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ABSTRACT 

Cognitive functions arise from the coordinated activity of neural populations distributed over large-

scale brain networks. However, it is challenging to understand and measure how specific aspects of 

neural dynamics translate into operations of information processing, and, ultimately, cognitive 

functions. An obstacle is that simple circuit mechanisms –such as self-sustained or propagating activity 

and nonlinear summation of inputs– do not directly give rise to high-level functions.  Nevertheless, they 

already implement simple transformations of the information carried by neural activity.  

Here, we propose that distinct neural circuit functions, such as stimulus representation, working 

memory, or selective attention stem from different combinations and types of low-level manipulations 

of information, or information processing primitives. To test this hypothesis, we combine approaches 

from information theory with computational simulations of canonical neural circuits involving one or 

more interacting brain regions that emulate well-defined cognitive functions. More specifically, we 

track the dynamics of information emergent from dynamic patterns of neural activity, using suitable 

quantitative metrics to detect where and when information is actively buffered (“active information 

storage”), transferred (“information transfer”) or non-linearly merged (“information modification”), as 

possible modes of low-level processing. We find that neuronal subsets maintaining representations in 

working memory or performing attention-related gain modulation are signaled by their boosted 

involvement in operations of active information storage or information modification, respectively. 

Thus, information dynamics metrics, beyond detecting which network units participate in cognitive 

processing, also promise to specify how and when they do it, i.e., through which type of primitive 

computation, a capability that may be exploited for the parsing of actual experimental recordings. 
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INTRODUCTION 

Cognitive functions, such as working memory or selective attention, are essential for successful 

behavior. The associated information processing must stem from the coordinated activity of underlying 

neural circuits. Yet, a large gap exists between activity patterns on one side and high-level functions, 

which must arise through the combination of lower-level neural computations. Here, we propose a 

framework, capitalizing on recent advances in information theory (Lizier, 2013; Wibral et al., 2017), 

which aims at the data-driven detection of these simple, but yet elusive operations of raw information 

processing. In other words, we propose to investigate the emergence of functions arising from the 

dynamics of neural circuits with a specific anatomical organization by decomposing and quantifying 

the underlying computational building blocks. 

Our proposal stems from the framework advanced by David Marr (Marr & Poggio, 1976) suggesting 

three possible levels of description of a neural system (cf. Figure 1A). First, “that at which the nature 

of a computation is expressed” (the functional level). Second, “that at which the algorithms that 

implement a computation are characterized” and “committed to particular mechanisms” (the 

algorithmic level). Third, “that at which the mechanisms are realized in hardware” (the structural level). 

Among these levels, the third, structural one is directly accessible to experimental investigation. Neural 

circuits across different scales have indeed a structure that can be measured (Helmstaedter et al., 2013; 

Binzegger et al., 2004; 2007; Angelucci et al., 2002; Markov et al., 2014) and their activity, at coarser 

or finer spatiotemporal resolutions, can be partially observed through a variety of recording or imaging 

techniques (Jercog et al., 2016; Dotson et al., 2017; Lawrence et al., 2019). Likewise, we can in many 

cases identify the function they ultimately give rise to, such as sensory representation, working memory, 

or selective attention, and measure the associated cognitive and behavioral performance, thus providing 

statements at the first, functional level. On the other hand, the definition and quantification of the 

second, algorithmic level still poses challenges. The assumption is that the algorithmic level comprises 

information processing operations that are intermediate steps directed toward producing meaningful 

functional computations but are not yet target computations. These primitive operations are pre-

functional and may not have any immediately nameable goal. Yet, their alteration and disruption could 

lead to widespread dysfunction, since such operations would underlie disparate functional processes.  

Various attempts have been made to identify canonic computations that provide the building block 

for more complex functions. Some primarily pertained to the structural level, emphasizing the role of 

detailed synaptic connectivity motifs for sensory input transformations (Carandini & Heeger, 2011; 

Miller, 2016). Others proposed to decompose cognitive processes into simpler constituents that may be 

shared across multiple functions (Taatgen, 2013; Saban et al., 2021). Here, we propose a general 

framework that starts from the neural dynamics of neural circuits with structured and hierarchical 

connectivity and tries tightly linking it to emergent algorithmic operations. Indeed, neural activity 

conveys information and the coordination between the dynamics of interacting circuit elements 
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eventually and unavoidably implements transformations of this information. Our goal is precisely to 

focus on the multitude of “informational effects” that neural dynamical patterns may induce. From the 

theoretical point of view, information theory precisely provides the tools to quantify the amount of 

information conveyed by a set of observed signals, independently from the knowledge of the meaning 

of this information (Shannon, 1948). Beyond assessing that certain system units convey information at 

a given moment in time (i.e., information is being carried “here and now”), recent developments in the 

Information Dynamics (Lizier, 2013) and Partial Information Decomposition (Williams & Beer, 2010; 

Wibral et al., 2017) frameworks also open the path to interrogate how such information is transferred 

and transformed,  “got where it is” (i.e., to track information processing at the lowest possible 

algorithmic level) in an equally agnostic manner.  

For instance, some fraction of the information carried by a network node’s activity may have been 

transferred to it from another location via inter-node coordination. Another fraction, may already have 

been present in this same node at a preceding time, thus just being actively buffered and maintained by 

the node’s activity. Another possibility is that the information carried at the current time by the node is 

an integrated assembly of pieces of information that were previously distributed in a delocalized manner 

across multiple nodes. Such a listing of basic operations –‘buffering’, ‘transferring’, ‘integrating’ 

information– does not pretend to be exhaustive. Nevertheless, it already highlights different ways to 

handle information and constitutes examples of possible low-level operations that we call Information 

Processing Primitives (IPPs). Classic Shannon Entropy can detect that a system’s component is 

‘carrying’ information. Similarly, metrics from the Information Dynamics and Partial Information 

Decomposition (PID) frameworks can detect these complementary operations, with active information 

storage (Lizier et al., 2012; Wibral et al., 2014) tracking ‘buffering’, transfer entropy (Schreiber, 2000) 

tracking ‘transfer’ and propagation or synergistic modification (Lizier et al., 2013) tracking non-local 

to local ‘integration’ (cf. Figure 1B).  

In the current study, we use information theoretical metrics to analyze time-series of simulated 

neural activity and quantify the enactment of specific IPPs. To measure which IPPs are required for the 

implementation of different functions –stimulus representation, working memory, selective attention, 

etc.–, we evaluate the proposed information-theoretical metrics on time-series produced during the 

execution of tasks probing the above-mentioned functions. This allows an algorithmic decomposition 

of the task, gauging the relative contribution of different IPPs without the need to reverse engineer the 

implementation and purpose of the performed functional computations. Such algorithmic 

decompositions support the intuition that different functions recruit different “flavors” of information 

processing, requiring varying degrees of storage, transfer or integration of information, depending on 
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the contextual computational needs. To have a full control of every single aspect of the dynamics 

leading to neural function, we focus then on computational models of the emergence of these functions. 

Simulation studies offer the advantage of arbitrarily large amounts of data in fully controlled 

dynamical conditions, not confounded by fluctuating brain state (Shine et al., 2016; Grossman et al., 

2019), as well as a restrained noise level. Especially, the fact that such models have a known circuit 

architecture (third Marr’s level) and a known goal function (first Marr’s level) makes it possible to 

focus on the low-level algorithmic operations (second Marr’s level) bridging between the two.  Our 

models of choice are neural circuits composed of coupled ring networks. Although stylized and 

analytically treatable, they retain important features of cortical connectivity, such as the spatial 

modulation of excitatory and inhibitory recurrent interactions. Ring networks were first introduced to 

study the shaping effects on feature-selective representations by collective interactions between neurons 

(Ben-Yishai et al., 1995) and convey an enormously rich spatiotemporal variety of dynamic patterns 

(Roxin et al., 2005; 2006). Multiple rings can be coupled to account for interactions between multiple 

cortical layers and columns (Stetter et al., 2000; Battaglia & Hansel, 2011) or even brain regions. 

Indeed, Ardid et al. (2007; 2010) used a network composed of two coupled rings to model the attentional 

modulation of responses to oriented visual stimuli. In these models, a first ring represents a cortical 

sensory region (e.g., region MT) producing selective responses to stimuli (e.g., oriented drifting dot 

patterns).  These are nonlinearly gated by the interaction with a working memory copy of the same 

stimulus held in a second ring, representing a frontal cortical module. Here, we capitalize on these 

previous studies and use very similar circuit architectures, composed of one or more coupled ring 

networks, to perform simulated functions, such as: i) the generation of sensory responses and their 

maintenance in working memory; ii) the propagation of sensory responses across a cortical hierarchy 

of different regions; iii) the stimulus- and attention-dependent gain modulation of these responses as an 

effect of top-down influences. We then performed the algorithmic decomposition of these simulated 

functions through information-theoretical analyses of simulated tasks. 

 We demonstrate that data-driven information theoretical metrics are suitable to capture the different 

nature of Information Processing Primitives (IPPs) involved in different functions, and to identify which 

circuit units (neurons, populations…) are taking part in specific types of information processing in 

different spatial positions or moments in time. The proposed analytic framework may thus be suitable 

for probing the inner workings of actual cognitive processes, as they unfold during the acquisition of 

electrophysiological or neuroimaging recordings.  
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MODEL AND METHODS  

 

We begin with a description of the basic computational model used in this study (Figure 2) to 

reproduce tuned sensory responses, working memory, signal propagation through a hierarchy of areas 

and the modulatory effects on sensory responses of top-down selective attention. Then, we specify three 

setups demonstrating different types of low-level information processing underlying emulated 

functional computations. Finally, we detail the IPPs (i.e., the low-level information processing 

primitives) that characterize different types of basic information transformations. All abbreviations are 

summarized in Table 1 and all model parameters for the different numerical experiments performed in 

Figures 3– 5 are specified in Table 2.  

 

Computational model of one region: ring network model 

 The building block of all networks studied here is the rate-model version of the one-dimensional 

(1D) ring network with delayed interactions described by Roxin et al. (2005; 2006), expanding on a 

classic model by Ben-Yishai et al. (1995), see Fig. 2A. The one-ring network provides a canonical 

model for a feature-selective cortical module (e.g., a visual cortex hypercolumn). In ring rate models, 

the activity of N coupled network nodes (also called units) is characterized by their firing rates Rk(t), 

k = 0. . . N-1. The total input to each unit k is a linear combination of the activity of all presynaptic units, 

an external stimulus, and an external drive Iext, set to have a baseline stationary rate equal to Rk(t) = 0.1.  

Each unit may receive at certain times additional external input Istim, associated with the presentation 

of an external stimulus. Such stimulus current is spatially localized, to model the stimulus selectivity of 

different nodes. We choose the form of a Gaussian kernel (cf. Fig. 2B) of prescribed maximum 

amplitude Astim and width σstim (see next section for the rationale on their selection), centered at a position 
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Spos ≘ θstim, which varies across different simulated trials.  The time-course of the stimulus is given by 

a function S(t), equal to one during stimulus presentation and zero otherwise.  

The time evolution of the activity of each node is governed by a first-order delay differential equation 

with time delay D involving a threshold-linear input-output transfer function Φ(x) = x if x > 0 and 

Φ(x) = 0 otherwise: 

𝑑𝑅𝑘

𝑑𝑡
 =  −𝑅𝑘(𝑡)  +  𝛷 (𝐼𝑒𝑥𝑡 + 𝐼𝑠𝑡𝑖𝑚(𝑘, 𝑡) + ∑ 𝐽𝑘𝑙𝑅(𝑡 − 𝐷)

𝑙≠𝑘

) 

We consider ring modules (i.e., regions) of N = 100 nodes, where each node k is labeled by its 

angular position on the ring θk = 2πk/N, k = 0, 1 . . N-1, coupled to all other nodes l ≠ k through a 

distance-dependent coupling kernel Jkl, depending on the angular distance between nodes: 

Jkl = J0 + J1 · cos(∆θkl), with ∆θkl = 2π(k − l)/N 

for the link between nodes k and l. The coefficients J0 and J1 control the spatial modulation and crucially, 

the net sign of interactions (excitatory or inhibitory) between rate units. Fig. 2C shows an example of 

coupling kernel for the parameter choices J0 = 0 and J1 = 1, resulting in excitatory short-range 

interactions with nodes within a range -π/2 ≤ ∆θkl ≤ π/2, and in inhibitory long-range interactions with 

nodes farther away, i.e. |∆θkl| > π/2 (“Mexican hat” profile).  

 

Dynamical regimes of the ring model and properties of stimulus response 

The ring network exhibits a rich spectrum of dynamical states, as a function of the parameters J0 and 

J1. Fig. 2D (top) shows a schematic phase diagram (exemplary with noise strength of 50% baseline 

external drive). As studied in detail by Roxin et al. (2005; 2006), the model exhibits a stationary fixed-

point solution for small coupling values. This corresponds to an asynchronous regime of firing in which 

the average firing rate is constant in time and spatially homogeneous throughout the ring in absence of 

external stimuli (Stationary Uniform regime, SU). When modifying the J0 and J1 parameters, the SU 

regime loses stability. For large J0 or J1 the firing rate of every unit explodes toward infinitely large 

values (“rate instability”), as the chosen threshold-linear transfer function does not saturate. However, 

when J0  < 0, i.e. collective interactions are negative on average, there is a finite range of positive J1 

Mexican-hat modulation, for which the system’s activity does not explode, but spontaneously gives rise 

to localized bumps of activity. These are centered at some stochastically selected angular position 

(spontaneous symmetry breaking or “Turing instability”) and surrounded by silent units (Stationary 

Bump regime, SB). Finally, when the average interaction level becomes strongly inhibitory for J0  << 0, 

the SU regime undergoes a transition (“Hopf instability”) to a regime in which the firing rate oscillates 

homogeneously and in-phase throughout the ring at a finite frequency. This Oscillatory Uniform regime 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.04.502783doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502783
http://creativecommons.org/licenses/by-nc-nd/4.0/


(OU), together with additional regimes (such as traveling waves, etc.) that the delayed ring-models 

could express in other parameter ranges (Roxin et al., 2005; 2006), is not further explored in this study. 

We focus on the SU and SB regimes, notably on their responses to externally presented stimuli (Fig. 

2D, bottom). In absence of a stimulus, the activation in the SU regime is uniform throughout the 

network, as previously described. However, when a stimulus is presented at a certain angle θstim, then a 

bump of stronger activity, centered on this angle θstim, develops due to the locally increased excitatory 

drive. This, in turn, also silences the surrounding nodes outside of the bump via lateral inhibition. Such 

a bump can be seen as a representation of the presented stimulus, as its position along the ring follows 

the angle of the external stimulus. In the SU regime, when the stimulus presentation ends, i.e. the 

additional Istim input goes back to zero, the bumps dissolve and activity relaxes back to uniform (fading 

encoding, Fig. 2D bottom left).  

The situation is different in the SB regime where a spontaneously generated bump is already present 

before the stimulus occurs. In this case, the effect of presenting an external oriented stimulus is not the 

creation of a bump, but rather the displacement of the previously existing bump, moving it to the 

location corresponding to the presented stimulus angle θstim. Once the stimulus is removed, the evoked 

bump continues to exist, because it is self-sustained by local recurrent excitation. It will persist for a 

certain time at the new position (persistent encoding, Fig. 2D bottom right), before noise causes it to 

drift. In the following, we perform simulations at selected working points within the SU and the SB 

regimes (see Table 2 for our parameters choices). Note that the parameters Astim and σstim of the stimulus 

are chosen and tuned in such a way that the bump response evoked by a stimulus in said SU working 

point has similar width and amplitude to the bump arising in the SB working point, such that the results 

obtained from simulations in the two regimes are more easily comparable. 

 

Multi-regional architectures: coupled ring networks 

To model circuits involving more cortical modules (e.g., different stimulus-representing regions), 

we use networks composed of multiple coupled rings. In these multi-ring architectures, each regional 

module (i.e., ring) is modeled as the previously described single-ring architecture (with the possibility 

to tune different regions to different dynamical regimes and working points). However, an additional 

current term Ilr must be fed to the transfer function Φ of each unit Rk to account for an additional drive 

provided by the long-range (lr) coupling to nodes in remote rings: 

𝐼𝑙𝑟(𝑘, 𝑡)  =  ∑

𝑞 ∈ 𝑟𝑒𝑚𝑜𝑡𝑒 𝑟𝑖𝑛𝑔

𝑊𝑞𝑘𝑅𝑞(𝑡 − 𝐷𝑙𝑟) 

 The kernel 𝑊𝑟𝑞𝑘 of long-range connectivity, for simplicity, has a rectangular shape. It assumes a 

positive amplitude Alr within the range k-σlr ≤ q ≤  k+σlr (thus symmetrically centered on k), and  zero 

outside this range, ensuring a strict spatiotopy of inter-regional excitatory projections.  Inter-ring 
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interactions are also delayed, analogous to the recurrent interactions within rings, and can have an 

independently tuned, longer delay 𝐷𝑙𝑟 . We here consider two types of multi-ring architectures. 

Three-rings network with feed-forward coupling. After exploring representation and maintenance of 

a stimulus representation by a single sensory region (Figure 3), we study the propagation of such a 

representation through a hierarchy of different sensory areas (Figure 4). To emulate the transfer of 

information from one area to another, we couple three rings as a feed-forward chain (Fig. 4A). We refer 

to this setup with the label “3FF rings” (cf. Tables 1 and 2). The bottom ring (R1) represents a sensory 

cortical area which directly receives subcortical stimulus-related input. The middle ring R2 receives 

long-range feed-forward input from R1, and the top ring R3 from R2. The couplings from R1 to R2 and 

R2 to R3 have identical strengths and widths. We deliberately do not introduce any structural feedback 

coupling to study the capacity of information-theoretical metrics to capture the primitive processing 

operation of propagating and transferring information through a multi-regional directed hierarchy. 

Reciprocally coupled two-rings network. We then turn to a second circuit configuration where two 

regions simultaneously interact via both feed-forward and feed-back connections. Here, the goal is to 

study the capacity of information-theoretical metrics to track effects of context-dependent top-down 

modulations (e.g., as in selective attention, Figure 5). In this setup, called 2RC rings (cf. Tables 1 and 

2) we reciprocally couple two rings. This closely resembles a model described by Ardid et al. (2007). 

The bottom ring R1 again constitutes a sensory cortical area, while the top ring R2 represents a 

prefrontal cortical area. The latter implements working memory, later acting as a source of top-down 

influences. Parameters of feed-forward and feed-back connections are fine-tuned (see Table 2) to obtain 

attention-like enhancements of stimulus-response as in Ardid et al. (2007). They are described and 

commented in detail in the Results section.  

 

Task simulations 

For the one ring configuration of Figure 3 (probing stimulus representation and maintenance), and 

also for the 3FF rings setup of Figure 4 (probing inter-regional propagation), we generated 1000 trials 

with different noise realizations per each of four possible orientations Spos of the stimulus, thus 4000 

trials in total, for both the SU and SB working-points. The stimulus injection center positions Spos are 

equally spaced along the ring (at angles 0, π/2, π and 3π/2), alternating randomly from trial to trial. Time 

is measured in arbitrary units δt (10 numeric integration steps per δt, fourth-order Runge-Kutta 

integration scheme, augmented with delay). For all analyses, we drop an initial period of 400 δt to 

discard early transients. In each simulated trial, we first record 100 δt of baseline dynamics, before 
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injecting a stimulus, which was then maintained for 150 δt, i.e. S(t) = 1 for tON = 100 δt < t < tOFF = 250 

δt, and S(t) = 0 otherwise. 

For the analyses shown in Figure 5 (probing working memory and attentional modulation), the task 

organization is more complex, as there are two stimulus presentations: the first stimulation at position 

Spos (“cue” stimulus) started at tON = 110 δt and stops at tOFF = 310 δt; the second stimulation at positions 

Spos2 (“match” stimulus) started at tON2 = 460 δt and stops at tOFF2 = 610 δt. The cue stimulus position is 

fixed in all trials at Spos = π, while Spos2 alternates randomly between 0 and 2π angular positions, in steps 

of 2π/10. These stimulus combinations were generated for two different conditions, whose rationale is 

discussed in the Results section. The first condition is called “attention-OFF” (att-OFF), mimicking 

conditions in empirical experiments in which no attentional modulations are expected (e.g. the “attend 

OUT” conditions in Treue (2001)). In att-OFF, both the bottom ring R1 and the top ring R2 of the 2RC 

setup were prepared in the SU state. In this way, bump representations of cue and match stimuli are 

formed during stimulus presentation, but decay shortly thereafter. The second condition is called 

“attention-ON” (att-ON), it mimicked experimental conditions in which attentional modulations of 

response are expected (e.g. the “attend IN” condition of Treue (2001)).  The information that attention 

must be engaged toward the features of the cue stimulus is provided shortly after cue presentation: at 

time tswitch = 100 δt, the top ring R2 is moved from the SU to a SB regime (parameter modifications are 

detailed in Table 2). As a result of attention being “switched on”, the top ring R2 is able to maintain a 

persistent representation of the cue stimulus through the entire delay period between the offset of the 

cue stimulus at tOFF  and the onset of the match stimulus at tON2. This maintained working memory 

representation then interacts nonlinearly with the representation evoked by the match stimulus in R1, 

producing characteristic gain modulations (see Ardid et al. (2007) and Results).  To generate Figure 5, 

we ran 5000 trials for each Spos and Spos2 combination, in both the attention-ON and the attention-OFF 

conditions. 

 

Estimating information-theoretical quantities  

In this study we track effects at the algorithmic level of neural function by directly quantifying the 

way in which simulated circuit dynamic patterns translate into elementary transformations of the 

information carried by neuronal activity and the presented stimuli. All the information-theoretical 

metrics we introduce to detect the enactment of different Information Processing Primitives (IPPs) can 

be seen as elaborations of a few basic quantities (see Cover & Thomas (2006) for a textbook 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.04.502783doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502783
http://creativecommons.org/licenses/by-nc-nd/4.0/


introduction). The amount of information carried on average by observations of a random variable X is 

quantified by Shannon Entropy:  

𝐻[𝑋]  =  − ∑

𝑥∈𝑋

𝑃(𝑥)𝑙𝑜𝑔2𝑃(𝑥) 

which is a functional of the empirical probabilities P(X) of observing the different possible values of 

the variable X. The conditional entropy quantifies the amount of information needed to describe the 

outcome of a random variable X given that the value of another random variable Y is known, and it is 

defined as  

𝐻[𝑋 | 𝑌]  =  − ∑

𝑥∈𝑋,𝑦∈𝑌

𝑃(𝑥, 𝑦)𝑙𝑜𝑔2𝑃(𝑥 | 𝑦) 

The mutual information (MI) between X and Y quantifies the statistical dependence between the two 

variables and it is defined as the difference between marginal and conditional entropies 

MI(X;Y) = H(X) - H(X|Y)  =  ∑𝑥∈𝑋,𝑦∈𝑌 𝑃(𝑥, 𝑦)𝑙𝑜𝑔2
𝑃(𝑥,𝑦)

𝑃(𝑥)𝑃(𝑦)
 

It describes the fraction of information, which is shared, i.e., redundantly encoded by both X and Y. 

The Conditional Mutual Information between X and Y conditioned on a third variable Z is defined as: 

𝑀𝐼[𝑋, 𝑌 | 𝑍] = ∑

𝑥∈𝑋,𝑦∈𝑌,𝑧∈𝑍

𝑃(𝑥, 𝑦, 𝑧)𝑙𝑜𝑔2

𝑃(𝑥, 𝑦 | 𝑧)

𝑃(𝑥 | 𝑧)𝑃(𝑦 | 𝑧)
  

providing the average amount of information carried by X (for entropy) or redundantly carried by X and 

Y (for mutual information) which is not already carried by Z.  

A crucial step to evaluate any information theoretical quantity is the proper estimation of the 

empirical probability distributions of one or more observables jointly. Here, we used the “plug-in” or 

“direct” estimators, highly biased for the small amounts of data typically available in 

neurophysiological experiments, but converging to stable values for large datasets, in which 

probabilities of different events are estimated as binned frequencies of observation over the collected 

dataset. We estimate histograms of firing rate variables using 24 equally spaced bins (qualitatively 

analogous results are obtained using 18 and 32 bins).  

For some analyses, when specified in the Results, entropy estimates are computed using a semi-

parametric binning-free Gaussian-Copula approach (Ince et al., 2017). In brief, the Gaussian-Copula 

Mutual Information (GCMI) approach exploits the fact that MI is invariant under monotonic 

transformations of the marginals. This result can be exploited to render the joint distribution of the 

variables Gaussian by means of local transformations on the marginals, using the so-called Gaussian 

copula. GCMI therefore requires transforming the X and Y variables so that the marginal distributions 

are a standard normal. This copula-normalization involves calculating the inverse standard normal 
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cumulative density function (CDF) value of the empirical CDF value of each sample, separately for 

each input dimension (i.e., sum-rank computation). Then, entropy values can be estimated using a 

standard covariance-based formula for Gaussian distributed random variables. We also included a 

parametric bias-correction for the estimate of the entropy values, which is an analytic correction to 

compensate for the bias due to the estimation of the covariance matrix from limited data (i.e., limited 

number of trials). In fact, the limited sampling bias is known to affect the estimation of information 

theoretical measures (Panzeri and Treves, 1996). The GCMI is a robust rank-based approach allowing 

to detect any type of relation as long as this relation is monotone. In addition, it can be applied to 

datasets with a limited number of samples, and with multivariate variables. The GCMI was computed 

using functions implemented in the Frites Python toolbox (Combrisson et al., 2022). Finally, 

information-theoretical quantities were normalized by the largest of the entropies of the involved 

variables (e.g. normalizing MI[X, Y] to  MI[X, Y] / max(H[X], H[Y])), so that they are bounded in the 

unit interval and express relative fractions of information rather than absolute amounts.  

We now present in detail the specific information-theoretical quantities that we use to define and 

track Information Processing Primitives (IPPs). 

 

Tracking Information Processing Primitives (IPPs) 

In this study we focused on a simple set of elementary processes of information manipulation 

stemming from neural activity and use specific information-theoretical functionals in order to detect 

their emergence and quantify the degree at which different circuit units are engaged into giving rise to 

them at different times along the simulated tasks. As previously described, the simplest possible 

operation one can perform with information is to carry it. Once a network unit carries some information 

it can keep carrying it actively for an extended time, i.e. it can buffer it; or it can push it to another 

network unit that did not carry this information before, i.e. it can transfer it. The most complicated 

primitive operation we considered here is integrating multiple streams of information, i.e. combining 

information from multiple sources to reveal the existence of information that was inaccessible to any 

input source prior to their combination within the integrating node. We now describe in detail these 

different IPPs and the functionals associated to them.  

 

The IPP of carrying information or local encoding of information: Entropy and Mutual Information 

The average information carried by the activity of a network unit at a given time is simply given by 

the functional H[R(t)], where the variable R(t) is the across-trials firing rate sampled at time t. The 

probability distribution P(R(t)) is sampled across different trials, all time aligned to the time of stimulus 

onset (cue stimulus for two ring simulations). One can also evaluate the fraction of the carried 

information relative to the presented stimulus, either by considering the presence or absence of a 
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stimulus, MI[R(t), S(t)], where S(t) is the spatially inhomogeneous time-course of stimulus presentation, 

or from the actual feature carried by the stimulus, MI[R(t), Spos], where Spos is the orientation angle of 

the presented stimulus. Both mutual information terms are then normalized by H[R(t)] to be expressed 

in relative form. 

 

The IPP of buffering information: Active Information Storage 

A circuit node buffering information is a node that keeps carrying some information it was already 

present at a previous time. Such a primitive processing operation of buffering can be quantified by 

Active Information Storage (Lizier et al., 2012; Wibral et al., 2014). In its simplest manifestation, it 

corresponds to the mutual information between the past and present activity, MI[R(t), R(t-τ)], where τ 

is an adjustable latency, here set to τ = 40 δt, unless otherwise specified. 

Alternatively, one may evaluate the fraction of information about the orientation of the stimulus 

presented in a trial, which is being actively buffered by a node. The resulting stimulus-specific active 

storage is given by: MI[R(t), R(t-τ)] - MI[R(t), R(t-τ) | Spos], i.e., the totally stored information minus 

the part of this stored information which does not depend on the presented stimulus orientation. Note 

that this measure corresponds to the so-called Interaction Information between the three variables R(t), 

R(t-τ) and Spos (McGill, 1954). Although interaction information can possibly be negative, we always 

obtain here positive values, as R(t) and R(t-τ) are generally not independent, and their degree of 

interdependency does not increase after conditioning on Spos.  

Finally, in all cases, storage measures can as well be normalized by H[R(t-τ)] to make them relative. 

 

The IPP of transferring information: Transfer Entropy 

Information flow between neural populations or brain areas can be estimated from the statistical 

dependencies between neural signals (Bressler and Seth, 2011; Brovelli et al., 2004; Seth et al., 2015) 

using model-free methods relying on the Wiener-Granger principle (Granger, 1969; Wiener, 1956). It 

identifies information flow between time series when future values of a given signal can be predicted 

from the past values of another signal, above and beyond what can be achieved from its autocorrelation. 

The most general information theoretic measures based on the Wiener-Granger principle are Transfer 

Entropy (Schreiber, 2000) and Directed Information (Massey, 1990), because they capture any (linear 

and nonlinear) time-lagged conditional dependence between neural signals (Besserve et al., 2015; 

Vicente et al., 2011). Transfer Entropy from X to Y is defined as the conditional mutual information 

between the past of the X and the present of Y, conditioned on the past of Y 

TEX→Y = MI[Y(t), X(t-τ) | Y(t-τ)] 

Note that Transfer Entropy is asymmetric, i.e. TEX→Y ≠ TEY→X, thus providing a suitable measure for 

directed functional connectivity (Battaglia et al., 2012; Palmigiano et al., 2017). TE is an information-
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theoretical generalization of linear Granger Causality (Barnett et al., 2009). We computed two types of 

transfer entropy. First, active transfer from the stimulus time-course to response rate TES→R(t) = MI[R(t), 

S(t-τ) | R(t-τ)] in the one ring configuration of Figure 3. Second, active transfer between the activities 

R1k of a unit k in ring 1 and R2k of another homologous unit (with identical angular coordinate) located 

in a second ring TER1,k → R2,k(t) = MI[R2k(t), R1k(t-τ) | R2k(t-τ)], where the first ring is at a lower 

hierarchical order in the three feed-forward coupled rings configurations of Figure 4. For comparison 

(and assessment of numerical estimation artifacts), we also compute the backward terms TER→S(t) and 

TER2 → R1,k(t) that should be zero by construction since there are no feedback couplings. Again, TE may 

be normalized by the entropy of the source variable. 

 

The IPP of integrating information: Synergistic Modification 

A third type of primitive processing operation can arise when two input sources X1 and X2 interact 

and communicate with a common target Y. Synergy may then emerge, where extra information is 

conveyed by the interaction between the sources. This implies that the combined inputs X1 and X2 as a 

whole convey surplus information with respect to the inputs considered separately (Brenner et al., 2000; 

Latham & Nirenberg, 2005) and the active process of extracting this surplus information –an active 

process performed by the output node Y– has been called synergistic modification (Lizier et al., 2013; 

2018). 

In the current study, we consider the case where the two source variables are the firing rate of a node 

in one ring and a stimulus position (X1 and X2), while the target variable is the firing rate of a node in a 

second ring (Y). We suggest that a key primitive processing operation is the extraction of synergistic 

information by a target node Y from the joint processing of multiple inputs. To do so, we exploit a recent 

formalism that allows the decomposition of multivariate mutual information between a system of 

predictors and a target variable, and to quantify the information that several sources (or predictors) 

variables provide uniquely, redundantly or synergistically about a target variable, the so-called Partial 

Information Decomposition (PID) framework (Williams and Beer, 2010). The PID formalism can be 

briefly outlined using the well-known information Venn diagram (see Fig. 5). The total information that 

the output Y carries about the pair of inputs (X1, X2) consists of unique, redundant, and synergistic parts. 

The information Y shares with X1, but not with X2 is commonly denoted as MI(Y; X1∖X2), and, 

conversely, the other unique information term as MI(Y; X2∖X1). The redundant part is the information 

provided to Y which is shared by both X1 and X2 , denoted MI(Y; X1∩X2). The remaining part is thus 

synergy whose amount can be determined by subtracting the non-synergistic fractions of information 

from the total amount of information MI[Y; (X1 , X2)] that Y carries about the pair of inputs. However, 

these quantities cannot be estimated directly from the data. We chose to operate under the so-called 

minimum mutual information (MMI) ansatz, which has been shown to provide correct estimations for 
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a broad class of Gaussian systems (Barrett 2015). According to MMI, redundant information can be 

computed as the minimum of the information provided by each individual source to the target (i.e., one 

of the two inputs is supposed, as an upper bound estimation, not to carry any unique information) 

Red := min{MI(X1; Y), MI(X2; Y)} 

Then, under this ansatz, the synergistic information can be computed by subtracting the mutual 

information of the single source variables from the total information, adding back the redundancy 

fraction, otherwise twice subtracted: 

Syn = MI(X1,X2; Y) - MI(X1; Y) - MI(X2; Y) + Red 

The two equations represent the redundant and synergistic information carried by the co-

modulations in firing rates X1 and X2 about the target node Y, respectively. It formalizes the process that 

the output node Y may perform in extracting “emergent” information or the above synergistic 

modification (Lizier et al., 2013). Once again, this metric can be normalized by an entropy term, here 

the one of the target output Y, to evaluate the synergistic fraction of the total output information flow. 
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RESULTS 

 

Two dynamic regimes of response to stimulus 

As presented in detail in the Models and Methods section, we model a stimulus-selective cortical 

region as a ring network with a “Mexican-hat” connectivity profile (Figure 2C) (i.e., with more 

excitatory interactions with units at nearby angular positions along the ring and more inhibitory with 

nodes farther away). The corresponding phase-diagram is shown in Figure 2D. We measure simulated 

responses to stimulus presentations (emulating specific tasks) in two different regimes: a stationary 

uniform (SU) and a stationary bump (SB) dynamic working point of otherwise similar ring networks 

(Figure 2D, bottom; see Models and Methods for details).  

The simplest possible task entails (correctly) responding to the presentation of stimuli with different 

orientations/angles Spos in different trials. We show simulated recordings of the activity of units in a 

single receiving region in Figure 3A. The firing rates measured in six exemplar single trials are shown 

in Figure 3B, three for a region operating in the SU regime (Figure 3B, top) and three for a region 

operating in the SB regime (Figure 3B, bottom). For each of the trials, we show spatial maps of activity, 

where the horizontal axis represents time, the vertical axis different units along the ring-network and 

the firing rate is color coded. The curves below the spatial maps show corresponding firing rate time-

series for all units over time. We highlight in color the time-series of units located at specific positions 

(indicated by matching-color lines on the corresponding spatial maps). As anticipated, we observe a 

clear distinction between responses in the SU and SB dynamic working points. In the SU regime, a 

localized stimulus injection generates a bump-like pattern of increased activity emerging around the 

injection center (red lines and curves) which disappears as soon as the stimulus is switched off. The 

firing rates of units outside a neighborhood of the injection are either unaffected (blue trace in SU trial 

#n & trial #j) or, at larger distances from the injection site, may decreases due to the increased lateral 

inhibition exerted by active units in the bump (blue trace in trial #k). In contrast, in the SB state, bumps 

of increased activity can develop spontaneously, at random positions along the ring, even without any 

stimulation, due to the stronger recurrent excitation sufficient to self-sustain reverberation. Upon 

stimulation, the bump’s position shifts towards the injection position, and remains stable until the end 

of the stimulus. Finally, after stimulus removal, in the SU state, the stimulus-evoked bumps fade-out 

while they persist in the SB state.  

These two configurations correspond to distinct functional behaviors: stimuli are only transiently 

represented during the SU regime. In contrast, in the SB regime, a sustained activation is observed, 

supporting the maintenance in working memory of the presented stimulus after stimulus removal. The 

two IPPs concerned with these two simple functional behaviors are associated with “carrying” and 

“buffering” information, respectively (cf. Figure 1B, top two cartoons), and they can be tracked by 
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different information-theoretical metrics. We focus first on the “carrying” IPP and address the 

“buffering” IPP in the next section. 

 

IPP analysis can track the representation of a stimulus 

 In Figure 3C (top), we show the amount of total information that a ring unit carries as a function of 

time, averaged over all units and trials, provided by the entropy H[R(t)] of the activity rates R(t) as they 

change as an effect of stimulus presentation. Average entropy of activity is not constant in time and it 

differs between the SU and SB regimes. In SU, H[R(t)] is rather low in the absence of stimulus, due to 

the temporal steadiness and spatial homogeneity of baseline firing rates, fluctuating only due to a weak 

background noise. Entropy increases, however, during stimulus presentation, as stimulus-evoked 

bumps emerge and thus produces differences in response rate for different stimulus positions, increasing 

inter-trial variance. In contrast, in the SB regime, entropy H[R(t)] is higher before stimulation, because 

of the complete stochasticity of the spontaneously emergent bump positions. In our simulated 

experimental design, stimuli are presented at only four discrete possible positions (a configuration often 

met also in empirical experiments). Therefore, upon stimulation, the bump positions (and thus the 

recorded response levels) are quenched to only four pronounced maxima (cf. average response spatial 

maps in Figure S1A), resulting in a strong entropy reduction with respect to baseline (during which the 

observed activities vary across trials in a more graded manner). Entropy rises again after stimulus 

removal, as firing rates are reduced and noisy fluctuations more evident. For both the SU and SB 

regimes, we furthermore observe tiny peaks and kinks of the Entropy time-courses in correspondence 

with stimulus onset and offset at times tON and tOFF. These variations can be explained by the non-

instantaneous response of the system to instantaneous input variations, causing fast transient dynamics 

(similar to impulse response) to occur shortly after stimulus onset and offset (so that inter-trial variance 

is temporarily increased during these transients).  

This simple analysis of entropy time-courses is highly specific to the task implemented and reveals 

no eminent results. Yet, it illustrates how strongly the values of information-theoretical quantities 

depend on aspects of the neural recordings, such as signal-to-noise ratio and actual task design, which 

have little to do with algorithmic-level operations. Since entropy is an upper-bound to other metrics 

(e.g., Mutual Information), absolute entropy variations could result in absolute Mutual Information 

variations, which do not indicate changes of the way in which information is encoded, but simply reflect 

changes of the available informational bandwidth. Thus, when attempting to track the manifestations of 

primitive processing operations, we chose to focus on relative metrics (i.e., normalized by entropy) to 

evaluate the fractions of the totally available information that are involved in specific processing 
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operations, without having to account for the additional complexity of total entropy fluctuations 

unrelated to the processing probed. 

We then show the relative amount of information that a unit’s activity carries about the stimulus, 

disentangling two of its aspects: the actual time-course S(t) of stimulus presentation, i.e. its 

presence/absence at specific times and the orientation Spos of the stimulus, which is a trial-specific 

property (changed every trial, see Models and Methods). This fraction of information is captured by the 

entropy-normalized mutual information between firing rate R(t) and time-course of stimulus 

presentation S(t) (Figure 3C, middle panel); or stimulus orientation label Spos (Figure 3C, bottom panel; 

see Figures S1B-C for spatially-resolved maps of these information theory quantities). Before stimulus 

presentation, as expected, no information about the stimulus can be extracted from the neural activity, 

since the entropy at baseline is noise entropy, unrelated to the stimulus. In contrast, during stimulus 

presentation, activity is modulated in dependence of stimulus position, notably depending on the 

distance from stimulus angle of the recorded unit. 

Starting with information about the stimulus-related inputs time-course S(t), it becomes positive 

during stimulus presentation, in both the SU and SB regimes, saturating to a higher value in the SU 

regime (Figure 3C, middle), as the evoked bump activity configuration differs strongly from the 

homogeneous baseline. During stimulus presentation, some nodes develop exceptionally low or high 

firing rates which are impossible in spontaneous conditions, thus, signatures of stimulus presence. On 

the contrary, no S(t)-related information exists before or after stimulus presentation. Specifically, 

information vanishes even after stimulus presentation, and not only before, because, in both cases, 

spontaneous activity levels in absence of stimulus are equivalent to levels of activity that nodes far away 

from the site of stimulation injection could have produced even during stimulus presentation (so that it 

is indistinguishable from spontaneous activity). 

Similarly, mutual information with stimulus position Spos (Figure 3C, bottom), is absent before 

stimulus presentations and saturates to a plateau shortly after stimulus onset. It is higher for the SB than 

the SU regime, as the SB regime provides a larger dynamic range of responses and sharpened bumps. 

Note that encoding of stimulus is slightly delayed in the SB regime, since the re-arrangement of the 

self-organized bump positions at baseline is not as fast as the sudden, stimulus-evoked bump injection 

of the SU regime. In the SU regime, all stimulus-related information vanishes shortly after stimulus 

offset. In the SB regime, information about stimulus position remains present after stimulus removal, 

as the stimulus-evoked bump self-sustains itself in its position on the ring. It may slowly drift away 

under the influence of background noise over timescales longer than the observation window considered 

here.  

Figures S1B-C show that spatial maps of Mutual Information not only depend on time, but also on 

spatial location. Stripes are clearly visible in these “Infogram surfaces”, because our design comprises 

only a discrete number of possible stimulus orientations (cf. the stripes in the average spatial map in 
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Fig. S1A). Encoding of stimulus features is in general stronger at locations corresponding to centers of 

evoked bumps as these locations have the larger dynamic range of variation in our experimental design. 

In summary, the normalized Mutual Information of firing rate with stimulus provides an 

interpretable marker of the IPP of “carrying” stimulus specific information. 

 

IPP analysis can track the loading and maintenance of a representation in working memory 

We are able to detect that the post-stimulus offset activity of units in the SB regime still “carries” 

stimulus position information. Through which primitive processing operations can this representation 

be generated and held in working memory? Answering this question requires turning to Information 

Dynamics metrics, such as Active Information Storage (AIS) (see Models and Methods), which 

quantifies the fraction of the information carried by a node’s activity at a time t that was already carried 

at an earlier time t – τ. The process through which this fraction of information is maintained and not 

discarded corresponds to the IPP of information “buffering” (cf. second cartoon from top in Figure 1B, 

reproduced in Figure 3D, left).  

Figure 3D shows averaged time-traces of Active Information Storage computed with the ring model 

used in Figures 3A–C. In the SU regime, Active Storage is positive only during stimulus presentation. 

It reverts to zero after stimulus offset as the stimulus-evoked bumps dissolve back to homogeneously 

spread baseline activation. In this condition –exactly as in the baseline prior to stimulus onset– all 

entropy is due to spatially and temporally uncorrelated noise, which is by construction memory-less, 

thus resulting in null Active Storage.  

The situation is different in the SB regime, in which (spontaneous) bump formation is associated 

with Active Storage and thus positive at baseline and after stimulus offset. However, Active Storage 

exactly drops at stimulus onset and offset. Indeed, these events induce changes of activity that cannot 

be predicted based uniquely on prior activity and hence convey information which is not the outcome 

of “buffering” computations but must come from outside the system. This information injection is 

instead faithfully captured by another information theoretical metric, Transfer Entropy TES→R(t) from 

stimulus to rate (see Models and Methods), tracking the complementary IPP of “Transferring”. As 

shown in Figure 3E, Transfer Entropy peaks match the drops in Active Information Storage visible in 

the middle panel of Figure 3D. At stimulus onset, network nodes modify their algorithmic role, reducing 

their implication in the IPP of “buffering” and becoming the recipients of information conveyed by the 

IPP of “transferring”. Transfer of information from stimulus to activity occurs also at stimulus offset, 

where a new injection of information indicated by a second peak in Transfer Entropy encodes a release 

command to either produce bump dispersion (in the SU regime), or a decrease in firing rate together 

with re-adjustments of the bump shapes (in the SB regime). See also Figure S1D for detailed spatial 
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maps showing the nodes that are most strongly affected by externally injected information at different 

times.  

The information buffered at baseline in the SB regime cannot yet be stimulus specific as the stimulus 

has not yet been presented. We recall that the positions of spontaneously generated bumps at SB 

baseline are random. To formalize this intuition, it is possible to quantify the fraction of information 

about the stimulus, which is stored by network nodes, i.e. the stimulus specific active storage (see 

Models and Methods). The averaged time course of stimulus-specific active storage is shown in the 

rightmost subpanel of Figure 3D. Its trace correctly captures that the information buffering occurring 

prior to stimulus presentation is intrinsic, rather than related to a stimulus, while it displays a transient 

increase after stimulus presentation, as well as during post-stimulus period.  Stimulus-specific Active 

Storage thus provides a valid metric to track the active maintenance of information relative to a 

presented stimulus.  

At the functional level, such stimulus-specific maintenance eventually marks the implementation of 

working memory. At the algorithmic level, our IPP analyses allow a decomposition of working 

memory, showing that it arises via the loading of stimulus-specific information –through the IPP of 

“transferring”– into the activity of the system’s units. These are, by virtue of their collective dynamics, 

intrinsically devoted to the IPP of “buffering”. This algorithmic decomposition provides not only a 

narrative of how a system’s dynamics translate into a function, but it also yields a quantitatively precise 

characterization: suitable information theoretical metrics –Active Storage for “buffering” and Transfer 

Entropy for “transferring”– provide a precise evaluation of when, where, and how intensively distinct 

IPPs are performed. 

 

IPP analysis can track the propagation of representations through a multi-regional hierarchy 

We now tackle the algorithmic decomposition of the function of activity propagation: sensory 

representation propagates through different regions in cortical hierarchy, e.g., from V1 to V2 and above. 

As detailed in Models and Methods, we simulated a feed-forward chain of three ring modules, 

representing three hierarchically ordered regions (Figure 4A, bottom). The bottom ring R1 represents a 

sensory cortical area. It receives an input stimulus, which is sent to hierarchically higher cortical areas 

(R2 and R3). Each unit in the bottom and middle rings (R1 and R2) is coupled to the corresponding unit 

(and its local neighbors) in the subsequent rings (R2 and R3), respectively. 

Figure 4B shows a representative example of single-trial firing rate traces (together with the 

associated spatial maps of activity) for all three rings, for both the SU (top) and SB regimes (bottom). 

Red lines and curves indicate units at the position of stimulus injection, blue units far from it, and 

magenta the initial bump position in SB regime simulations. All panels show the propagation of activity 

bumps through the hierarchy of rings. Similarly to the case of an isolated ring, bumps are purely 
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stimulus-evoked in the SU regime, while they emerge spontaneously (and are persistent) in the SB 

regime. The bump maximum amplitude decreases, and its peak latency is delayed when propagating 

from bottom to top ring. This effect is more pronounced in the SU regime than in the SB regime, where 

self-amplification via local recurrent excitation acts as a facilitator for propagation. In the SB regime, 

the effect of forward coupling is already observable without any stimulation: the intrinsic bump 

positions (magenta lines and curves before stimulus onset) are very similar in the three rings, whereas 

they would be completely decorrelated if rings were uncoupled. 

As for the one ring model shown in Figure 3, we studied whether bump activity performs the basic 

IPP of “carrying” information about the stimulus. The encoding dynamics revealed by the MI analyses 

in Figure 4C closely mirror the dynamics of firing rates in Figure 4B. The peak amount of carried 

information about stimulus position is larger in the bottom ring (black curve) and weaker in the top ring 

(dotted curve). Furthermore, the rise of encoded information is slower and delayed in rings R2 and R3, 

particularly in the SB regime where the re-alignment of bump positions is slow and continues in higher 

order rings even after stimulus offset. Our model thus successfully captures the propagation of sensory 

representations. 

The subsequent question is which IPP is algorithmically mediating this propagation. The obvious 

and natural candidate to consider is the IPP of “Transferring”, as introduced in the analyses of Figure 

3E. In Figure 4D, we show the time series of inter-regional information transfer evaluated via Transfer 

Entropy. Indeed, we see that Transfer Entropy quickly rises after stimulus presentation, reaching a peak 

when MI with the stimulus saturates at its maximum plateau value (cf. Figure 4C). Transfer is stronger 

and faster from R1 to R2 than from R2 to R3, once again in agreement with the description of firing 

rate dynamics in Figure 4B. After the peak, transfer drops to a plateau level, which slowly decays after 

stimulus offset. The profile of transfer is more complex for the SB than for the SU regime. Firstly, in 

the SB state, there is inter-ring transfer of information prior to stimulus onset, since bump positions in 

R1 and R2 influence the bump positions in R2 and R3, respectively (cf. Figure 4B). Secondly, SB 

curves are broader and with more marked secondary peaks, associated with the rearrangement of bump 

positions (and “breathing” of bump widths). The rearrangement of bump positions takes longer than 

their mere creation. Inspection of the detailed spatial maps of Transfer Entropy shown in Figure S2A 

shows that substantial transfer occurs even to units far from the stimulus centers as the generation or 

drift of bumps at locations misaligned with the stimulus must be actively controlled (another inter-

regional functional interaction that TE is able to track).  

Since the wiring of the considered multi-regional circuit is purely feed-forward, there should not be 

any significant feed-back information transfer. In the SU regime, we see that backward Transfer 

Entropy from higher-order toward lower-order rings is close to zero. However, in the SB regime, while 

feedforward transfer is still larger, allowing to correctly capture the dominant direction of information 

transfer, a finite, non-vanishing backward transfer is (spuriously) detected. This is due to misestimation 
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of joint probability density given the finite amount of data, as well as to systematic biases of our simple 

“plug-in” estimators. For instance, we note that the spurious detection of backward transfer is further 

reduced by using a longer delay in estimating TE (Figure S2B), which allows limiting the impact of fast 

transients not properly modelled by our quantized estimation of joint activity distributions (see 

Methods). In addition, the use of multivariate delay coordinate embeddings (Takens 1981), as originally 

prescribed for Transfer Entropy (Schreiber 2000), instead of using just a single delay, suppresses almost 

completely the inference of spurious backward transfer, as we show here in Figure S2C. 

In any case, all estimators, including the simplest ones, were able to correctly detect the existence 

of dominantly feed-forward information transfer. The “Transferring” IPP is always the main component 

in the algorithmic decomposition of the propagation of a sensory representation. 

 

IPP analysis can track the integration of bottom-up and top-down information flows 

We move to a last model configuration, specifically designed to reproduce another important 

cognitive function: selective attention (and the involvement of working memory into its 

implementation). While attention and working memory are often studied as completely distinct, seminal 

modeling work by Ardid et al. (2007) has first shown that the attentional effects on sensory responses 

can be explained as a byproduct of the nonlinear integration of bottom-up inputs from sensory pathways 

and top-down inputs from a higher-order region. This is in line with earlier hypotheses that working 

memory could be a fundamental component of mechanisms mediating attentional modulation 

(Desimone & Duncan, 1995). The latter maintains a working memory copy of a previously presented 

cueing stimulus with the attended feature value. The attentional effect is depicted as boosting responses 

to stimuli with attended features and suppressing responses to stimuli with features far from the attended 

ones (feature-gain-similarity principle, Maunsell & Treue, 2006). We will see that this nonlinear 

merging of bottom-up and top-down influences can be tracked by the IPP of “integrating”, quantified 

by synergistic information modification (Figure 5A). In the simple model architecture proposed by 

Ardid & co-workers (2RC architecture, see Methods), two ring networks are reciprocally coupled. The 

first, lower-order ring R1 represents a generic, selective sensory area tuned in the SU regime, thus 

generating stimulus-driven bumps. The second, higher-order ring R2, represents the prefrontal cortex, 

conditionally set to be in SU or SB regime, respectively, depending on attention state “off” or “on”. 

With att-ON, the second ring becomes thus able to sustain an induced representation of a presented 

stimulus, even when the stimulus is removed (i.e. it can act as a working memory as in Fig. 3B).  

Following Ardid et al. (2007) in the main aspects, we simulate a classic delayed match-to-sample 

task (Figure 5B). In this virtual task, intended to mimic actual experiments probing the response of cells 

in MT cortex to drifting random dot patterns, a stimulus is shown within the receptive field of a recorded 

cell. Cells in MT show a strongly selective response to stimuli drifting in their preferred angular 

direction (Albright, 1984), resulting typically in bell-shaped tuning curves with a marked unique peak. 
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In our computational model, this selectivity is captured by the heterogeneous responses of units along 

the lower sensory-area ring, resulting in the response profile given by the black curve in the top panel 

of Figure 5C. In the virtual task design of Figure 5B, two types of trials exist. A first one, that we call 

here “att-OFF”, corresponds to a condition in which the standard response of MT cells is measured, in 

absence of context-specific modulations. Note that, experimentally, this condition is met by having the 

subject attending actively to features of a second stimulus presented somewhere else. Thus, our “att-

OFF” condition matches the “attend OUT” condition of empirical experiments (Martinez-Trujillo & 

Treue, 2004). The second “att-ON” condition conversely corresponds to the empirical “attend IN” 

condition where the attentional spotlight is in the receptive field of the recorded cells.  The subject is 

instructed to attend actively to stimuli with the same direction as a first stimulus shown in the cue stage 

(red stage in Figure 5B). In both conditions, a first cue stimulus is shown and then removed, followed 

by a delay period of a certain length (light blue stage in Figure 5B) with no stimulus. Then, a second 

stimulus is presented in the same receptive field, whose direction can be close to or far from the direction 

of the initially cued stimulus (match stage, orange in Figure 5B). Individual simulated trials for different 

cue and match stimulus configurations are shown in Figure 5D), in both the attend-ON (Figure 5D, top) 

and the attend-OFF (Figure 5D, bottom).  

When simulating neural responses in the attend-OFF condition (prefrontal area ring R2 tuned in the 

SU regime), the response profile of the sensory ring to the match stimulus is unchanged with respect to 

the cue stage. The presentation of match stimuli with different directions simply produces rotated 

response profiles (black and dashed gray lines in Figure 5C). Inspecting the responses in individual 

trials, we see that all match stage activity bumps in the sensory ring look similar, and that the activity 

in the prefrontal ring has a smaller rate and a worse signal-to-noise ratio compared to the second ring 

(Figure 5E, bottom).  

In contrast, in the attend-ON condition the response profile at match stimulus is differently 

modulated depending on the relative difference of orientation between cue and match stimuli. When 

the match stimulus has the same orientation as the previously shown cue stimulus (whose copy has been 

held through the delay period by the second ring, switched to SB), then the response of the direction 

selective units in the first ring is boosted, while the response of units selective to stimuli far from the 

attended one is reduced. This can be seen in single trial responses (Figure 5D, top), where the match 

bump can have darker or lighter hues of gray depending on stimulus configuration. It is even clearer in 

the red activation profile in Figure 5C, deviating from the black profile for cue and attend-OFF match 

conditions. Analogous modulations of the response profile, of varying intensities in different locations 

arise when presenting match stimuli at different directions (orange curves in Figure 5C). The net amount 

of (simulated) attention-induced modulation can be quantified by computing the percent difference ratio 

between the response profiles to a stimulus in attend-OFF and ON conditions, which is shown in the 

bottom panel of Figure 5C. In our virtual task, the positive modulation can be as large as +15% for 
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responses to match stimuli with attended direction and down to between -10% and -40% for match 

stimuli with unattended direction. Stronger negative modulations occur for stimuli which are ~45° 

displaced from the attended direction, i.e. roughly corresponding to the lateral width of the attend-OFF 

tuning curves. We are not going to comment on the model here, as already extensively analyzed in 

Ardid et al. (2007; 2010), rather, we are going to study the algorithmic effects of its nonlinear dynamics.  

We focus specifically on the IPP of “integrating”, occurring here at match stage when the sensory 

response (R1 in Figure 5D) is the byproduct of nonlinearly merged bottom-up stimulus-related input 

(Spos2) and top-down attention-related inputs (R2). As previously mentioned, the information theoretical 

quantity we propose to use to track this IPP is synergistic information modification (Lizier et al., 2013; 

2014). As graphically depicted in the information Venn diagrams of Figure 5E, the two bottom up Spos2 

and top-down R2 inputs carry together (when considered jointly) a certain amount of information 

MItot = MI[(R2, Spos2); R1] about what is going to be the output sensory response R1. A fraction of this 

total information about the output response is contributed only by one of the two considered inputs. At 

the exact moment of match stimulus onset, only the bottom-up input Spos2 can convey information about 

the direction of the newly shown stimulus, while only the top-down input R2 can carry information 

about the direction of the previously presented cue stimulus. Both these sources of information 

contribute to determine the final output response and comprise thus two unique information 

contributions conveyed exclusively by each of the two inputs (unique information fractions, green and 

blue areas of Figure 5E). In general, some additional information may be shared between the two inputs 

–including noise entropy not necessarily linked to the task-relevant stimulus– as captured by the 

redundant information fraction (cyan intersection in Figure 5E). Yet, the sum of unique and redundant 

contributions could be smaller than the total information MItot. Indeed, some information necessary to 

determine the response could be conveyed by the two inputs in combination, but by neither of them in 

isolation. This surplus contribution – “more than the sum of the parts” (Anderson, 1972) – is the 

synergistic fraction of total information (white area in Figure 5E) and its extraction by the output nodes 

is termed the synergistic modification operation. We estimate these unique, redundant and synergistic 

contributions, quantifying specifically when and where along the virtual task of Figure 5B, the activity 

of the interacting rings implements the emergent IPP of “integrating”.  

This extraction of the synergistic surplus of information is tracked and quantified by the information 

modification surfaces shown in Figure 5F, for both attend-ON (Figure 5F, left) and OFF (Figure 5F, 

right) conditions (cf. also Figure S3 for more details on the individual terms contributing to its 

computation). In addition, Figure 5G shows the profile of a section of the modification surface at the 

beginning of the match stage (averaging range delimited by a dotted black rectangle in Figure 5F). As 
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visible in Figures 5F and 5G, sensory ring units almost do not perform information modification in the 

attend-OFF condition but do it at specific task-related locations and times in the attend-ON condition. 

The most prominent involvement in information modification occurs in the match stage, particularly 

at the immediate onset of the match stimulus within the dotted black rectangle. This is precisely the 

stage in which attentional modulations of stimulus response occur. As visible when comparing the 

profiles of attentional modulation in Figure 5C (bottom) and of information modification in Figure 5G, 

the participation of a node in information modification is the stronger the more marked the attentional 

modulations of its activity are. Specifically, information modification is enhanced at the bump flanks, 

where the most attentional depression is observed. Modification at the bump center position is weaker, 

because of the weaker overall attentional modulation index and also because the stronger net drive at 

the bump center helps the recurrent excitatory connectivity within the sensory ring itself to sustain the 

boosted activity (i.e., the boosting in R1, once “ignited” by an initial amplification trigger signal from 

R2, can be maintained, in part, locally, and becomes thus less dependent on input integration).   

Information modification can be seen to occur even in other parts of the attend-ON activity surface, 

during different virtual task stages. Modification stripes preceding the match-stage ones can be seen 

during the delay stage, although with a much weaker intensity. They are related to the fact that some 

small-intensity activity is observed in the sensory ring during the delay stage, because of some top-

down transfer from the working-memory bump in the prefrontal ring (cf. Figure 5F). The nonlinear 

interactions between the working memory bump and its “sensory shadow” effectively reduce the 

variability of the sensory ring activity during the delay stage of the attend-ON versus the attend-OFF 

condition, which is another type of nonlinear phenomenon beyond rate modulations that can result in 

modification (see Discussion). Other modification events occur during the cue stage, probably due to 

the transient reshaping dynamics of activity bumps following the returning of parameters in the 

prefrontal ring from SU to SB regime values.  

In the attend-OFF state, information modification is much weaker and possibly estimated to small 

positive values, rather than null, because of numeric estimation artifacts. As detailed by Figure S3, the 

surfaces shown in Figure 5C are the sum of several other surfaces corresponding to the different terms 

in the expression for the synergistic information part (see Methods). Numeric errors could thus be more 

important, as more steps are involved.  

In conclusion, the function of selective attention admits an algorithmic decomposition involving the 

IPP of “Integrating”, unlike the simpler functions described in previous sections, decomposing 

primarily into “Carrying”, “Buffering” or “Transferring” IPPs.  
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DISCUSSION  

“Information processing” in cognitive sciences is commonly conceived in terms of box-arrow 

models linking perception to behavior, through multiple stages, not necessarily with explicit reference 

to neural mechanisms (Fodor, 1968; Rumelhart & McClelland, 1986), but increasingly so (McClelland 

& Lambón Ralph, 2013), also due to the rise of neuroimaging (Price, 2018). Hypotheses about 

processing architectures are validated through experimental tasks designed to disentangle the relative 

contributions and actual relevance of the different boxes in the above box-arrow model. It is difficult, 

however, to interpret the results of such experiments without implicit reference to categories and 

concepts of the specific theory being tested (Cooper, 2007). If the postulated theory of how a function 

works was very different from the –unknown– neuronal computations implementing this function, then 

the resulting analyses and interpretations would be inherently biased. There is thus a need for data-

driven and agnostic approaches to get direct access to the algorithmic level.  

Circumventing this epistemological debate, we propose to refer to elementary operations of 

processing whose implementation can be detected unambiguously in terms of a set of pragmatic metrics 

applied to the analysis of time series of neural activity. The price to pay for the rigor in the definition 

of these elementary operations, allowing their quantitative measurement, is that they must necessarily 

be abstract and act in plain and identifiable ways on raw information conveyed by neural activity. 

However, the lack of an exclusive relation with cognitive function is compensated by the fact that 

varying combinations of them can build-up into a variety of different functions. In particular, the 

primitive operations we considered here –“carrying”, “buffering”, “transferring” or “integrating”– are 

so low-level and ineluctable that we can hardly think they are not implemented by neural circuits! 

Even if these operations are far from the evident functional relevance of computations, such as 

working memory maintenance or the generation of top-down modulations of activity, they constitute 

their necessary low-level ingredients, a sort of “neural assembly language”. The analogy with assembly 

languages is indeed evident in the operation of a conventional digital computer (Wilkes et al., 1951), 

whose instructions include only the most basic operations, such as erasing or buffering certain memory 

contents, pushing others to the right or left in a memory register, etc. Despite their deceptive simplicity, 

these low-level operations are sufficient to give rise to the variety of software outputs that a digital 

computer can generate, from the word-processors we used to write this article and to the video games 

and media players that have distracted us during its preparation.  

An advantage of focusing on low-level information processing is that such primitive computations 

can naturally stem from the collective dynamics of a complex non-linear system. For instance, in 

cellular automata systems, like the famous “game of Life” (https://conwaylife.com/), dynamical 

patterns known as “gliders” act as self-organized agents of information transfer and their collisions as 

events of information modification (Lizier, 2013). The complexity of such toy systems is sufficient to 
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endow them with emergent Turing-universal computation capabilities (Adamatzky, 2002). In our study, 

the IPP of “transferring” materializes by volleys of propagating activity in the coupled rings in Figure 

4 –emergent dynamic patterns, like gliders in the game of Life–, and the IPP of “integrating” by top-

down and bottom-up input activity volleys colliding within the low-level sensory ring in Figure 5. 

Differently from abstract toy systems, however, the coupled ring models studied here correspond to 

actual neural circuits mimicking actual cognitive functions. Therefore, the measured information 

dynamics proceeding from neural dynamics is shown to directly contribute to the modeled functional 

computations. We can thus fully bridge the gap between the structural level of how the neural circuit is 

wired (first Marr’s level) and the functional level of which functional computation the neural circuit is 

aiming at (third Marr’s level). The missing link (the second, under-considered Marr’s level) is provided 

by the algorithmic decomposition of the simulated computation. Such decomposition indeed precisely 

quantifies how (through which primitive operations), when (at which epochs within the task), and where 

(by which network nodes in the multi-regional circuit) information is processed.  

Our proposal to seek for primitive processing operations underlying more complex cognitive 

computations is not completely novel. Training in specific tasks has been shown to automatically confer 

superior performance in different, apparently unrelated tasks (Singley & Anderson, 1989). This finding 

led to the speculation that different cognitive algorithms may involve shared processing subroutines 

and that the acquisition of superior efficiency in these lower-level shared processes would explain the 

transfer of cognitive skills across tasks. Such notion of “primitive elements” of cognitive processing 

(Taatgen, 2013) is algorithmic in nature since it refers to manipulations of information which are “pre-

functional”, i.e. not necessarily with a simply nameable purpose, but participating in the implementation 

of the final circuit function. Analogously, other cognitive theories postulate the existence of 

intermediate representations (Wickelgren, 1999; Mel & Fiser, 2000) between the encoding of isolated 

parts of sensory objects (e.g. a contour segment or a letter sign) and the fully-integrated, context-

invariant encoding of whole objects (e.g. a shape or a meaningful word). The generation of such 

intermediate representations could also be reinterpreted as primitive algorithmic steps towards 

perception and object recognition. Our notion of IPPs, however, lies at an even lower level than these 

concepts. Therefore, even pre-functional cognitive operations could still be decomposed into IPPs. This 

yields a hierarchy of possible algorithmic decompositions, the lowest level given by raw processing 

directly emanating from coordinated neural activity, quantifiable by information-theoretical functionals 

such as active storage, transfer entropy and synergistic modification. We are similar in spirit here to 

previous works such as Ince et al. (2005) or Lungarella & Sporns (2006), extending however their 

analyses beyond transfer to also encompass buffering and integration. 

If the processing operations described by IPP analysis are so unavoidable, one may argue whether 

the capability to track them really can improve our understanding of neural circuit function. A related 

discussion can be found in Jonas and Kording (2017) who provocatively asked whether a neuroscientist 
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analyzing recordings of electrical activity within a microprocessor could really understand which 

computations are performed. Their conclusion was that data-driven analyses alone could at best detect 

that some interesting processing is ongoing, without hope to really infer its purpose. This is not, 

however, the scenario we are facing in our study, since we have at our disposal a ground-truth model, 

knowing both the circuit wiring and the emulated cognitive function. It is precisely the knowledge of 

ground-truth models that allowed us to realize that different functions are associated with alternative 

cocktails of IPPs. The spatiotemporal patterns of IPP recruitment we measure in model simulations 

were reasonably compatible with a priori expectations, thus confirming that IPP analysis yields 

trustworthy results, successfully able to fingerprint alternate high-level computations, despite its 

simplicity. The successful proofs-of-concept illustrated by Figures 3-5, allow us to be optimistic about 

the added-value IPP analyses could bring to real applications.  

IPPs go indeed beyond conventional functional connectivity, that just detect which units process 

information together, by additionally revealing the qualitative type of processing being performed. For 

instance, in the match stage of the simulated experiment of Figure 5, very similar functional connectivity 

motifs are generated in attend-ON and OFF conditions, as activity bump configurations in the sensory 

ring are similarly overlapping in space and time. However, in attend-OFF conditions, functional 

connectivity motifs primarily capture information transfer, while substantial information modification 

is also present in the attend ON condition. The latter cannot be captured by functional connectivity 

analyses alone. Even without knowing the ground-truth –active merging of top-down and bottom-up 

influences occurs only in attend ON conditions–, a completely agnostic IPP analysis would have still 

revealed that two qualitatively distinct modes of processing exist, despite only mild quantitative 

differences in activity and activity correlations. As such, we believe that the IPP framework can yield 

stronger constraints on hypotheses about cognitive processing implementations, guaranteeing that they 

remain compatible with the complex reality of data. The capacity to track simultaneously different types 

of processing across different locations will facilitate the identification of putative cognitive 

architectures combining parallel and sequential aspects (Zylberberg et al., 2011). Indeed, recently, 

information decomposition techniques could be used to separate large-scale functional interactions 

between  brain  regions into  synergistic  and  redundant  components, revealing distinct  information-

processing  roles in different cognitive domains (Luppi et al., 2022). 

The rate models of neural dynamics considered in our study are extremely simplified with respect 

to actual, biological neural circuits. Our aim was not to focus on the study of the models –they have 

been already investigated in depth elsewhere (Ardid et al., 2007)– but to get access to time series of 

simulated activity from generic neural systems mimicking the performance of actual functions, without 

bothering about excessive realism for a first proof-of-concept. Despite their simplicity, coupled ring 

models can nevertheless generate a surprising variety of dynamics. We focused here on asynchronous 

regimes of activity. Enhancing inhibition or varying delays in the interactions would have given rise to 
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alternative regimes characterized by oscillatory activity, including periodic standing and traveling 

waves or broadband chaotic oscillations (Roxin et al., 2005; 2006; Battaglia & Hansel, 2011). Ring-

models of attentional modulations have been constructed even in the oscillatory regime (Ardid et al., 

2010), to uncover the interplay between oscillatory coherence and activity modulations. Simulations in 

oscillatory regimes could be used, in perspective, to quantify whether the presence of oscillations affects 

the performed primitive computations (e.g. boosting modification and/or transfer relatively to 

asynchronous regimes). In addition, the information processing effects of cortical traveling waves 

(Muller et al., 2018; Chemla et al., 2019) could be elucidated (colliding wavefronts as information 

modification events?), or to benchmark tools for spectrally-resolved information-theoretical analyses, 

e.g. frequency-band specific transfer entropy (Pinzuti et al., 2020).  

As in our previous studies of state-dependent information transfer by coupled oscillating populations 

(Battaglia et al., 2012; Palmigiano et al., 2017), we capitalize here on the possibility offered by 

computational models with carefully shaped structure to generate arbitrarily large quantities of data, in 

perfectly controlled conditions, which allow a rather straightforward estimation of information-

theoretical functionals. Even in this case, estimation is error-prone, as revealed by the spurious inference 

of information transfer from the higher- to the lower-order rings in the feed-forward configuration of 

Figure 4. Even if the correct qualitative conclusion is achieved despite misestimation –the dominant 

direction of transfer is always clearly and correctly identified–, these unwanted results give a warning 

about the importance to use performing estimators, especially when operating on more limited amount 

of data as in applications to real data. Here we could still afford using for most analyses a simple binning 

method for the calculation of entropies and other functionals. However, binning strongly depends on 

the number of samples, is biased and suffers from the curse of dimensionality (Treves and Panzeri, 

1995; Panzeri et al., 2007). In the analyses of Figure S2B-C, we have used a promising alternative based 

on semi-parametric estimation techniques, namely the Gaussian Copula Mutual Information (GCMI) 

(Ince et al., 2017). The GCMI has several advantages for large neurophysiological data and brain 

network analysis: notably, the simplicity of the computation, which renders the algorithms applicable 

to large datasets with hundreds of variables (e.g., brain regions); and the ability to estimate entropies on 

few data samples, allowing estimation from short time series containing hundreds of time points, e.g., 

single trials or across trials. These and other advantages makes GCMI an ideal ingredient for practical 

toolboxes applicable to real neurophysiological data (Combrisson et al., 2022). 

We focused here on a triad of IPPs captured by the quantities of active storage, transfer and 

modification, including a stimulus-specific version of storage (Figure 3D), which can disentangle 

information processing relevant to a task from endogenous processing associated to intrinsic dynamics. 

However, this already rich catalog of IPP metrics is far from being exhaustive. Partial Information 

Decomposition exists also for more than three variables, yielding a combinatorially-growing number of 

possible processing types as the number of considered variables increases (Williams and Beer 2010). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.04.502783doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S1053811922004669?via%3Dihub
https://doi.org/10.1101/2022.08.04.502783
http://creativecommons.org/licenses/by-nc-nd/4.0/


Furthermore, multivariate frameworks to quantify the informational effects of emergent collective 

behavior from higher-order interactions have also been proposed for arbitrarily large systems (Rosas et 

al., 2020). Any additionally defined IPP, independent of its complexity, would still capture 

informational effects of coordinated dynamics, with relatively more redundant or synergistic styles. The 

name of “dynome” has been proposed for the collection of possible dynamical modes that a neural 

circuit with a given connectome can support (Kopell et al., 2014). In our algorithmic-level view, every 

dynamic pattern within the “dynome” would be seen as an operator on the information conveyed by 

neural activity. In other words, it would map to an element within an “infome”, or repertoire of 

information processing modes. Possible examples are transiently coherent oscillatory bursts, serving as 

information routing enablers (Palmigiano et al., 2017) or the recruitment of distinct system substates, 

in which the same neurons process information differently at different times (Clawson et al., 2019; 

Pedreschi et al., 2020). The “storage”, “transfer” and “modification” triad considered here (Figure 1) 

was sufficient to account for primitive computations that can be performed by one (Figures 3 and 4) or 

two (Figure 5) interacting activity bumps. However, the list and number of considered IPPs should be 

tailored to match the variety of intrinsic activity patterns that more general neural circuits engender.  

Until now, most attempts to identify canonic computations –such as e.g. inhibition-driven rerouting 

or normalization (Pouille & Scanziani, 2004; Carandini & Heeger, 2011; Hangya et al., 2014; Miller, 

2016)– have strongly committed to specific connectivity motifs being responsible for specific types of 

processing. Such structure-centric views may be limited by the fact that a connectivity motif can behave 

differently in different contexts (Aertsen et al., 1989; Nadim et al., 2008, Dahmen et al., 2022), 

especially when embedded in broader circuits (Kirst et al., 2016), so that the same motif could perform 

multiple computations. Alternatively, it is possible that very different connectivity organizations 

implement very similar dynamics (Marder & Goaillard, 2006, Yger et al. 2011, Voges et al., 2012), so 

that they would give rise to equivalent computations. The quantification of IPPs allows to study 

information processing directly at the algorithmic level, in a way commensurable with, but 

“disembodied” from the specific circuit mechanisms producing it. This may allow detecting the action 

of specific cognitive processes (e.g., attentional modulation) through the identification of their 

informational signatures (e.g., boosted information modification) even when their effects are more 

general than a simple rescaling of tuning curves (Helmer et al., 2016). Furthermore, IPP analyses may 

allow detecting disruptions of primitive information processing itself, in absence of apparent 

“hardware” damage in the underlying circuits, thus providing a fundamental “software” explanation for 

widespread cognitive impairments in pathologies (Clawson et al., 2021). 
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TABLES        

 

Table 1: List of abbreviations. 

abbreviation full name  explanation 

SU  

 

stationary uniform dynamical state with spatially homogeneous 

activity  

SB stationary bump  dynamical state with spatially 

inhomogeneous activity 

3FF three feed-forward coupled rings setup to demonstrate information transfer  

2RC two reciprocally coupled rings setup to demonstrate information 

integration 

FR firing rates ring model output  

MI mutual information information-theoretic measure  

TE transfer entropy information-theoretic measure 

H entropy information-theoretic measure 

GCMI  Gaussian copula mutual information alternate method to calculate MI, TE, and H 

IN attend-IN state configuration of the 2RC setup 

OUT attend-OUT state configuration of the 2RC setup 
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Table 2: List of parameters. 

 

parameter description values remark 

δtint integration time step 0.01 arbitrary units 

δt time step for the analysis 10 δtint   

D        delay between ring units  1 δt   

Dlr external delay between rings   2 δt  

dt time delay for MI analysis 40 δt for binning  

N number of units 100 0 to 99 

𝜈 noise      50 % relative to the external drive 

J0 for SU state internal coupling -30 stationary uniform activity 

J1 for SU state internal coupling  -8 stationary uniform activity 

J0 for SB state internal coupling  -25 stationary bump activity 

J1 for SB state internal coupling  11 stationary bump activity 

J2 external forward coupling strength 35  for 3FF rings  

σJ2 external forward coupling width 3 nodes for 3FF rings    

J2 external forward coupling strength 15  for 2RC rings 

σJ2 external forward coupling width 3 nodes for 2RC rings 

J3 external backward coupling 

strength 

23  for 3FF and 2RC rings 

σJ3 external backward coupling width 6 nodes for 2RC rings 

Astim constant stimulus amplitude  2.0 rate S(t) units 

σstim stimulus width 8 nodes  

Spos (4 features) stimulus injection position 0, 25, 50, 75 for one ring and 3FF rings 

Spos (1 feature) 1st stimulus position 50 for 2RC rings  

Spos2 (10 

features) 
2nd stimulus position 0, 10... 90 for 2RC rings  

tON stimulus onset 100 δt for one ring and 3FF rings 

tOFF stimulus offset 250 δt for one ring and 3FF rings 
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tend  end of simulation 450 δt for one ring and 3FF rings 

tON 1st stimulus onset 110 δt for 2RC rings 

tOFF 1st stimulus offset 310 δt for 2RC rings 

tON2 2nd stimulus onset 460 δt for 2RC rings 

tend2  end of simulation 610 δt for 2RC rings 
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FIGURES 
 

 

 

 
 

Figure 1: Notions of algorithmic level and information processing primitive operations.  

 

(A) Neural circuits can be analyzed at three different levels (Marr & Poggio, 1976): the high-level 

function performed by the circuit (i.e. the final cognitive operation, first functional level); the nature of 

the circuit components (neuronal types, etc.) and the anatomical wiring between them (third structural 

level); and the second algorithmic level of the raw information processing, bridging between circuit 

structure and function. (B) Information processing primitives (IPPs) are elementary operations 

performed on streams of information conveyed by neuronal activity, which are necessarily involved in 

different combinations in the build-up of different functions and into which more complex functions 

can be decomposed. (C) The occurrence of such IPPs can be directly tracked and quantified from neural 

activity data by using suitable information theoretical functionals. 
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Figure 2: Dynamical states of the ring model of one cortical region. 

(A) Ring model to emulate information encoding and storage: circles represent feature-specific neuronal 

nodes, parametrized by an angle coordinate θ along the ring, indicating the preferred stimulus direction 

(denoted by differently oriented lines within the circles); connecting edges indicate internal all-to-all 

structural couplings, whose weights depend on the distance between the coupled network nodes (cf. 

panel C). The rectangle below the ring reports that stimulus-related inputs are injected in a localized 

fashion to network nodes with a specific stimulus-direction preference (indicated by a red arrow), 

following (B) a narrowly tuned Gaussian spatial profile. (C) Example profile of spatial modulation for 

internal ring couplings, here with a “Mexican hat” shape for parameters J0=0 and J1=1 (see Methods). 

(D) Top: phase diagram reporting different dynamical regimes obtained for different coupling 

parameter values. Bottom: Spatial maps (nodes versus time) for the two dynamical regimes explored in 

this study: stationary uniform (SU) activity with transient, stimulus-induced bumps of activity; and 

stationary bump (SB) activity with an ongoing, self-sustained bump, persisting even after stimulus 

offset. 
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Figure 3: Information encoding and storage in a single-region circuit. 

(A) To track the simplest possible IPP of information “Carrying”, we simulate different trials in which 

stimuli with different directions θ are presented for a short, fixed time of 150 s (as indicated by the 

stimulus-related input time course S(t)). The direction Spos of the presented stimulus is denoted by a red 

arrow as in Fig. 1A.  (B) Spatial maps (top row, units vs time) and single trial firing rate traces (bottom 

row) of neuronal activity in a one-ring network, in the SU or the SB dynamical regimes. Red lines 

indicate traces for nodes located at the stimulus center, blue lines nodes far from it, and magenta lines 

indicate the initial bump position for the SB regime. (C) Time-courses of entropy (top row) and 

stimulus-related mutual information averaged over nodes & trials (and normalized by entropy), for the 

SU (black) and SB (green lines) regimes. Middle and bottom row: stimulus presence and stimulus 

orientation are transiently encoded by activity in both the SU and SB regimes, as revealed by the mutual 

information between rates and, respectively S(t) and Spos. (D) Moving to the IPP of “Buffering”, we 

quantify and show time-courses of active information storage (intrinsic and stimulus-specific) in both 

the SU and SB regimes averaged over nodes & trials. Stimulus-specific storage persists after stimulus 

offset in SB, denoting working memory implementation. (E) Time-courses of information transfer from 

injected stimulus to rates, quantified by Transfer Entropy. Light and dark cyan lines indicate (negligible) 

backward transfer from rate to stimulus.  
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Figure 4: Information transfer in multi-regional feed-forward circuits. 

(A) We study the IPP of “Transferring” as it gives rise to stimulus propagation across a chain of three 

feed-forwarded connected regions, each modeled by a different ring network. Only the bottom ring (R1) 

directly receives stimulus-related inputs (red arrow). (B) Spatial maps (left) of single trial firing rates 

and corresponding rate time-series (right) in R1, R2, and R3 (top, SU; bottom, SB regimes). Red lines 

indicate nodes located at the stimulus center, blue lines nodes far from it, and magenta lines indicate 

the initial bump position for SB, as in Figure 3B. (C) Time-courses of relative mutual information 

between rates and stimulus feature (trial & node averages, entropy normalized) reveal stimulus position 

encoding, transient in SU (top) and persistent in SB (bottom), progressively weaker and more delayed 

ascending from R1 (black line) to R2 (gray line) and R3 (dotted line). (D) Time courses of information 

transfer, quantified by Transfer Entropy (trial & node averages, entropy normalized) from R1 to R2 

(black), R2 to R3 (gray), R2 to R1 (dark cyan) and R3 to R2 (cyan; SU on the top, SB on the bottom). 

See Figure S2 for improved estimators reducing the spurious detection of backward transfer.   
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Figure 5: Information integration and synergy in presence of top-down attentional modulation. 

(A) We study the IPP of “Integrating” as it mediates the emergence of top-down attention-like 

modulation of stimulus response in a bi-regional circuit, composed of two reciprocally coupled ring 

networks, representing respectively a low hierarchical order sensory region and a higher-order frontal 

region.  (B) In the virtual task we simulate, after a baseline period, stimuli are presented twice, during 

a Cue and Match stage, respectively with positions Spos and Spos2 (red arrow), separated by a delay period 

without stimulation. Such a configuration mimics a selective attention experiment in which a copy of 

the presented stimulus is uploaded to a frontal working memory module (upward blue arrow), which 

stores it actively through the extent of the delay period (light blue arrow). At the moment of match, this 

working memory copy interacts (downward blue arrow) with the sensory representation evoked by the 

newly presented stimulus, matching or not the previously cued direction. During delay, the circuit can 

be set into an “attention ON” (upper ring in SB regime) or an “attention OFF” (upper ring in SU mode) 
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conditions. We show here trial averaged spatial maps in the Att ON condition, in the case of matching 

stimuli directions  (Spos = Spos2). (C) Response curves of firing rates averaged over trials and time during 

Spos2 presentation (match stage). Red curve for match trials (Spos = Spos2), dotted violet curves for no-

match, both for att ON. In att OFF, the black curve corresponds to a match, otherwise dotted gray 

curves. Bottom: attentional modulation index showing the percent enhancement (or depression) of 

firing rate during match stage in att ON vs att OFF conditions. (D) Firing rate spatial maps for three 

single trials with different configurations of Spos and Spos2), in bottom (R1) and top ring (R2; Top, att 

ON; bottom, att OFF conditions). (E) Venn diagram indicating the Partial Information Decomposition 

(PID) of the total mutual information between the sensory response in R1 and the pair of bottom-up 

sensory and top-down frontal inputs: Synergy equates the fraction of this total which is neither uniquely 

carried by R2 and Spos2 , nor redundant between them. For other individual terms of the PID, see Figure 

S3. This synergistic information is extracted by nodes in R1 through the process of Information 

Modification.  (F) Spatial map of the synergistic modification (normalized) in ring R1 in attention ON 

(left) and OFF (right) conditions. Synergy is way stronger in att ON condition, particularly in the match 

stage. (G) Section of the synergy surface during early match stage (section averaged over the time 

window denoted by a dotted black rectangle) 
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SUPPORTING FIGURES 

 

 

Figure S1: Details about information encoding in the single-region circuit 

(supporting figure to Figure 3) 

(A) Spatial map (all units vs time) of the trial-averaged firing rates in SU in the single-region model 

composed of one ring network, red arrows indicate stimulus positions Sp in all trials. This and other 

spatial maps have a striped appearance due to the use in our numerical experiment setup of a finite, 

discrete number of possible stimulus orientations, as it is often the case in empirical experiments 

(stimulus injection positions indicated by red arrows). (B-D) Analogous spatial maps for: mutual 

information between rates and (B) stimulus time-course S(t)  (cf. also Figure 3C middle) or (C) stimulus 

position Spos (cf. Figure 3C bottom); and (D) Transfer Entropy from stimulus time-course to firing rate 

responses. We note that the stronger transfer from stimulus to rate occurs at the response bump flanks 

which are the positions experiencing  the stronger response modulation (a suppression in this case) as 

an effect of stimulus presentation. 
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Figure S2: Details on the information transfer in the multi-regional feed-forward circuit. 

(supporting figure to Figure 4) 

(A) Spatial maps (for a subset of units) of the trial-averaged information transfer from ring 1 (R1) to 

R2 (lower map) and R2 to R3 (upper map). Results from SU state on the top, from SB on the bottom, 

red arrows indicate stimulus positions Spos. (B) Dependence of peak transfer entropy TE on the delay 

used for their calculation (no entropy normalization). Backward transfer is indicated by dotted lines and 

is reduced for longer delays in the case of R2 to R1 transfer (C) Transfer entropy in SB state (trail & 

node averages) between R1 and R2 and R2 and R3, here calculated through a multivariate scheme using 

multiple delays (dt = 5,10,15,...40 δt) simultaneously (no entropy normalization). See Methods for 

details. 
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Figure S3: Individual terms of the PID for computing synergistic modification in the bioregional 

selective attention model. 

(supporting figure to Figure 5) 

(A) Composition of synergy, all the “infograms” for the shown terms are raw and without entropy 

normalization. Top row, attend ON; bottom row, attend OFF conditions. (B) Spatial maps of the entropy 

of the firing rates in the first sensory ring R1 used for entropy normalizations of the other quantities 

(left for att-ON, right for att-OFF conditions). (C) Spatial maps of the mutual information between the 

rates in R1 and the stimulus angle shown during match Spos2 (left for att ON, right for att OFF). We 

remark that, to prove that there are no modification effects in the attend OFF condition, the redundancy 

correction is necessary, as it brings an exact cancelation of twice counted Mutual Information to the 

stimulus, redundant between the rings. 
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