-DNA in 10 th intron		This Study
fc2-1	PLASTID FERROCHELATASE 2	At2g30390	GABI_766H08 T-DNA in 5'UTR	Sulfadiazine Resistant	(Woodson et al. 2011)
flu-1	FLUORESCENT IN BLUE LIGHT	At3g14110	C-terminal amino acid substitution (A262V)	Generated by ethyl methanesulfonate treatment	(Meskauskiene et al. 2001)
oxi1-1	OXIDATIVE SIGNAL-INDUCIBLE 1	At3g25250	GABI_355H08 T-DNA in 2 nd exon		(Camehl et al. 2011)
pub4-6	PLANT U-BOX 4	At2g23140	U-box domain amino acid substitution (G255R)	Generated by ethyl methanesulfonate treatment	(Woodson et al. 2015)

Table S2. Primers used for RT-qPCR and genotyping

Gene	Primer orientation / name	Sequence
RT-qPCR primer pairs		
ACTIN2 / At3g18780	For. / JP199	GCACTTGCACCAAGCAGCAT
	Rev. / JP200	CCTTTCAGGTGGTGCAACGAC
SIB1 / At3g56710	For. / JP589	CAACCGGAGCCCATCTATT
	Rev. / JP590	GGAGAAAGGTTGTGGTCGTC
HSP26.5 / At1g52560	For. / JP585	CGAGCTTATCGTTGCCTGAT
	Rev. / JP586	CTCCGCCTTAATGTCCTCAA
BAP1 / At3g61190	For. / JP338	ATTGATGGATACGGTGGCCG
	Rev. / JP339	CAGACCCCAAACCGGAACTC
Atpase / At3g28580	For. / JP336	GAAGATCGGAAAAGCGTGGAA
	Rev. / JP337	CCGGGTGGTCCAAACAAAAG
ZAT12 / At5g59820	For. / JP344	GCGTTGGTTACACGCGCTT
	Rev. / JP345	CTTCAACGTAGTCACCGTGGG
CYC8 / At4g37370	For. / JP1130	AATGGGCATTGTCGAACGTG
	Rev. / JP1131	TCGCCTTGTTCAATACATCCG
NOD1 / At5g64870	For. / JP340	GCTGATGCTGCCTTCTATTCAA
	Rev. / JP341	TGCGACAAGTCCCTCTGCA
EX2 / At1g27510	For. / WLO1688	CATATGTGAAGGGCGCAGATC
	Rev. / WLO1689	CAGACGGTTGAAAAGGACCAAG
Semi-qPCR primer pairs		
ACTIN2 / At3g18780	For. /WLO1401	GGCTGAGGCTGATGATATTC
	Rev. /WLO1402	TCTGTGAACGATTCCTGGAC
EX2 / At1g27510	For. /WLO1642	CGTGTGTCGGCAAATATAATGGA
	Rev. /WLO1643	TCTGCGCCCTTCACATATGG
Genotyping primer pairs		

SALK T-DNA Left Border	LB1.3	ATTTTGCCGATTTCGGAAC
GABI-KAT Left Border	Gabi-KAT 03144	ATATTGACCATCATACTCATTGC
<i>acd2-2</i> dCAPS genotyping: <i>Pst</i> I digestion, wt = 124 bp, mutant = 149 bp	For. / JP1144	GAGAATCTTAAAGTTTGTTTTGTTCTGCA
	Rev. / JP1145	TCGACCACAAAGTTTGGAGCT
cry1-304	For. / WLO1451	ATGTCTGGTTCTGTATCTGGTTGTGGTTC
	Rev. / WLO1452	ATAGTTCTCATCCACAGCCCAAG
ex1-1 (SALK_002088)	For. / JP415	TCTGACACTTGATGGGAAAGG
	Rev. / JP416	TAAGCTGCGACTCCTTTTCTG
<i>ex2-2 (SALK_021694)</i>	For. / JP1140	CACTAAGCTTGTCATCGGAGG
	Rev. / JP1141	AAATGTCAATGTGGCTGGAAC
<i>ex2-3</i> (<i>SALK_121009</i>)	For. / JP1142	TCCCTATTGATTTGCAGAAGC
	Rev. / JP1143	ATTGTTTCCAGAGGAATTGGG
fc2-1 (GabiKat_766H08)	For. / JP283	GAGCAACGCCAAACATAGAAG
	Rev. / JP284	TCAAAGGCAATGAATGTTTCC
<i>flu-1</i> dCAPS genotyping: <i>HpyI</i> 88I digestion, wt = 127 bp, mutant = 102 bp	For. / JP1138	AGCTTTGGAACTTGCCCAGA
	Rev. / JP1139	TAGAACCATGGAGTGATACTGTCTG
oxi1-1 (Gabi_355H08)	For. / JP1291	CCTTTCCAAACAAAGCAAGTG
	Rev. / JP1292	AAGAAACGTCTCTTCCGCTTC
<i>pub4-6</i> dCAPS genotyping: <i>Hpa</i> II digestion, wt = 97 bp, mutant = 121 bp	For. / JP742	TATTAGAGTAGTGTGAGTCAGG
	Rev. / JP743	GATCCAGTGATTGTGTCATCC

Genotype	RNA Extraction	Expression Analysis	Data Sets Selected	Growing Conditions	Age	Ref.
fc2	RNeasy Plant Mini Kit (Qiagen)	Affymetrix GeneChip Arabidopsis ATH1 Genome Array.	2 hr timepoint was used. <i>fc2</i> was compared to wt grown in the same conditions.	First grown in the dark for 4 days and then exposed to 2 hours of white light (120 μ mol photons m ⁻² s ⁻¹).	4-day old etiolated seedlings	(Woodson et al. 2015)
flu	Not listed	Affymetrix GeneChip Arabidopsis ATH1 Genome Array.	1 hr timepoint was used. <i>flu</i> following dark/light shift was compared to wt treated similarly	First grown in continuous white light (80-100 photons μ mol m ⁻² s ⁻¹). Incubated in dark for 8 hours and then exposed again to white light for 1 hr	Rosette stage adult plants	(op den Camp et al. 2003)
ch1	TRIzol extraction (Invitrogen) and Message Amp aRNA kit (Ambion)	CATMAv5 Complete Arabidopsis Transcriptome MicroArray.	Excess light treated <i>ch1</i> was compared to untreated <i>ch1</i> .	First grown in 8h white light (180 μ mol photons m ⁻² s ⁻¹) / 16 h dark photoperiod. Then exposed to 2 days of 1,000 μ mol photons m ⁻² s ⁻¹ (same photoperiod)	5-8 week old adult plants	(Ramel et al. 2013)

Table S16. Conditions for previously published transcript profiling experiments

Tano et al. 2022 Supplemental information

β-cc- treated wild type	TRIzol extraction (Invitrogen) and Message Amp aRNA kit (Ambion)	CATMAv5 Complete Arabidopsis Transcriptome MicroArray.	β-cc-treated wt was compared to untreated wt (mock treatment of distilled water).	First grown under a 16 hr white light (100 μ mol photons m ⁻² s ⁻¹) / 8h dark photoperiod. Then exposed to 50 μ L of β - CC for 4 hr in an airtight box (60 μ mol m ⁻² s ⁻¹)	4 week old adult plants	(Ramel et al. 2012)
<i>flu</i> RNAseq	RNeasy Plant Mini Kit (Qiagen) and NEBNext Ultra Directional RNA Library Prep Kit for Illumina	Libraries constructed using NEBNext Ultra Directional RNA Library Prep Kit for Illumina. Sequenced on an Illumina HiSeq 2500 platform to generate 100 bp paired-end reads. False discovery rate of 0.05 and 1 transcript/million minimum.	Light-exposed (both 30 and 60 minute time points) <i>flu</i> plants were compared to <i>flu</i> plants without reillumination.	First grown under continuous white light $(40 \ \mu mol \ photons \ m^{-2} \ s^{-1})$ for 5 days and the incubated in the dark for 4 hrs. Next, seedlings were re- illuminated with white light for 30 and 60 min (both timepoints used in analysis)	5-day old seedlings	(Dogra et al. 2017)

Genotype	Differentially expressed genes in data set (#) (total / unique)	Gene Overlap with <i>fc2</i> (# / %)	Gene Overlap with <i>flu</i> (# / %)	Gene Overlap with <i>ch1</i> (# /%)	Overlap among all 3 Genotypes (# / %)			
Up-regulate	ed Genes							
fc2	185 / 100	-	72/38.9	38/20.5	25/13.5			
flu	588 / 352	72/12.2	-	189/32.1	25/4.3			
chl	520 / 318	38/7.3	189/36.3	-	25/4.8			
Down-regu	Down-regulated Genes							
fc2	241 / 194	-	20/8.3	38/15.8	11/4.6			
flu	77 / 41	20/26.0	-	27/35.1	11/14.3			
chl	370 / 316	38/10.3	27/7.3	-	11/3.0			
Up- and Down-regulated Genes								
fc2	426 / 294	-	92/21.6	76/17.8	36/8.5			
flu	665 / 393	92/13.8	-	206/31.0	36/5.4			
ch1	890 / 634	76/8.5	206/23.1	-	36/4.0			

Table S17. Common genes differentially expressed between fc2, flu, and ch1 data sets

Genotype	# of differentially expressed genes in common	# of differentially expressed genes overall	% Overlap					
Up-regulated	Up-regulated							
fc2	23	185	12.4					
flu	75	588	12.8					
ch1	127	520	24.4					
Down-regulated								
fc2	4	241	1.7					
flu	6	77	7.8					
ch1	34	370	9.2					
Up- and Down-regulated								
fc2	34	426	8.0					
flu	83	665	12.5					
ch1	166	890	18.7					

Table S18. Common genes differentially expressed by treatment with β *-cyclocitral.*

Table S19. Early Singlet Oxygen Response Genes (ESORGs) induced in mutants

Genotype	# up-regulated ESORGs	# up-regulated genes	% Overlap
fc2	34	185	8.0
flu	78	588	11.7
ch1	43	520	4.8

References

- 1. Baruah A, Simkova K, Apel K, Laloi C (2009) Arabidopsis mutants reveal multiple singlet oxygen signaling pathways involved in stress response and development. Plant Mol Biol 70:547-63
- 2. Boyle El, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO::TermFinder open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20:3710-3715
- 3. Bruggemann E, Handwerger K, Essex C, Storz G (1996) Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J 10:755-60

- 4. Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, Munnik T, Hirt H, Oelmüller R (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 7:e1002051
- Dogra V, Duan J, Lee KP, Lv S, Liu R, Kim C (2017) FtsH2-Dependent Proteolysis of EXECUTER1 Is Essential in Mediating Singlet Oxygen-Triggered Retrograde Signaling in Arabidopsis thaliana. Front Plant Sci 8:1145
- 6. Havaux M, Dall'osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506-20
- Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:10270-5
- 8. Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci U S A 98:771-6
- 9. Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:12826-31
- 10. op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320-2332
- Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences of the United States of America 109:5535-40
- 12. Ramel F, Ksas B, Akkari E, Mialoundama AS, Monnet F, Krieger-Liszkay A, Ravanat JL, Mueller MJ, Bouvier F, Havaux M (2013) Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. The Plant cell 25:1445-62
- 13. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800
- 14. Uberegui E, Hall M, Lorenzo O, Schroder WP, Balsera M (2015) An Arabidopsis soluble chloroplast proteomic analysis reveals the participation of the Executer pathway in response to increased light conditions. J Exp Bot 66:2067-77
- Woodson JD, Joens MS, Sinson AB, Gilkerson J, Salome PA, Weigel D, Fitzpatrick JA, Chory J (2015) Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science 350:450-4
- 16. Woodson JD, Perez-Ruiz JM, Chory J (2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21:897-903