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Abstract 

Self-organized criticality is a hallmark of complex dynamic systems at phase transitions. Systems that 

operate at or near criticality have large-scale fluctuations or "avalanches", the frequency and duration 

power of which are best fit with a power law revealing them to be scale-free and fractal, and such power 

laws are ubiquitous. It is an attractive concept in neuroscience since spiking avalanches are exhibited by 

neural tissue, and may underpin how minuscule events could scale up to circuits and provide adaptive 

psychobiological function. Much is yet to be understood about criticality in vivo in the healthy brain and in 

disorders such as addiction, as drugs may alter the critical state’s “tuning” to generate drug seeking and 

dysphoria. Thus, here a novel toolset was developed to use neural avalanches and their self-similarity, 

rather than power law fit slope exponents as is canonically done, to quantify criticality in a previously 

collected high-density electrophysiological in vivo corticostriatal dataset from a mouse model of early 

cocaine abstinence. During behavioral quiescence, in the prefrontal cortex but not ventral striatum of 

cocaine-dosed mice, it was found that critical tuning is enhanced compared to drug-free controls. 

Additionally, an empirical biological demonstration of complexity's theoretical correlation to criticality was 

shown in drug-free mice, was exponentially enhanced in drug-treated cortex, but was absent in the drug-

treated striatum. As shown, quantifying criticality grants experimental support for the "critical brain 

hypothesis" and allows for statistical interpretation of inter-subject variability and development of further 

testable hypotheses in systems neuroscience. 
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Significance Statement 

The "critical brain hypothesis" asserts neural networks are comparable to material in phase transitions at 

a critical point, their "avalanches" of system-wide spike bursts best seen in log-log plots of probability vs. 

avalanche size or duration, with slope following a scale-free or fractal power law. In discussing criticality, 

"critical tuning" is mentioned but quantification thereof left for later experimentation, despite being 

necessary for a scientific hypothesis. Presented are methods to quantify critical tuning through assessing 

similarity or fractalness among corticostriatal avalanches collected using high-density electrophysiology in 

cocaine-conditioned mice, along with an empirical in vivo confirmation of the mathematical concept that 

data complexity correlates with criticality. Interestingly, cocaine enhances critical tuning in cortex and 

aberrantly modifies complexity in a region-specific manner.  

Main Text 

Introduction 

An emergent property of clusters of neurons, self-organized criticality (SOC) may be the most 

fundamental expression of a neural network responding to perturbations in a scale-free manner (1, 2), 

allowing for high dynamic range in sensory responses and increased complexity in information encoding 

(3, 4); neural ensembles may benefit from this property and guide adaptive or maladaptive behaviors (5-

7). Being ubiquitous, SOC potentially is the framework uniting descriptions of various interacting self-

similar natural systems like earthquakes, wildfires, birds flocking, and ferromagnets (8-10). Emerging 

evidence, perhaps unsurprisingly, suggests the brain’s information structure obeys related principles of 

statistical mechanics (11), an extension of thermodynamics. 

 Although consilience of evidence supports criticality in physics and chemistry, as an explanation 

for neuroscientific problems it remains to be tested rigorously (3, 4, 12-15). Briefly, SOC systems have 

scale-free fluctuations, “avalanches”, which irrespective of size or duration, are statistically distributed 

following a power law seen in log-log coordinates (16-18). Neural avalanches are identified with a 

characteristic recording array-wide spiking profile, bounded by brief, typically 5ms, periods of inactivity. 

Power laws fits have the same slope at any two points and are thus scale-free, ergo the deformation of 

the system through avalanches should follow a fractal structure, as in cracking noise (8, 19). 
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 The last two decades of brain criticality experimentation in preparations as disparate as murine 

tissue culture, in vivo primate physiology, and human EEG and fMRI have shown consistent functional 

aspects of criticality (17, 20-23). The “tuning” of neural slices towards and away from criticality via 

pharmacological manipulations, inferred by the changing of avalanche distribution from exponential to a 

power law, has revealed maximum information transfer and dynamic range of response to weak inputs at 

the critical point (24-26), and other experiments have shown a similar principle in vivo in rats that awaken 

from anesthesia (27). Human imaging data corroborates this and has shown loss of critical dynamics 

concomitant with propofol-induced loss of consciousness (28). More recent murine work in vivo follows a 

similar path in discussing critical tuning in terms log-log fit exponents (29), consistent with the usage of 

Hurst exponents and detrended fluctuation analysis (DFA) to ascertain if criticality has a functional role in 

physiological neuroplasticity and in disease states (15).  

Although criticality is thought to be an integral part of consciousness, sensory response, and 

attention (30), there is nothing known about how addictive drugs like cocaine alter criticality despite it 

being well-accepted that systemically taken narcotics change qualia through psychosis (31-33), craving 

contributes to dysphoria (34), and withdrawal has vast central and autonomic consequences (35), with 

addiction having correlates at synaptic and circuit levels (36). Additionally, there is no study demonstrating 

criticality in the striatum, a centrally important subregion in dopamine-dependent learning and memory, 

despite the depth of electrophysiology regarding it (37, 38); neural criticality could provide an aid in 

understanding systems correlates of decision making and addiction-dependent errors. 

Most work to date assessing critical tuning is limited to essentially fits of power laws (13, 39) or 

correlations in ensemble fluctuations, which can provide conflicting results (40, 41) since neurons have 

inconsistent firing and weak correlations (42). Fit exponents are tangential to criticality because observing 

ubiquitous power laws doesn’t prove system criticality since even successive fractionation or even noise 

can yield power law distributions, and there’s no consensus of sufficient conditions for ascribing criticality 

to the brain (43). To address these shortcomings, alternative post-hoc analysis was performed on 

corticostriatal 512-channel awake-behaving in vivo silicon probe electrophysiology datasets in mice 

undergoing brief cocaine abstinence after behavioral conditioning (44), using only epochs of behavioral 

quiescence prior to cue exposure.  
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To compare results between canonical methods and the current high-density in vivo approach, 

basic avalanche properties are first described similarly to established criteria (45) in both regions. Then, 

to quantify tuning, a proxy metric for self-similarity and fractalness in avalanches, the median absolute 

error (MAE) of all mean avalanche collapse shapes per subject, rather than an arbitrary subset (14, 29, 

45) is proposed. Additionally, correlation matrices of collapse shapes corroborate MAE as valid metric to 

assess how self-similar scale-free avalanches are. It was hypothesized that cortical avalanches in the 

drug treated group are more fractal (with a lower MAE) as the slight increase in quiescent firing previously 

seen in cocaine-dosed cortices (44), rather than hypoactivity, may signal ensemble bursting being 

enhanced, and thus altered avalanches and criticality being enhanced. This was validated; however, 

striatum appeared to be less modulated by cocaine in terms of criticality and complexity. Since a rigorous 

quantification of spike-time shuffling’s effects on avalanche structure was unavailable (14, 29, 45), 

applying 1ms of Gaussian jitter destroyed avalanche structure in nearly all animals, further evidence of 

the exquisite temporal structure of neural avalanches. Finally, by quantifying criticality, it was amenable to 

mathematical correlation to complexity, and shown that in controls there was a roughly linear correlation 

between MAE and complexity in cortex and striatum, which after drugs was aberrantly altered in a region-

dependent manner. Overall, presented is further empirical support for deep brain in vivo neural criticality, 

an additional method to quantify oft-overlooked inter-subject variability in addiction (44, 46, 47), and a 

method to enable further hypothesis testing in neural criticality.  

Results 

Awake in vivo recording paradigm and demonstration of avalanche shapes in vivo                              

Figure 1A is a schematic of the recording; for detailed explanations of conditioning, see reference (44). All 

subsequent analysis refers to the behavioral quiescence period of 15 minutes prior to any cue onset, as 

discussed in that paper. All recordings utilized a 512-channel 3D silicone probe array inserted into the 

prefrontal cortex (Fig. 1B, left) and ventral striatum (Fig. 1B, right) at the indicated anterior-posterior 

coordinates. These probe arrays yield extensive firing rasters (Fig. 1C), with two smaller avalanches 

(orange highlight for Fig. 1D & blue highlight for Fig. 1E) shown. Avalanches are defined as array-wide 

bursts bounded by 5 ms frames of inactivity; consistent with other groups, even these small avalanches 

have a characteristic inverted-U shape (45). 
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Figure 1. Awake in vivo recording paradigm and demonstration of avalanche shapes in vivo                              
(A) Head-fixed mice on a uniaxial treadmill were acutely recorded from, as previously in reference (44), 
and analyses performed on 15 minutes of data collected during quiescence. (B) Schematic of electrode 
array positioning in the cortex (left) and striatum (right), with scale and anterior-posterior coordinates 
indicated (PrL = Prelimbic cortex, IL = Infralimbic cortex, AcbC = Accumbens Core, AcbSh  = Accumbens 
Shell). (C) Segment of a single animal’s cortical firing raster. (D) Expanded raster of the orange trace in 
(C) (left) and the corresponding avalanche shape (right); time is indicated in 5 ms frame bins. (E) 
Expanded raster of the blue trace in (C) (left) and the corresponding avalanche shape (right). 
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Scale-free properties of in vivo corticostriatal avalanche data.  

Avalanches in each region had a duration (frame count) and event power or magnitude (spikes per frame) 

assigned, and these were plotted using a MATLAB histogram and logfit function; Fig. 2A shows 

representative striatal avalanche size data, while 2B shows corresponding cortical data. As indicated in 

both panels, the goodness of log-log fit R
2
 was above 0.85 in both brain regions, with avalanche event 

power slope “ ” ~-3/2, near the golden ratio, theoretical calculations, and neurobiological observations of 

this value (3, 45, 48, 49). For the same subject, duration “α” and power vs. duration “Γ”, the latter also 

known as “α-1/ -1” or “β” (29, 45, 49), plots are in  2C and 2D, respectively. Drug-exposed and control  

values did not differ in a statistically significant way for the cortex (Fig. 2E, left; Mann–Whitney U test, p = 

0.3518) or striatum (Fig. 2E, right; Mann–Whitney U test, p = 0.8522), but are within physiological 

parameters of SOC systems, evidence that this custom toolbox can reliably extract acute avalanche data 

from silicon probe datasets (50). Perhaps most importantly, the mathematically derived and empirically 

observed Γ values are also near canonical observations in critical systems and similar amongst each 

other (Kruskal-Wallis test, p = 0.7129), further evidence towards critical tuning (49) and the validity of the 

mathematical relationships of α, , and Γ in these data. Despite not finding differences in log-log fit 

exponents between drug treatments, systems operating at criticality have more features such as fractal 

fluctuations in their data, and many systems that do not operate at criticality exhibit α similar to critical 

data (51), demonstrating that fit exponents are not sufficient to demonstrate criticality, and a priori may 

not provide enough information for meaningful quantitative testing. However, these results do suggest the 

data follow a power law and may be fractal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.501652doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.501652


7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Scale-free properties of in vivo corticostriatal avalanche data. (A) One subject’s striatal 
avalanches plotted with avalanche count vs. event power in log-log coordinates follow a power law with 

R
2 
= 0.87 and  = -1.91. (B) Cortical avalanches plotted as in (A) with R

2
= 0.97 and  = -1.61; both sets of 

values have high goodness-of-fit and  consistent with other scale-free critical phenomena in nature and 

neurophysiological data. (C) As in (B), but showing avalanche duration follows a power law with R
2
= 0.97 

and α = -2.00, while (D) shows a logfit plot of power vs. duration from (B) and (C), with R
2
= 0.97 and 

measured Γ = 1.18; panels A-D are all based off one subject’s data. These indicate in vivo data are highly 

consistent with previous observations of critical phenomena obeying power laws. (E) Resting-state  did 

not differ between drug (n = 10) and control group (n = 7) in cortex (left, Mann–Whitney U test, p = 
0.3518) nor striatum (right, Mann–Whitney U test, p = 0.8522), while in (F) calculated and measured 
cortical Γ are not statistically different in any condition in the cortex (Kruskal-Wallis test, p = 0.7129), but 
do show all exponents are mathematically consistent with each other.  
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Avalanche collapses and median absolute error (MAE) to quantify critical tuning shows 

enhancement in cortex after cocaine treatment and requires sub-millisecond spike coordination 

To better assess critical tuning, a toolbox was made to take all avalanches and collect those that 

had the same duration and collapse them using fractional duration and z-scores for spiking. If the data 

were fractal and critically tuned, then avalanches of any shape length should look the same, and the level 

of similarity or dissimilarity can be quantified. Figure 3A demonstrates six mean avalanche shapes of 

different durations, but it should be noted that there are many dozens of avalanche duration groups per 

animal and brain region even in a 15 minute recording (see Fig. 2C). One animal’s entire avalanche 

criticality profile at rest can be visualized by then obtaining the mean of all normalized mean shapes and 

plotting the standard error; Supplementary figure 1 contains a stepwise schematic of this process. 

Each regional dataset can be treated similarly, and one can roughly see a qualitative difference in 

normalized avalanche collapse profiles in drug-treated mice (Fig. 3B) and control mice (Fig. 3C).  

Two quantitative tests on these data were performed to ascertain differences between resting-

state critical tuning in drug-treated and control mice in cortex and striatum, which is the chief advantage of 

this toolbox. The first test relies on median absolute error (MAE), one of a number of summary statistics 

that are used to measure data dispersion (52), to see how critically tuned each brain region in each 

animal was. MAE can be written as: 

1

𝑛
(∑ 𝑚𝑒𝑑𝑖𝑎𝑛(  | [(∀𝑛)𝑧𝑖  ]  −  𝑧̃𝑖  | ))100

1                           (1) 

Where n is the number of collapse shapes in that condition, [(∀𝑛)] refers to a matrix of all n z-scores, 𝑧~ is 

the median z-score, and i is the time within the nth normalized, interpolated collapse shape, which ranges 

from 1-100. Since this is a unitless number representing absolute error, the smaller it gets for each animal 

in each condition, the more similar each median collapse shape is to each other, and thus, more self-

similar or fractal.  

Using this MAE metric, it was found that in the cortex, during behavioral quiescence and in 

absence of cocaine, mice that had experienced drug conditioning were more tuned to criticality than drug-

naïve controls (Fig. 3D, left; Mann–Whitney U test, p = 0.0094); this did not hold true in the striatum (Fig. 

3D, right; Mann–Whitney U test, p = 0.5780). This is not intuitive, as one familiar with addiction and 
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cognitive bias regarding addicts (53) would expect hypoactivity (46) and less computationally beneficial 

brain states in cocaine users absent drug. However, the current result is in line with slight quiescent 

cortical hyperactivity (44) and data on recently abstinent cocaine users having compensatory cortical 

activity (54) prior to the transition to hypoactivity (55).  

One might object that observing and quantifying avalanches is based on a coincidence without 

functional relevance, or is at most a biophysical curiosity. To respond to this potential objection, other 

groups have demonstrated that large amounts of Gaussian jitter applied to spiking data disrupt any 

avalanches (14, 45), but used jitter as large as 5 ms, an order of magnitude larger than most pyramidal 

neuron spike widths (56). Here it is shown that as little as 1 ms of Gaussian jitter can cause the algorithm 

to fail to observe any avalanches in the cortex of drug-treated mice (Fig. 3E) and in controls (Fig. 3F) in 

nearly all mice, and in those few cases where avalanches were still observed, an increase in MAE was 

concomitant with the jitter applied, consistent with previous work (45). Thus, the functional relevance of 

avalanche fractal structure and sub millisecond-level timing in “signal-less” quiescent recordings 15 min 

long (57) is indeed curious, at the very least. 
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Figure 3. Avalanche collapses and median absolute error 
(MAE) to quantify critical tuning shows enhancement in 
cortex after cocaine treatment and requires sub-millisecond 
spike coordination (A) Six mean avalanche shapes are 
plotted (shaded areas: SEM), comprised of suprathreshold 
avalanches of indicated duration. Generally, long and short 
avalanches appear similar. (B) Normalized shape profile for 
cortex in drug-treated mice. (C) Normalized shape profile for 
cortex in controls. (D) Cortical data at rest have a lower 
MAE and are more tuned towards criticality in the cocaine-
dosed mice (left, Mann–Whitney U test, p = 0.0094) 
whereas there is no similar effect observed in the striatum 
(right, Mann–Whitney U test, p = 0.5780). (E) As little as 1 
ms of Gaussian jitter on spiking data in drug-treated mice 
can cause the algorithm to fail to detect avalanches in 8/10 
animals. (F) The same jittering method fails to detect 
avalanches or markedly shifts MAE to non-physiological 
levels in 5/7 controls. 
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Correlation matrices of mean interpolated collapse shapes complementarily show cocaine 

enhances critical tuning in the cortex 

To answer another potential objection to usage of a proxy for avalanche fractalness, in each animal 

pairwise correlations for each interpolated collapse were performed, such that low duration collapses 

would be compared to longer and longer collapses, and vice versa. The resulting pairwise correlation 

matrices are based on control data (Fig. 4A; only cortical data shown, Pearson’s R shown in top right, p-

values of each pairwise shown in bottom left of each plot) and drug group data (Fig. 4B; each plot 

constructed identically to 4A), per animal. This is mathematically one of the simplest ways to demonstrate 

similarity in timeseries data, but comes with the caveat of interpreting the deluge of correlation 

coefficients.  

Subsequently, counts were made of all statistically significant (p < 0.05) Pearson’s R values > 

0.50 in the drug treated vs. control condition, and a statistically significant increase in these counts for 

drug treated mice was found in cortex (Fig. 4C, left; Mann-Whitney U test, p = 0.0328) and again, not 

striatum (Fig. 4C, right; Mann-Whitney U test, p = 0.8011). These data are consistent with the MAE result, 

showing that even when directly comparing collapse shapes to each other, it is found more often that 

collapse shapes are correlated, and thus, self-similar and closer to being fractal in the drug-treated 

condition. These data also suggest if any malleability in the system occurs early in transition to addiction, 

the first place it could manifest is the cortex. 
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Figure 4. Correlation matrices of mean interpolated 
collapse shapes complementarily show cocaine 
enhances critical tuning in the cortex. (A) Control 
cortical data plotted as interpolated collapse 
correlations and a legend for interpreting each 
dataset (top left). Note that the cutoff for significance 
is p = 0.05, and in most cases, p-values were very 
low (p < 0.01) or above 0.05. (B) Each drug-treated  

subject’s cortical interpolated collapse correlation matrices with the same legend as in (A). (C) Cortical 
data at rest have a higher count of statistically significant positive correlations > 0.5 in the cocaine-dosed 
mice (left, Mann–Whitney U test, p = 0.0328), whereas striatal data show no such difference (right, 
Mann–Whitney U test, p = 0.8011).   
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Cocaine increases spiking complexity in the cortex and aberrantly alters the physiological 

correlation of complexity to criticality in a region-dependent manner.  

As outlined above, criticality and information entropy and system complexity are related. By 

comparing total individual neural entropies to the joint entropy of the system, the degree of 

coordination, dubbed integration of neural firing can be measured (58), which is similar to the dynamic 

correlation or “total correlation” that DFA approximates in systems thought to be operating at criticality. A 

publicly available complexity toolbox was used (13) on these current resting state data with the 

hypothesis that in the cortex of cocaine-treated mice, complexity would be enhanced concomitant with 

MAE, and that in the physiological condition absent drug, complexity should be correlated with criticality in 

both brain regions, with this experiment offering the opportunity to test mathematic theory in vivo. 

  Complexity represented by integration is naturally difficult to interpret, so a demonstration of 

complexity is presented in a 12 pseudo-neuron system with three model constraints: Random spiking 

(Fig. 5A, top), ordered spiking (Fig. 5A, middle), and complex spiking (Fig. 5A, bottom). The resulting 

integration of the random data reveals no coordination, similar to white noise (Fig. 5B, top), while the 

ordered state has a perfectly linear integration curve (Fig. 5B, middle), indicating that although there are 

interactions, there is no variability or entropy, sometimes referred to as “surprise” (59), in them. Only 

complex data have a nonlinear integration (Fig. 5B, bottom), suggesting variable coordination and 

nonzero complexity. 

 Using this method it was found that drugged mice have enhanced complexity in the cortex, 

compared to control mice (Fig. 5C, left; Mann-Whitney U test, p = 0.0428), but not in the striatum (Fig. 5C, 

right; Mann-Whitney U test, p = 0.3518). Additionally, as expected, a strong correlation was found 

between MAE and complexity in these resting-state data in the cortex of controls (Fig. 5D; Rs = -0.7143, p 

= 0.044) and to a lesser extent the striatum (Fig. 5E; Rs = -0.6786, p = 0.0548). Surprisingly, after cocaine 

exposure, the correlation was exponentially enhanced in cortex (Fig. 5F; Rs = -0.8146, p = 0.0027; R
2
 = 

0.87, fit using MATLAB’s “curvefit” where f(x) = a*x
b
 +c) and broken in the striatum (Fig. 5G; Rs = -0.2970, 

p = 0.2035). As this is the only result seen that runs counter to expectations about drugs and criticality, it 

could be that this is one of the features that dictates aberrant drug induced plasticity at the systems level 

during early abstinence. 
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Figure 5. Cocaine increases spiking complexity in the cortex and aberrantly alters the physiological 
correlation of complexity to criticality in a region-dependent manner. (A) Complexity example with 
pseudodata spike rasters under three different regimes: Random (top), ordered (middle), and complex 
(bottom). (B) Integration plots and complexity values based on the pseudodata in (A). Complex data 
(bottom) have a nonlinear, scale-variant integration, while random data (top) have no integration, and 
ordered data (middle) have perfectly predictable integration. Thus, only complex data have nonzero 
complexity. (C) Cortical data at rest have a higher complexity score in the cocaine-dosed mice (left, 
Mann–Whitney U test, p = 0.0428), while striatal data lack a statistically significant difference between 
drug and control groups (right, Mann–Whitney U test, p = 0.3518). (D) In control mice, complexity was 
inversely correlated to MAE in the cortex (Rs = -0.7143, p = 0.044), meaning that as data have more 
critical tuning with a lower MAE, complexity increases. (E) Control striatal complexity also trended 
towards inversely correlating with MAE (Rs = -0.6786, p = 0.0548). (F) Correlation between MAE and 
complexity was aberrantly enhanced in the cortex of drug-treated mice (Rs = -0.8146, p = 0.0027) and 
changes from being best fit by linear approximation to an exponential as indicated. (G) No statistically 
significant correlation between MAE and complexity was observed striatum of drug-treated mice (Rs =       
-0.2970, p = 0.2035), indicating cocaine treatment aberrantly disrupts the correlation in (E).      
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Discussion   

 In trying to explain a curious result about cortical hyperactivity rather than hypoactivity after 

cocaine conditioning (44), a novel method to detect neural avalanches and quantify critical tuning was 

developed, issues regarding defining critical tuning in the “critical brain hypothesis” were addressed (4, 

43, 51), and evidence for critical tuning in deep brain structures was presented alongside documentation 

of effects of a potent narcotic on neural criticality and complexity. This work represents the first usage of 

nanofabricated multi-shank electrode recordings to characterize deep brain criticality analysis in vivo in 

awake, behaving mice. Even the most advanced in vivo murine recordings used in avalanche analysis 

only had 32 channels with a 200 μm inter electrode spacing and 400 μm inter-shank distance (27), with 

the recorded sites in superficial cortex in anesthetized subjects. Other recent work used avalanche 

frames that are an order of magnitude greater with an order of magnitude fewer electrodes (29). 

Comparatively, the inter-electrode spacing here is almost an order of magnitude closer, with an order of 

magnitude more electrodes on shanks half the distance apart. Despite these distinctions, avalanches 

were reliably extracted using criteria set by other groups, lending credence to the concept of SOC as a 

ubiquitous feature of neural systems. 

When plotting avalanche size in log-log coordinates, power law fits similar to others’ were 

replicated, with similar and  exponents near the golden ratio (3) and corresponding physiological critical 

Γ exponents. Interestingly, despite having dosed mice with cocaine over a week, fit exponents appeared 

equivalent to control mice, which might be due to the differences in recording technology as outlined 

above, or in how the 5 ms inter-avalanche interval was designated. Others have used an interval 

dependent on a subject’s neural activity levels (60), which may more accurately delineate avalanches. 

Additionally, multiple other potential model fits and advanced log-fitting tools specifically optimized to 

these data weren’t employed, thus fits may deviate from what other groups might obtain using more 

advanced mathematics (11, 61). On the other hand, using a stock log-log fit toolkit to obtain exponents 

with R
2
 > 0.85 implies success. Ultimately, power laws are only one facet of the neural criticality 

hypothesis, and whether they vary due to drug treatment does not falsify the fractal results examined. As 

it currently stands, few studies on pharmacological modification of critical tuning exist, and have only 

worked with bath applications of channel blockers in organotypic slices, for example (24, 25). It would 
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make sense that  would be altered in those experiments, and in light of these studies, the current result 

is less surprising, given that incubation of craving is much more physiologically subtle and physiological 

mechanisms exist in vivo that could be compensatory. 

The quantification of interpolated mean avalanche collapses allows for testing that lend support to 

the “critical brain hypothesis”, as previous discussions of critical tuning relied on shape fitting or methods 

tangential to how fractal the collected data are, since fit exponents are uninformative and occasionally 

spurious. Importantly, when using MAE or correlation matrices of collapses, data are not transformed 

beyond normalizing, and both directly quantify dissimilarity or similarity, respectively. The metrics used 

here are well understood, computationally simple, and open up data to further easily interpretable 

analyses. 

 The observation of quiescent enhancement in criticality through use of two mathematically 

different metrics only in the cortex of drug-treated mice isn’t intuitive at first glance, given the abundance 

of data supporting cortical hypoactivity (55) and the stereotype of an addict is one who is aimless, lacking 

in self-control, or in withdrawal and unable to think clearly. A parsimonious explanation for this result is 

that only during the transition to addiction there is an increase in quiescent firing; following this, 

hypoactivity disengages the cortex, and in the literature there exists support for this scenario in recently 

abstinent subjects (54). That the striatum’s critical tuning is unaffected is somewhat expected, given that 

previously no resting-state firing changes were observed in it following this protocol (44). Maladaptive 

plasticity within the striatum during incubation is thought to take place over multiple weeks (62), and thus 

how incubating craving affects criticality remains an open question.   

 Consistent with criticality being enhanced at rest in the cortex after brief cocaine abstinence, a 

measure of complexity was also enhanced in the same group of mice, and as was recently hypothesized, 

degree of critical tuning and complexity are correlated in both the cortex and striatum of controls (14). 

Notably, this correlation breaks down in striatum in the cocaine-dosed mice, but is greatly enhanced in 

the cortex. The aberrant interplay between complexity and criticality could be a system-state change that 

denotes a transition to addiction, concomitant with previous results in the same subjects revealing a 

spontaneous increase in corticostriatal LFP coherence between 25-45 Hz (44).  
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Ultimately, these results represent a great step closer in understanding inter-subject variability in 

how both addiction and neural criticality manifest in vivo. At its core, this work enhances the criticality 

hypothesis in deep brain structures with state-of-the-art high-density, awake in vivo data. Strong evidence 

is presented for early stage resting cortical hyperactivity after cocaine treatment, rather than hypoactivity, 

as well as multiple quantitative metrics to address avalanche collapse shape fractal qualities, rather than 

relying on power laws only. Jittering the data in a manner not done previously also demonstrates how 

critical timing is to the exquisite the structure of avalanches, and how unlikely the presented results are to 

be spurious, given how many time bins were taken and how many spikes observed. Finally, the empirical 

biological validation of complexity mathematics warrants further investigation in the SOC field. 

 

Materials and Methods 

As these analyses are based on previous data (44), no animals were sacrificed for these post-hoc tests to 

be in best accordance with the “3 Rs” principle in animal research (63). 10 mice were part of the cocaine-

treated group and 7 were part of the saline-only group, and all testing was in accordance with UCLA’s 

IACUC. All recordings were performed in the absence of drug or saline injections, 24 hr after the final 

conditioning session. 

 

Neural avalanche criteria and statistical testing of universal critical dynamics 

Criteria established by Friedman, et al. were adapted to observe universal critical dynamics in 

cortical slice culture (45). Avalanches were defined as region-wide bouts of activity in 5 ms bins from 

single spikes up to hundreds of spikes, bounded by 5 ms of inactivity (Fig. 1C-E). Only clearly-defined 

projection or fast-spiking neurons in either region were chosen. All avalanches were collected but only 

quiescent period (15 min prior to cue onset as in (44)) avalanches were analyzed, since post-cue periods 

would need concatenation to permit an analyzable epoch, breaking avalanches and treating early cues 

similarly to late cues regarding composition and encoding. Unlike other groups (45), all avalanche 

durations more than 25 ms long (5 frames) that had more than 19 avalanches in them were used; this is a 

more strict data requirement for testing data fractal quality. Avalanches were plotted with logfit in MATLAB 

(64) to obtain fits and exponents α,  and Γ ( (Fig. 2). Exponents were subject to rank-based tests to 
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assess difference in exponents between treatment groups; all statistical tests were rank-based, unless 

otherwise indicated, due to the sample size in each group and inability to match samples (10 drugged 

mice vs. 7 controls). 

Per brain region, the mean of each accepted avalanche duration type with suprathreshold 

avalanche count was obtained (a mean shape) following z-score (firing) and fractional duration (frame 

count) normalization and plotted with SEM per time point as in Fig. 3B&C. Each animal’s set of mean 

shapes was then assessed for similarity to each other through interpolating all mean shapes at 100 points 

per shape in MATLAB. Per animal MAE of all interpolated collapse shapes was obtained as a final 

variable representing fractal fit or best estimate of self-similarity using formula [1]. As this value 

decreases, the error between avalanche mean collapse shapes decreases, and thus, indicates more self-

similarity. These data were used in ranked statistical tests as before to observe differences among drug 

and control groups in both regions (Figs. 3-5), and correlations between groups were made with 

Spearman’s correlation (Rs). To address additional mathematical concerns regarding repurposing MAE 

for self-similarity, correlation matrices of collapse shapes for each animal were made (only quiescent 

cortex shown in Figs. 4A & 4B) and counts of all statistically significant (p < 0.05) pairwise Pearson’s R 

values > 0.50 were compared between the drug-treated group vs. the control group as a broad method of 

examining self-similarity (Fig. 4C); note that these counts were corrected for the count of collapse 

durations included in each animal to not overweigh animals that had more viable collapses. Finally, a 

system-state entropy-based test for complexity (13) in the firing patterns of quiescent period data in each 

animal, per region, was performed and the resulting metric used in a comparison between treatment 

groups and correlated to MAE (Fig. 5) 
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 Supplementary Figure 1 
 

 
 
Schematic of how each subject’s avalanche profile is obtained. The collapse process starts by taking all 
mean avalanche shapes (finding all viable avalanches of differing durations that meet threshold 
requirements and normalizing their firing per frame (left), then the total duration (middle). At this point, 
each mean shape is collapsed and plotted over each other. To obtain a subject’s collapse profile, each 
shape is interpolated to have 100 timepoints and the mean shape is calculated, with SEM based on the 
each shape’s z-score at each timepoint. 
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