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Plasmids are mobile genetic elements important for bacterial adaptation. The

study of plasmids from sequencing data is challenging because short reads produce

fragmented assemblies, requiring of subsequent discrimination between

chromosome and plasmid sequences. Although circularized assemblies are now

possible using long-read data, there is still a need to differentiate plasmids from

other circular elements. Here, we present plaSquid, a dockerized tool developed in

Nextflow that expands plasmid detection and improves replicon typing and

mobility groups classification schemes, outperforming previously available

methods in both precision and sensitivity. When applied to ~10.5 million

metagenomic contigs, plaSquid revealed a 2.7-fold increase in plasmid phylogenetic

diversity. Also, we used plaSquid to uncover a significant role of plasmids in the

widespread distribution of clinically-relevant antimicrobial resistance genes in the

built environment, from cities to spacecraft. Together, we present an improved

approach to study plasmid biology from fragmented or circularized genomic and

metagenomic assemblies.

Introduction

Plasmids are extrachromosomal genetic elements that replicate independently

from the bacterial chromosome and are transferred and maintained in different host

species. Although plasmid genes are considered non-essential for bacterial viability,

many plasmid-encoded traits have an impact on bacterial adaptation as they confer

resistance to environmental pressures, like antibiotics, or give access to new niches by

providing specific metabolic capacities1–3.

Plasmids have a modular structure defined by different functionally-related gene

clusters4,5. Replicons are composed by counter-transcript RNAs (ctRNAs), iterons,

promoters and their encoded proteins, and regulate plasmid replication and copy number

by interacting with the bacterial chromosome-encoded molecular machinery. Replicons

are the only indispensable module to define a plasmid. Based on their sequence

diversity, plasmids have been classified according to different replicon (REP) types

which can be informative about plasmid host range, copy number and size6,7. The

mobility module is present in some plasmids and confers the capacity of autonomous
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mobilization between hosts. Based on sequence similarity on the N-terminal portion of

relaxase genes, mobilizable plasmids can be classified into mobility (MOB) groups8,9.

These groups are phylogenetically coherent but in certain cases not entirely correlated

with REP types6. The adaptation module consists of a variable set of elements including

protein-encoding genes, transposable elements and integrative sequences that increase

genetic fluidity between bacterial genomes driving their adaptation to environmental

changes10.

High-throughput sequencing of bacterial isolates and metagenomic samples

from diverse environments is enabling the massive exploration of plasmid genetic

diversity, stressing their importance in infectious diseases as they frequently encode

antimicrobial resistance (AMR) or virulence traits3. This has motivated the need for

methods and schemes for plasmid identification and classification from sequencing data.

Currently, plasmid classification based on MOB groups and REP types is the standard,

but this approach fails to classify an important share of plasmids present in current

databases6. Therefore, other schemes that are based on whole-sequence comparisons

and network analysis have been developed11,12. However, there is still a need for

improved methods for plasmid identification and classification from short-read data,

since this requires discriminating between chromosome and plasmid sequences when

working with fragmented genomic or metagenomic assemblies. Although more

contiguous or complete assemblies are now possible using long-read sequencing

technologies, there is still a need for approaches that can identify and differentiate

plasmids from other circular elements.

Several software tools have been developed so far to detect and classify plasmid

sequences from genomic or metagenomic data. PlasmidFinder enables precise detection

and characterization of plasmid sequences based on BLAST13 searches against a

thoroughly curated database of plasmid replicons7. However, this only allows detection

of the replicon module, preventing the identification of other plasmid regions

particularly in fragmented genomic or metagenomic assemblies. Other tools, like

PlasFlow, use more complex machine learning approaches that enable the detection of

plasmidic contigs based on genomic signatures of known plasmids present in current

databases14. This approach allows identification of different plasmid regions but does not

implement any classification scheme. Circular topology has been another feature used to
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elucidate plasmids by analyzing assembly graphs15,16, however, these approaches are not

optimal for complex graphs like those derived from short-read metagenomic data and do

not allow to differentiate from other circular elements like bacteriophage genomes.

Other approaches, like those implemented by RFPlasmid17 and MOB-suite18, rely on the

integration of different strategies based on database-dependent comparisons and gene

conservation. More recently, the use of metagenomics to study plasmid diversity and

composition directly from environmental samples, frequently referred as plasmidome

analysis, has led to the development of customized pipelines that take into account

Replication Initiator Proteins (RIP) domains for a more comprehensive detection of

plasmids19–21.

Here, we introduce plaSquid, a new pipeline to identify and classify plasmid

sequences from circularized or fragmented assemblies. This tool introduces a dual

strategy based on: i) a database-dependent comparison algorithm optimized to

differentiate chromosome from plasmid sequences with very high accuracy and, ii) an

enhanced and manually-curated set of probabilistic sequence models and

plasmid-specific domain architecture definitions to classify plasmids in REP types and

MOB groups which outperform similar tools. Overall, we show that plaSquid allows

improved plasmid detection and classification in a wide taxonomic range of bacterial

genomes, diverse environmental metagenomes and targeted plasmidome sequencing

analyses.

Results

Software overview. The plaSquid software is implemented using Nextflow22. Input files

for plaSquid are either genomic, metagenomic or plasmidome assemblies, which can be

processed by two independent but complementary approaches that are implemented as

subworkflows: Repsearch and Minidist (Fig. 1). The Repsearch workflow screens

assembled contigs to identify RIP domains, plasmid-specific genes and domain

architectures, ctRNAs and MOB proteins based on customized and manually-curated

Hidden Markov Models (HMMs) for proteins and Covariance Models (CMs) for RNA

sequences. Then, filters are applied using model-specific alignment thresholds to detect

and classify plasmidic contigs in REP types and mobility MOB groups (see Methods for

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.04.502827doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?LtEhp7
https://www.zotero.org/google-docs/?jJI58w
https://www.zotero.org/google-docs/?XZItAN
https://www.zotero.org/google-docs/?Cs0fW2
https://www.zotero.org/google-docs/?559Ku2
https://doi.org/10.1101/2022.08.04.502827
http://creativecommons.org/licenses/by-nc/4.0/


details). The Minidist workflow aligns each assembled contig to the PLSDB plasmid

database23 and computes a similarity index (S) to determine its plasmidic or

chromosomal origin (see Methods for details).

Highly-accurate detection of plasmids from diverse bacterial genomes. We first

aimed to compare plaSquid with current tools for plasmid detection from genomic

assemblies. To do this we used a diverse genomic dataset consisting of 38 different

bacterial genomes representing both Gram-negative and Gram-positive species across

10 taxonomic classes. These genomes harbor 1 to 20 plasmids (Fig. 2A; Supplementary

Table S1). Then, we ran different softwares including plaSquid, PlasFlow14,

MOB-recon18, PlasmidFinder7 and RFPlasmid17 to assess the precision (positive

predictive value) and recall (sensitivity). Figure 2B shows that plaSquid, PlasmidFinder,

MOB-recon and PlasFlow were highly-accurate (median precision > 0.9) for plasmid

prediction. However, PlasFlow showed precision values as low as 0.55 for genomes

belonging to the class Alphaproteobacteria. RFPlasmid exhibited the lowest precision

among the tools tested (median precision = 0.63). Recall was almost optimal for

plaSquid, MOB-recon and RFPlasmid which showed median values > 0.95. However,

MOB-recon showed recall values < 0.5 for Alphaproteobacteria genomes. Overall, these

results show that plaSquid was the only software that showed high precision and

sensitivity across plasmid-containing genomes from all tested taxa.

Improved classification of replicon (REP) types. To evaluate the performance of our

approach to classify REP types, we randomly sampled a manually-curated set of 469

plasmids which are representative of all known replicons (referred to as the REP

reference dataset in Methods section). Then, we used this dataset to compare plaSquid

results with PlasmidFinder, which is the standard approach for REP typing. As

PlasmidFinder relies on BLAST13 searches against a predefined replicon database, we

used 95%, 85% and 75% as identity and alignment coverage cutoffs. Figure 3 shows

these comparisons grouping replicons according to their occurrence in a broad host

range of bacteria (BHR), in Gram-positives or Gram-negatives; or according to the

nature of sequences defining them (proteins or ctRNAs). Further information of
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grouping categories as well as correspondence between RIP domains and replicon types

can be found in Supplementary Table S2.

For BHR plasmids, recall values obtained with PlasmidFinder decay with more

stringent cutoffs. Indeed, the best performance of this tool is observed with 75% of

identity and alignment coverage (median recall = 0.8), which is lower than values

obtained with plaSquid (median recall > 0.98) (Fig. 3A). For plasmid replicons

exclusively found in Gram-negative bacteria, the best performance of PlasmidFinder

was obtained with 75% of identity and alignment coverage (median recall = 0.74). In all

tested conditions, PlasmidFinder showed greater dispersion in recall values, evidenced

by a median variance of 0.12. Recall values obtained with plaSquid showed a higher

median of 0.99 and a lower variance of 0.01 (Fig. 3A). For plasmid replicons found in

Gram-positive bacteria, recall values were similar to the previous case. PlasmidFinder

using 85% and 95% as identity and alignment coverage thresholds reported lower recall

values and higher dispersion. PlasmidFinder using 75% as identity and alignment

coverage thresholds and plaSquid showed comparable median recall values of 0.95 and

0.96, respectively. However, plaSquid showed a comparably lower dispersion of recall

values (median variance = 0.009) (Fig. 3A).

For plasmid replicons whose classification is determined by protein sequence

similarity, PlasmidFinder showed median recall values lower than 0.9 in all tested

conditions, being 75% of identity and alignment coverage the best among them (median

recall = 0.89). For all these conditions, PlasmidFinder showed greater dispersion of

recall values (median variance = 0.16). In comparison, a substantial improvement was

observed with plaSquid, evidenced by a median recall of 0.99 and a median variance of

0.02 (Fig. 3A). For plasmid replicons whose classification is determined by ctRNAs

sequences, PlasmidFinder showed optimal performance when using 75% or 85% of

identity and alignment coverage (median recall = 1, median variance = 0). In this case,

plaSquid also showed a near-optimal median recall value of 0.99, but dispersion of

values was greater than PlasmidFinder (variance = 0.01).

Figure 3B summarizes precision values obtained with plaSquid and

PlasmidFinder using the same parameters as shown previously. In general, the

performance of both tools in all tested conditions was near optimal, with median

precision values greater than 0.99. Of note, PlasmidFinder using 75% of identity and
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alignment coverage showed slightly lower precision particularly for plasmid replicons

found in Gram-positive bacteria (Fig. 3B).

Overall, when tested in a comprehensive set of known plasmid replicons,

plaSquid outperformed the standard approach for plasmid REP typing. This

improvement was particularly evident for classification sensitivity (recall).

Improved classification of mobility (MOB) groups. To evaluate our approach for

classification of MOB groups, we built a manually-curated set of 1,145 plasmids which

are representative of all known MOB types (referred to as the MOB reference dataset in

Methods section). Then, we used this dataset to compare plaSquid with MOB-typer. As

MOB-typer relies on BLAST13 searches against a predefined relaxase database, we used

70%, 80% and 90% as identity and alignment coverage cutoffs. Figure 4A shows that

MOB-typer using 70% as identity and alignment coverage thresholds was the condition

with lowest precision (median = 0.87). The best precision with MOB-typer was

obtained using 90% as identity and alignment coverage thresholds (median = 0.91). For

plaSquid, precision was comparable to MOB-typer, with a median value of 0.90.

Dispersion of precision values was comparable between tools, with a median variance of

for MOB-typer (mean of the three conditions) and for4. 2 × 10−4 4. 9 × 10−4

plaSquid. Figure 4B shows recall results for the same conditions. Median recall values

for MOB-typer ranged from 0.85 to 0.87, while for plaSquid this was 0.95. Dispersion

of recall values was also comparable between tools, with median variance of

for MOB-typer (mean of the three conditions) and for3. 9 × 10−4 3. 2 × 10−4

plaSquid. Together, these results evidenced that plaSquid has comparable precision but

considerably better recall for classification of plasmids into MOB groups.

Enhanced plasmid recovery from circularized plasmidome assemblies. To further

assess the performance of plaSquid we used a previously published plasmidome

dataset19. This consists of sewage water samples from 22 different countries that were

processed using a plasmid-enrichment protocol and then sequenced using Oxford

Nanopore. Then, the authors reported a diverse dataset of circularized elements

identified as plasmids using an in-house pipeline that detects RIPs. We re-analyzed all

the assembled elements (n = 165,302) using plaSquid and compared results to those
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reported in the original publication. Figure 5A shows the total number of plasmids

detected by plaSquid (n = 78,261) is higher than the original number reported by the

authors (n = 58,429). All samples analyzed with plaSquid showed a similar trend

compared to the plasmid counts reported in the original publication (Fig. 5B). However,

using plaSquid we detected a higher plasmid count in 19/22 (74%) of sampling

locations. Overall, we observed that plaSquid detected 33.9% more assemblies as

plasmids than the original report.

We also aimed to characterize the contribution of different plasmid detection

strategies implemented by plaSquid using the same dataset. Figure 5C shows that the

strategy based on RIP domain detection enabled the recovery of more than 40% of

plasmid assemblies. Importantly, the combined contribution of Minidist and

RIP-domain architectures that are new strategies incorporated by plaSquid accounted

for 25% of cases. This is particularly relevant for some samples, like Brazil (BRA) in

which > 90% of plasmids were identified by Minidist or Tanzania (TZN) in which >

50% of plasmids were identified by detection of RIP-domain architectures (Fig. 5D).

Also, more than 20% of cases were detected using the combination of multiple

strategies. Indeed, in 20 out of 22 (90%) sampling locations plaSquid identifications

were based on 3 or more different approaches (Fig. 5D). Together, these results show

that plaSquid enhances the recovery of plasmids from circularized, long-read assemblies

generated from plasmid-enriched samples. Additionally, this improvement is explained

by the integration of different detection approaches, including those newly implemented

by plaSquid.

Expanded diversity of plasmids from natural and built environments. To assess the

capacity to detect new plasmid genotypes, we compared the actual diversity of plasmids

found in the PLSDB database with those plaSquid was able to recover from different

natural and built environments (Supplementary Table S3). To do this we measured the

abundance of RIP-domain containing genes in three different metagenomic projects

aiming to characterize microbes from oceans (Tara Oceans), the urban

built-environment (The MetaSUB International Consortium) and the International Space

Station (ISS) (Fig. 6A). From the MetaSUB dataset we were able to recover 392 Mbp of

plasmid sequences, representing 42.9% of total RIP sequences found. In particular,
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MetaSUB was rich in RIPs containing Rep_trans, Replicase, RP-C, RP-C_C, RepL and

Rep_3 domains. The Tara Oceans dataset contributed 5.3% of RIP sequences which

were retrieved from 199 Mbp of plasmid sequences, with RPA and RepA_C as most

prevalent domains. The ISS dataset contributed with only 1.3% of RIP sequences

analyzed from 37.6 Mbp of plasmid sequences. To further confirm the observed trend,

we measured the phylogenetic diversity of genes classified as each one of the different

RIP domains. This analysis evidenced that plaSquid contributed to enlarging the known

phylogenetic diversity in all of the 16 different RIP domains evaluated. In average, this

represented an overall 2.7-fold increase in phylogenetic diversity of RIP genes (Fig.

6B). The highest expansion in phylogenetic diversity was observed for RIPs containing

Rep_3, RepA_C, RP-C or RPA domains, while the lowest was observed for

IncFII_repA, PriCT_1, Rep_trans, Rop, RepC and TrfA.

Antimicrobial resistance is one of the most typical and widespread functions

harbored by plasmids, so we aimed to characterize the repertoire of plasmid-derived

AMR genes. Figure 6C shows ARGs found in plasmid sequences recovered from the

three datasets analyzed. The Tara Oceans dataset showed very low content of ARGs in

plasmid sequences, followed by the ISS and MetaSUB datasets which had similar

contents. Normalization of ARG count with respect to the total number of genes in the

metagenomes had an effect in favor of ISS, which had less data but still a considerable

amount of ARGs in plasmid sequences. We also detected that within plasmid sequences,

resistance to MLS (Macrolide, lincosamide and streptogramin), tetracycline and

beta-lactams were the most enriched AMR classes (Supplementary Figure S2). Given its

clinical importance, we analyzed the beta-lactam subclasses, highlighting the presence

of plasmid-encoded ARGs for last-line antibiotics such as cephalosporins and

carbapenem as common traits mainly in the ISS and MetaSUB datasets.

Discussion

Here, we developed and benchmarked plaSquid, a new software tool that

improves plasmid analysis by expanding detection and classification capabilities for

different replicon types and hosts. Our tool leverages expert bioinformatic workflow

management using Nextflow to exploit a diversified set of methods, using previously

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.04.502827doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502827
http://creativecommons.org/licenses/by-nc/4.0/


implemented7,18,24,25 and newly designed algorithms that enhance plasmid detection and

classification from genomic or metagenomic assemblies. This approach takes advantage

of the modular nature of plasmids, since different strategies can complement each other

as they target distinct regions of the plasmid genome. Indeed, our benchmark analysis

against four different state-of-the-art plasmid detection software confirmed that the

complementary strategy implemented by plaSquid achieved the highest precision and

sensitivity across a diverse set of bacterial species and plasmids.

We also introduce new methods for plasmid classification in replicon types. This

approach showed better performance than PlasmidFinder, which has been the standard

for classifying replicon types. We attribute this to: i) expanding the replicon repertoire,

as we introduce new models for classification of certain replicon types found in

plasmids from Pseudomonas which were not included in the PlasmidFinder database,

and ii) the incorporation of specific inclusion thresholds for each classification model,

enabling plaSquid to consider each replicon’s sequence diversity instead of using a fixed

identity value as in PlasmidFinder. In addition, we report that changing PlasmidFinder’s

similarity thresholds to values below those originally recommended by the authors helps

to obtain better results with this tool. We also introduce improvements to classify

plasmids in MOB groups. In this case, we integrate already generated models but added

model-specific inclusion thresholds, yielding a comprehensive and precise classification

of plasmid mobility which outperformed the method implemented by MOB-typer. It is

worth noting that beyond we report improvements compared to standard methods, none

of these classification schemes cover all known plasmid diversity. In fact, new clustering

schemes based on whole-plasmid identity have recently been developed aiming to

overcome this limitation11,12,26 and constitute complementary approaches to plaSquid.

By analyzing plasmidome data from a global sample of urban wastewater, we

reinforce the notion that using multiple strategies for plasmid detection provides an

overall improvement of results. Anyway, detection of RIP domains and domain

architectures is the most comprehensive strategy to identify plasmids, being plaSquid

the first tool that automatically incorporates this approach. Given that RIPs determine

plasmid’s host range, and that previous plasmid clusters generated by

whole-genome-based comparisons are mostly host-restricted27, we believe that the

associations we uncovered between certain RIP domains and replicon types
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(Supplementary Table S2) could be the basis for updating and expanding the current

replicon typing scheme. Hence, the important amount of information already generated

for associations between replicon types and ARGs, could be better exploited to track

dissemination and understand evolutionary pathways of AMR in important

pathogens28,29 .

We revealed a substantial proportion of unknown plasmids, as sequences

recovered from distinct natural and built environments such as oceans, cities and the ISS

greatly expanded RIPs phylogenetic diversity with respect to current plasmid databases.

This is important as the rise of AMR is directly linked to human activity, and the

dissemination of unknown plasmids in environments impacted by humans represent a

potential reservoir for new ARGs that could emerge in the future30. In addition, we

revealed that epidemic ARGs which today constitute important global health problems

are being carried by plasmids that disseminate in our built environments. For example,

resistance to betalactams had been previously reported in the ISS but was not linked to

plasmid sequences31. Accordingly, this information may be useful to improve

management of microbiological safety at the ISS and other built environments. Further

exploration of this type of datasets combining plasmids and ARGs characterization

could give precise information of community-wide dispersal of AMR.

Together, we consider that its scalable and reproducible implementation, the low

bias in plasmid recovery from different hosts and environments given its integrative

detection strategy, and the enhancements in replicon and mobility groups classification

makes plaSquid suitable for large-scale and improved analysis of plasmid biology both

using fragmented or complete genomic and metagenomics assemblies.

Methods

Replicon detection. Replicon detection is based on the identification of specific RIP

protein domains from the Pfam database32. To build this set of RIP protein domains we

reviewed recent publications that consistently used this approach to detect plasmid

sequences in plasmidome studies19,24,33. We also added protein domains present in RIPs

of specific replicon types obtained from the PlasmidFinder database7. Given that

replication proteins similar to plasmid RIPs are also present in bacterial chromosomes, a

specific inclusion threshold was set to each RIP Pfam model based on HMM bit scores
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obtained by comparing each model against a representative set of bacterial

chromosomes from the PATRIC database34 and plasmid genomes from the whole

PLSDB database23. Additionally, we used information provided by conserved domain

architectures (not only the presence/absence of domains but also their linear order along

the protein sequence) present in RIP proteins as a new feature to differentiate plasmid

RIPs from similar replication proteins. A detailed list of domains selected for replicon

detection is presented in Supplementary Table S4.

Replicon (REP) typing. A customized and manually-curated REP reference dataset

was created for replicon typing. This dataset aims to cover the diversity of different

plasmid replicons that have been already classified in either a certain incompatibility

group by functional analysis, or in replicon types by molecular or bioinformatic

approaches. For doing this we integrated information from three different sources: i) we

retrieved plasmids that had already been classified by Shintani et al. (2015)35, ii) we ran

PlasmidFinder7 and MOB-typer18 against the PLSDB database23 with author’s

recommended parameters, and iii) we made a thorough literature revision to identify

reference sequences of different incompatibility groups that have been validated

experimentally making specific emphasis in those groups currently not covered by the

PlasmidFinder and MOB-typer databases. The resulting sets of sequences belonging to

each replicon type were aligned using MUSCLE36, then alignments were manually

curated and HMMs were built using HMMER v3.037. Finally, we compared each

sequence of each model against the same model and against the other models, aiming to

define model-specific thresholds that avoid cross-detection between models. Plasmids

with replicon sequences used for replicon typing are extensively detailed in

Supplementary Table S5. Replicon types that are defined by RNA sequences are based

on those reported by the PlasmidFinder and MOB-typer database7. Reference RNA

sequences reported in this database were used to perform BLAST13 against the PLSDB

database using author’s recommended identity and alignment coverage thresholds23. The

resulting set of sequences recovered for each reference RNA defining a replicon type,

was aligned using MUSCLE36. After that, Infernal v1.138 was used to build CMs and

model-specific inclusion thresholds were set by searching against the entire plasmid

dataset using the same approach described for RIP models.
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Mobility (MOB) groups typing. To determine MOB groups we defined a customized

and manually-curated MOB reference dataset. This consists of classifications reviewed

and reported by Shintani et al. (2015)35, the MOB-suite reference plasmids dataset18 and

results from searching with MOBscan tool against the PLSDB database. Together, these

datasets contained plasmids belonging to MOB groups MOBC, MOBF, MOBH, MOBP,

MOBQ and MOBN. We detected that MOBT and MOBM groups, included in the

MOBscan web tool25 and frequently found in integrative conjugative elements (ICEs),

were also present in several plasmids of Enterococcus and Clostridioides from the

PLSDB database. Accordingly, these MOB groups were also included in the final MOB

reference dataset, composed of 1,145 plasmids and their associated MOB designation

(Supplementary Table S6). For MOB classification, plaSquid uses HMMs reported by

the MOBscan web tool, but adds model-specific classification thresholds which were set

as previously explained for replicon models.

Detection of plasmids through database comparison (Minidist). We developed an

algorithm based on sequence database comparisons to assess whether plasmid

sequences can be detected and differentiated from chromosome-derived sequences. For

doing this we: i) retrieved all plasmid sequences reported in the PLSDB database

v2020_06_2923 (hereinafter referred as the plasmid database); and ii) retrieved 1,987

chromosomes from the PATRIC database that are a representative set of known bacterial

taxonomic diversity34 (hereinafter referred as the chromosome database). To avoid

spurious contamination of the chromosome database with plasmid sequences due to

annotation errors, the chromosome database was manually inspected to discard

sequences by looking for plasmid-specific keywords designation (i.e. “plasmid”,

“replicon”, etc) (Supplementary Table S7).

From either the plasmid or chromosome databases, we took all sequences and

generated 250-bp overlapping subsequences of 1.5-kb length. Then, each plasmid or

chromosome 1.5-kb subsequence was mapped against the whole plasmid database using

Minimap2 (-x asm5). The percentage of sequence identity and alignment coverage were

used to calculate the S value that integrates the product of these two measures over the

number of subsequences, according to the following equation:
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)𝑆 = ( 
𝑖=1

𝑖=𝑛

∑ 𝐼𝑑% × 𝑄. 𝐶𝑜𝑣. %
𝑛

To define a value of S that maximizes the discrimination between plasmid or

chromosome sequences, we took 10 random samples of 10,000 sequences each from the

plasmid or chromosome database and compared S values obtained against the PLSDB

database. Based on this we defined a threshold of S = 45 that optimizes classification of

sequences in plasmid or chromosome origin (Supplementary Fig. S1).

Benchmark of plasmid detection using bacterial genomes. A phylogenetically

diverse dataset of plasmid-containing bacterial genomes was used to benchmark plasmid

prediction in genomic assemblies (Supplementary Table S1). To avoid biases introduced

by different sequencing technologies or assembly methods, complete reference genome

assemblies were retrieved from the PATRIC database and were used to simulate reads

with ART39, using default parameters. Then, simulated reads were assembled using

SPAdes40 with default parameters and quality-checked with QUAST41. All resulting

contigs were used as input for plasmid prediction with PlasFlow14, MOB-recon18,

PlasmidFinder7 and RFPlasmid17. Plasmid prediction tools based on graph-based

approaches (plasmidSPAdes15 and gplas16) were not tested because they rely on

differences in sequencing depth between chromosomes and plasmids which is lost in the

simulated dataset. Predictions obtained with each tool were used to calculate the

proportion of reference plasmids recovered (true positives) and the proportion of

reference chromosomes covered in plasmid predictions (false positives). This was used

to compute precision scores for each genome and software:

. The same approach was used to𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

calculate recall values as follows: . For this the total 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

positive fraction was considered as all reference plasmids in the reference genome.

Benchmark of replicon and MOB typing. Current tools that perform replicon typing

are PlasmidFinder7 and MOB-recon18, the latter implementing a similar approach to the

former. Accordingly, we compared the HMM-based approach developed for plaSquid

against PlasmidFinder7 using 95%, 85% and 75% as identity and alignment coverage
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thresholds for this tool. To do this, 469 plasmids from different replicon types were

equitatively sampled from the REP reference dataset in order to avoid biases in replicon

type representation. The dataset contained 63 replicon categories to classify, for example

IncN, while PlasmidFinder’s database contains 460 replicon-specific DNA probes, like

IncN_1, IncN_2, etc. Therefore, we matched reference replicon type classifications to

PlasmidFinder’s probes to compare between both methodologies (more details can be

found in Supplementary Table S2). Precision and recall values were calculated as

explained in the previous section. For this we considered plasmids classified in a

replicon type different from the one reported in the REP reference dataset as false

positives and plasmids classified in the same replicon type as in the REP reference

dataset as true positives.

To assess precision and recall for mobility groups (MOB) typing, 15 plasmids of

each MOB group were randomly sampled 10 times from the MOB reference dataset.

These values were calculated for plaSquid and MOB-typer. For MOB-typer, different

identity and alignment coverage thresholds were tested, including those recommended

by the authors through personal communication (70%, 80% and 90%). False positives

were determined as plasmids classified by more than one model or classified by a model

not corresponding to the reference MOB group.

Re-analysis of public metagenomic datasets. A set of 4 different metagenomic

datasets generated from diverse environments and with different sequencing

technologies were re-analyzed with plaSquid.

First, we retrieved plasmidome assemblies from Kristahler et al. (2021)19. This

dataset was generated using Oxford Nanopore long-read sequencing after DNA

extraction and plasmid enrichment from sewage samples of 22 different countries across

the world. Resulting sequences have been processed and assembled by the authors

aiming to generate circular contigs. Then, resulting circular contigs were screened for

the presence of plasmid-related genes to confirm true plasmid sequences using an

in-house pipeline reported in the original paper. All circular contigs reported by the

authors were used as input to plaSquid to determine their plasmidic origin. We also

investigated the contribution of each strategy implemented in plaSquid for plasmid

detection.
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Second, we analyzed 3 different sets of shotgun metagenomic assemblies

generated from short reads sequencing technologies. These samples were collected from

diverse environments: i) the Tara Oceans Expedition dataset consisting of secondary

assemblies from 264 samples sites representing 10 oceanographic provinces across the

world42; ii) a subset of the public transport surface metagenomic dataset from the

MetaSUB International Consortium43, representing samples from 51 cities around the

world; and iii) 50 metagenomes generated from surface and air filter samples collected

in the International Space Station (ISS)31. All contigs reported in these datasets were

filtered to a minimum of 1500 base pairs and used as input to plaSquid in order to detect

and classify plasmid contigs. Plasmids contained in the PLSDB database were also

analyzed with plaSquid in order to compare against these datasets. Additionally, we

used the --ripextract sub workflow which enables the automatic extraction of RIP

domain-containing ORFs for further analysis of these proteins. Resulting RIP sequences

from the analysis of PLSDB and the three metagenomic datasets were clustered at 90%

of identity with CD-HIT44 for each domain. Representative sequences of each

RIP-domain cluster were aligned using the msa package45, phylogenetic trees were

computed with the neighbor-joining algorithm of ape package46 and visualized using the

ggtree package47. The sum of branch lengths (Faith’s phylogenetic diversity) was

computed for each tree of RIP sequences found for each domain.

Antibiotic resistance genes were detected using ABRicate software

(https://github.com/tseemann/abricate) with the CARD database48 using 80% identity

and coverage as inclusion thresholds. The tidyverse package49 was used to develop a

custom script to extract ARGs of plasmid origin. The fraction of ARGs genes in

plasmids was calculated by dividing by the total number of genes annotated in plasmid

contigs.
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Figures and legends

Figure 1. Scheme describing plaSquid pipeline. The two main workflows repsearch

and minidist are shown with different colors, yellow notes describe additional options

that can be passed to plaSquid Nextflow pipeline.
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Figure 2. Benchmarking of plasmid detection in a diverse set of bacterial genomes.

A) Phylogenetic tree based on universally conserved prokaryotic genes of the different

genomes used for plasmid detection benchmarking (n = 38). Gram-negatives and

Gram-positives are indicated with colored circles at tree tips, the size of the circles

indicates the number of plasmids in each genome. Species names at tree tip labels are

colored according to the taxonomic class of each genome analyzed. B) Boxplots

showing precision values obtained for plasmid prediction with MOB-recon, PlasFlow,

PlasmidFinder, plaSquid and RFPlasmid. Each point corresponds to a genome shown in

the tree colored according to its taxonomic class. C) Boxplots indicating recall values

obtained for plasmid predictions using the same tools and color scheme as indicated

previously.
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Figure 3. Benchmarking of replicon (REP) typing. A) Boxplots showing recall values

for replicon classification benchmarking using a random sample of REP reference

dataset (n = 2,065) (detailed in Supplementary Table S5). Plasmid replicons were

divided according to their host taxonomy (BHR, Gram-negatives or Gram-positives) and

the type of sequence determining the replicon identity (protein or ctRNA) (detailed in

Supplementary Table S2). PlasmidFinder software was run with different identity and

coverage thresholds (75%, 85% and 95%). B) Boxplots showing precision values for

replicon classification using the same conditions as described above.
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Figure 4. Benchmarking of mobility (MOB) groups typing. A) Boxplots showing

precision values obtained with MOB-typer and plaSquid for 10 random samples of the

MOB reference dataset (details in Supplementary Table S6). MOB-typer was run using

70%, 80% and 90% as sequence identity and alignment coverage thresholds. B) Boxplot

showing recall values obtained with MOB-typer and plaSquid using the same conditions

as above.
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Figure 5. Analysis of global sewage plasmidome data using plaSquid. A) Barplot of

total plasmid count recovered by plaSquid in comparison with the number originally

reported by Kristahler et al. (2021)19. B) Plot showing the number of plasmids recovered

by plaSquid in comparison to the originally reported and broken down by country. C)

Barplot specifying the percentage of plasmids recovered using each different strategy

implemented by plaSquid. ‘RIP’ and ‘RIP-arch’ indicate detection of single and

multiple RIP domains, respectively, ‘Multiple’ indicates that a single plasmid contig

was detected by more than one different detection approaches, ‘Minidist’ indicates

PLSDB-dependent plasmid detection, and ‘MOB’ indicates detection of mobility

groups. D) Barplot showing percentage of plasmids recovered by each strategy

implemented in plaSquid broken down by country.
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Figure 6. Analysis of plasmids and antimicrobial resistance applying plaSquid to

diverse environmental metagenomes. A) Barplot showing the percentage of RIP

sequences harboring different RIP domains in each metagenomic dataset and the

PLSDB database. B) Line plot showing the plasmid diversity as measured by

calculating phylogenetic diversity of each RIP type. Phylogenetic diversity was

calculated for RIP sequences detected by plaSquid in the PLSDB database (pale green),

and adding RIP sequences retrieved from the three metagenomic datasets analyzed (pale

red). C) Sankey diagram showing antibiotic resistance found in plasmids for the three

analyzed datasets. The 13 most prevailing antibiotic resistance classes are specified and

beta-lactams subclasses are further shown.
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Data Availability

Source code is available at plaSquid Github repository

https://github.com/mgimenez720/plaSquid under the GPLv3 license. Reference

chromosome dataset is available at https://figshare.com/s/507c91ae930e9740cbde. The

REP reference dataset is available at https://figshare.com/s/07747fafed60e59f1992. The

MOB reference dataset is available at https://figshare.com/s/12f51c5433b9049a8b43.

Other supplementary files and tables are available upon request.
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