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Abstract 12 
 13 
The human gut microbiome is a diverse ecosystem that encompasses multiple domains of life 14 
and plays a vital role in human health. Due to technical limitations, most microbiome studies have 15 
focused on gut prokaryotes, overlooking bacteriophages and other gut viruses. The most common 16 
method to profile viruses is to assemble shotgun metagenomic reads - often from virus-enriched 17 
samples - and identify viral genomes de novo. While valuable, this resource-intensive and 18 
reference-independent method has limited sensitivity. To overcome these drawbacks, we 19 
developed Phanta, which profiles human gut metagenomes in a virus-inclusive manner directly 20 
from short reads utilizing recently published catalogs of gut viral genomes. Phanta incorporates 21 
k-mer based classification tools and was developed with virus-specific properties in mind. 22 
Specifically, it includes optimizations considering viruses’ small genome size, sequence 23 
homology with prokaryotes, and interactions with other members of the gut microbial community. 24 
Based on simulations, the workflow is fast and accurate with respect to both prokaryotes and 25 
viruses, minimizing false positive species identification using a novel genome coverage-based 26 
strategy. When applied to metagenomes from healthy adults, Phanta identified ~200 viral species 27 
per sample, ~5x more than the standard assembly-based methods. Notably, we observed a 2:1 28 
ratio between gut viruses and bacteria, with higher interindividual variability of the gut virome 29 
compared to the gut bacteriome. Phanta performs equally well on bulk vs. virus-enriched 30 
metagenomes, making it possible to study prokaryotes and viruses in a single experiment, with a 31 
single analysis. Phanta can tandemly profile gut viruses and prokaryotes in existing and novel 32 
datasets, and can therefore identify cross-domain interactions with likely relevance to human 33 
health. We expect that Phanta will reduce the barrier to virus-inclusive studies of the human gut 34 
microbiome, thus making it standard practice. 35 
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Introduction 43 
 44 
The human gut microbiome is an ecosystem of diverse microorganisms including archaea, 45 
bacteria, viruses, and fungi. It plays a vital role in human health by interacting with our immune, 46 
digestive, and nervous systems1–4. Since the 1970s, tools such as 16S rRNA sequencing have 47 
enabled us to identify prokaryotic taxa present in the gut5, and therefore to determine crucial 48 
relationships between these taxa and human health, age, lifestyle, environment, geography, and 49 
demographics6–9. However, these fundamental techniques overlook the viral fraction of the 50 
microbiome, preventing us from evaluating the impact of the human gut virome on human health. 51 
 52 
Shotgun metagenomics is a popular and affordable method to sequence metagenomic 53 
samples10–13. This method captures genomic DNA from all gut organisms, not only prokaryotes, 54 
making it an optimal tool to study DNA viruses of the virome14–16. In the past decade, thousands 55 
of human microbiome samples have been analyzed using this “domain-inclusive” method17–20. 56 
Human gut prokaryotes can be well-quantified from shotgun metagenomes through direct read 57 
classification by comparing sequencing reads to reference genomes18,19,21–24. However, in the 58 
absence of comprehensive catalogs of viral genomes, the most common method for profiling the 59 
virome from shotgun metagenomes has been to assemble sequencing reads into contigs and 60 
identify viral genomes de novo25,26. Assembly-based approaches overcome the fundamental 61 
limitation that, until recently, a majority of phages had no reference genome27. However, despite 62 
their strengths at de novo phage discovery, assembly-based approaches have limited ability to 63 
detect low-abundance phages, due to the relative difficulty of assembling the genomes of low 64 
abundance taxa28–30.  65 
 66 
With increases in shotgun metagenomes from human gut samples, more comprehensive 67 
databases of gut viral genomes have recently been created27,31–37. By using these new 68 
compendiums, it is now possible to profile gut viruses and their prokaryotic hosts simultaneously 69 
through read-based, reference-dependent methods. This approach can address the sensitivity 70 
limitation of assembly-based methods to profile the virome, resulting in much more complete 71 
profiles of the gut microbiome with both prokaryotes and viruses accurately represented. 72 
 73 
In this paper, we present Phanta, a fast and accurate virus-inclusive profiler of human gut 74 
metagenomes based on classification of short reads to our newly constructed, comprehensive 75 
database of human gut microbes. The provided database contains the latest genome catalogs 76 
from multiple domains of life, including more than 190,000 phage genomes and the entire HumGut 77 
collection of prokaryotic genomes19,27. Phanta incorporates the state-of-the-art tools Kraken222 78 
and Bracken38, and complements them with additional filtering steps and optimizations specifically 79 
tailored to the challenges of gut viral quantification. Phanta accurately quantifies both bacteria 80 
and phage abundances in simulated mixed communities. In metagenomes from healthy human 81 
adults, Phanta identifies >100-fold more viral reads and minimizes unclassified reads when 82 
compared to the default Kraken2/Bracken databases and workflow. In addition, due to its high 83 
sensitivity, Phanta identifies 5-fold more viral species than a common workflow of contig assembly 84 
and viral sequence identification. Finally, Phanta quantifies just as many viruses when applied to 85 
bulk shotgun metagenomes vs. matched metagenomes enriched for virus-like particles. This 86 
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demonstrates that it is possible to profile multiple domains of life from a single metagenomic 87 
sequencing experiment, as opposed to needing an additional sequencing experiment after 88 
enrichment for virus-like particles. Taken together, we anticipate that Phanta, which is freely 89 
available at https://github.com/bhattlab/phanta, will facilitate improved profiling of cross-domain 90 
interactions in gut microbiomes. 91 
 92 
Results 93 
 94 
Phanta: A workflow for phage-inclusive profiling of human gut metagenomes 95 
Phanta was developed to generate accurate and complete profiles of human gut metagenomes, 96 
with the goal of deepening our understanding of cross-domain interactions in the gut. To achieve 97 
this objective, we first constructed a comprehensive database of gut microbial genomes found in 98 
humans. To minimize false mapping, it was important to curate comprehensive collections of 99 
genomes from all groups of taxa residing in the human gut - not only phages and other viruses, 100 
but also prokaryotes, eukaryotes, and possible contaminants. For this purpose, we used the 101 
HumGut collection as a reference for both human gut bacteria and archaea19. HumGut includes 102 
dereplicated genomes from both UHGG and RefSeq. For viruses, we used the Metagenomic Gut 103 
Virus catalog (MGV; dominated by human gut phages)21,27 and RefSeq. For gut eukaryotes, we 104 
also used RefSeq, and for contaminants, we used the human genome (hg38) and the Core 105 
UniVec database from NCBI22. To create an informative viral taxonomy, MGV genomes were first 106 
clustered to species-level operational taxonomic units (vOTUs). MGV vOTUs with high similarity 107 
to a RefSeq viral species were labeled with the NCBI-assigned taxonomy of that species. For the 108 
remaining MGV vOTUs, higher levels of taxonomy were assigned iteratively (see Methods). 109 
 110 
The first step of Phanta is read classification to a database of reference genomes, such as that 111 
described above (Fig. 1A). As viruses have relatively low abundance in a typical metagenomic 112 
sample, we chose to use whole genome classification, which is typically more sensitive in the low-113 
coverage regime than methods relying on clade-specific marker genes22,39. Specifically, Phanta 114 
classifies reads to the lowest possible taxonomic rank by Kraken222,24, a k-mer-based method that 115 
has been shown to be both fast and accurate given the correct database and optimized 116 
parameters39. Second, Phanta reduces false positive species by filtering out species based on a 117 
calculated proxy for genome coverage (see Methods), a known issue in taxonomic classification40. 118 
Third, Phanta quantifies species-level relative abundances by executing Bracken, a tool 119 
complementary to Kraken2 that redistributes all classified reads to the species level using a 120 
Bayesian inference approach38. By default, Bracken calculates the “relative read abundance” - 121 
the proportion of reads assigned to a species out of all reads. However, since viral genomes can 122 
be orders of magnitude smaller than prokaryotic genomes, read abundance approaches inflate 123 
the relative signal from prokaryotes within a community. Therefore, we additionally calculate 124 
“relative taxonomic abundance”, which instead estimates the relative proportion of different 125 
organisms (not proportion of DNA sequence) within a given sample 41. Briefly, we adjust the 126 
relative read abundance of each species using the median length of the species’ genomes. This 127 
provides a comparable abundance estimation to amplicon sequencing or marker gene-based 128 
approaches (Fig. 1B). Lastly, Phanta allows users to determine cross-domain relationships by 129 
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summing viral abundances by predicted host, providing information about the predicted virulence 130 
of the viral community, and correlating the abundances of phages and bacteria. 131 
 132 
Phanta accurately classifies short reads from simulated mixed microbial communities 133 
To evaluate the performance of Phanta, we simulated 10 mixed communities, each containing a 134 
total of ~6.5M 150 base pair (bp) paired-end reads from a combination of 300 prokaryotic 135 
genomes and 50 viral genomes (see Methods). The relative read abundance of prokaryotes and 136 
viruses in the resulting simulated samples was 0.95 and 0.05, respectively (Figure 2A). Phanta 137 
accurately assigned reads to the right domain with average read abundance of 0.951±0.004 mean 138 
read abundance for prokaryotes, and 0.048±0.004 mean read abundance for viruses (Figure 2B; 139 
Supplementary Data File 1). 140 
 141 
We next used the simulated communities to test the accuracy of classification of reads by 142 
Kraken2. Reads were classified with high precision to all taxonomic ranks, with 63% of reads 143 
classified to the species level or lower (median across simulated communities; see Figure 2C). 144 
Next, we tested the accuracy of Phanta in estimating the abundance of each simulated species. 145 
Phanta’s species-level estimates for relative read abundance were highly correlated with the true 146 
simulated values - Pearson’s R=0.997 for all species (including bacteria and archaea), R=0.998 147 
for bacterial species (Figure 2D), and R=0.925 for viral species (Figure 2E). 148 
 149 
Phanta’s filtering step significantly reduces false positive species identification 150 
While developing Phanta, we observed that even a small fraction of mis-classified reads can lead 151 
to a non-negligible number of falsely identified species. Therefore, to increase the signal-to-noise 152 
of the identified species, we made the following modifications to the default Kraken2-Bracken 153 
workflow. First, we introduced a filtering step between Kraken2 and Bracken that estimates the 154 
breadth of genome coverage for species detected by Kraken2 and filters out likely false positive 155 
species based on a user-adjustable coverage threshold. In addition, for a read to be classified by 156 
Kraken2, we required that a certain fraction of a read’s k-mers be mapped to a given taxon, in 157 
order for the read to receive that classification. To achieve this, we adjusted Kraken2’s confidence 158 
threshold. By default, Phanta uses a confidence threshold of 0.1 (vs. 0 for default Kraken2; also 159 
recommended by 39), and this can be further adjusted by the user. These steps reduced false 160 
positive species by 50-fold with minimal reduction of true positive species relative to a consecutive 161 
run of Kraken2 and Bracken using default parameters (Figures 2F-G). Overall, we demonstrated 162 
that Phanta performs with high accuracy in both classifying reads and estimating abundance while 163 
substantially reducing false species identification. 164 
 165 
Masking prophages in prokaryotic genomes further increases sensitivity to viral reads 166 
Due to genetic flow between viruses and their hosts, phage genomes share a relatively high 167 
proportion of their genome with their bacterial hosts (Supplementary Fig. 1A). This can limit 168 
detection of viral sequences in metagenomes, because portions of the viral sequences will also 169 
be present in bacterial genomes. Therefore, we decided to construct an alternative version of 170 
Phanta’s default database, in which prophage sequences, which are phage sequences that are 171 
integrated into the bacterial chromosome, are “masked”. This is accomplished by replacing the 172 
prophage sequences with Ns in all bacterial genomes where they appear. Prophage sequences 173 
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were predicted using VIBRANT42. We anticipated that masking would further increase Phanta’s 174 
sensitivity to viral reads in simulated communities. Indeed, using the masked database reduced 175 
the number of “ambiguous” read classifications - i.e., the number of reads that Kraken2 classified 176 
to the “root” of the taxonomy tree. The vast majority of reads that were classified to the root using 177 
the default database, but received a new classification after masking, were reclassified to the viral 178 
domain (Supplementary Fig. 1B). This result demonstrates that: (1) shared sequences between 179 
bacteria and viruses can indeed result in ambiguous read classification, and (2) this ambiguity 180 
can be partially resolved by masking prophages in bacterial genomes. Importantly, masking does 181 
not lead to over-detection of viruses; Phanta’s final read abundance estimate for viruses remained 182 
highly accurate (Supplementary Fig. 1C).  183 
 184 
Phanta improves the overall proportion of reads classified in shotgun metagenomes from 185 
healthy adults 186 
Given the good performance of Phanta on simulated samples, we wished to assess whether 187 
Phanta could improve viral identification in samples from healthy adults. We applied Phanta with 188 
the default (no prophage masking) database on human gut metagenomes sampled from 245 189 
healthy adults (age range 21-79, from Yachida et al.)43. In total, across 245 samples, the workflow 190 
took ~60 minutes to run using 1 core, 16 threads, and 32GB memory. Given that Phanta 191 
incorporates Kraken2 and Bracken, we were easily able to compare the workflow’s performance 192 
using Phanta’s default database, compared to existing Kraken2/Bracken-compatible databases. 193 
In particular, we compared against four existing databases (Table 1): the standard Kraken2 194 
database22,44 (May 2021), the Unified Human Gastrointestinal Genome (UHGG) collection18 (July 195 
2021), RefSeq Complete39 (April 2022), and HumGut19 (July 2021). Phanta’s default database 196 
was able to minimize the number of unclassified reads to 2% (Fig. 3A), and notably, it requires 197 
~97% less disk space than the most comprehensive database tested, RefSeq Complete (32GB 198 
for Phanta, 1.2 TB for RefSeq Complete39). 199 
 200 
Phanta substantially increases viral identification in shotgun metagenomes 201 
In addition to maximizing classified reads, Phanta’s default database led to the highest level of 202 
viral identification, detecting 25-fold and 188-fold more viral sequences compared to RefSeq 203 
Complete and the standard Kraken2 database, respectively (Fig. 3B; Supplementary Data File 204 
2). Using Phanta, we now estimate that viral DNA constitutes 3-5% of the DNA in the human gut. 205 
Taken together, Phanta improves read classification both by enabling the classification of 206 
previously unclassified reads and by improving the recognition of viral sequences.  207 
 208 
Phanta outperforms standard assembly-based methods in identifying viruses in shotgun 209 
metagenomes 210 
A current gold-standard workflow commonly used to identify viruses in shotgun metagenomes 211 
involves assembling reads into contigs and labeling the likely viral contigs42,45–49. To compare 212 
Phanta to this gold standard, we randomly selected 50 metagenomes from the healthy adult 213 
cohort and ran a standard assembly workflow. In short, reads were assembled to contigs using 214 
metaSPAdes50, short/low-quality contigs were filtered using CheckV51, and viral contigs were 215 
identified using both VIBRANT42 and VirSorter45. For each sample, the total set of viral contigs 216 
from both methods was de-replicated to 95% ANI to calculate a number of viral species. Phanta 217 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502982doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502982
http://creativecommons.org/licenses/by-nc-nd/4.0/


was able to identify a higher number of viral species than the assembly workflow in all samples, 218 
with a median of 190 (IQR: 149-252) viral species per sample relative to 35 (IQR: 25-42) (Fig. 3C) 219 
identified with assembly-based approaches. Of note, the vast majority of viral contigs predicted 220 
by assembly were highly similar to genomes in the viral portion of Phanta’s database 221 
(Supplementary Fig. 2).  222 
 223 
There are twice as many viral as bacterial genomes in the human gut 224 
By default, Bracken calculates relative read abundance for each identified taxon - i.e., the fraction 225 
of reads classified to it. This measurement serves as an estimation of the fraction of genomic 226 
DNA belonging to each taxon, out of the total DNA in a sample. While this measurement is highly 227 
valuable, an ecological perspective of a community requires understanding the proportions of 228 
“individuals” in the community - i.e., relative taxonomic abundance41. Relative read abundance is 229 
typically similar to taxonomic abundance in communities with similar genome lengths. However, 230 
in mixed communities containing taxa with orders of magnitude differences in genome length, like 231 
bacteria and viruses, relative read abundance is biased towards taxa with longer genomes (as 232 
illustrated in Fig. 1B). Hence, Phanta calculates an estimation of relative taxonomic abundance 233 
by correcting the relative read abundance by genome length. Using our relative taxonomic 234 
abundance calculation, we estimate the ratio between copies of viral genomes to bacterial 235 
genomes in the human gut to be ~2:1 (Figs. 4A-B; Supplementary Data File 2). Phanta also 236 
reports several other normalizations - reads per million base pairs, reads per million reads, reads 237 
per million base pairs per million reads (analogous to RPKM in transcriptomics) and genome 238 
copies per million reads.  239 
 240 
High individuality of the human gut virome 241 
We further used the viral and bacterial profiles reported by Phanta to describe core differences 242 
between the virome and bacteriome of healthy adults. We observed a higher between-sample 243 
dissimilarity of the virome relative to the bacteriome in healthy adults (Fig. 4C). The high 244 
dissimilarity of the virome between individuals points to a highly personalized virome, as has been 245 
suggested previously31,52–54. Consistent with this result, individual viral species are skewed 246 
towards lower prevalence than bacterial species (Fig. 4D). However, a number of lowly prevalent 247 
viruses show high mean abundance across individuals, indicating that they are highly abundant 248 
when present. As previously suggested, the prototypical crAssphage55,56 (RefSeq ID 1211417) 249 
was one of the most abundant viral species, although it was not among the most prevalent (Fig. 250 
4D and Supplementary Table 1). Two of the most prevalent and abundant species were OTU-251 
66229 and OTU-72541. These phages are highly similar to the recently described Bacteroides 252 
phages LoVEphage37 and Hankyphage (p00)57, respectively (Supplementary Fig. 3). The most 253 
abundant and prevalent phage detected was Caudovirales OTU-21255, a temperate phage likely 254 
of family Siphoviridae whose presumed host is Bacteroides uniformis. This species was found in 255 
232/245 (95%) of individuals in this cohort of healthy adults, and comprises 1512 genomes in 256 
Phanta’s default database. 257 
 258 
Prevalent phages infect Bacteroides 259 
We next examined relationships between viral species prevalence and predicted host. 260 
Bacteroides is the most commonly predicted host genus for viral species detected in the healthy 261 
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adult cohort. Specifically, it was the predicted host for 6.5% of detected viral species, compared 262 
with 3% of species in Phanta’s database, more than twice than expected. The dominance of 263 
Bacteroides as a predicted host further increases among the more prevalent viral species (Fig. 264 
4E).  265 
 266 
Temperate phages dominate the human gut phageome 267 
Phanta’s default database includes estimates of virulence per species (see Methods), which we 268 
used to determine the ratio between different phage lifestyles (virulent vs. temperate) in the 269 
human gut. We observed that in the vast majority of samples temperate phages are dominant 270 
with a median of 0.54 for the ratio of virulent/temperate species identified, and 0.55 for the 271 
corresponding abundance ratio. Notably, more prevalent phages are skewed towards the 272 
temperate lifestyle (Supplementary Fig. 4), potentially reflecting the ability of some temperate 273 
phages to remain dormant in their hosts. Interestingly, the abundance of virulent phages in the 274 
community, relative to temperate phages, is positively correlated with overall phage abundance 275 
in the microbiome (Fig. 4F). This is consistent with the nature of virulent phages, whose active 276 
replication increases their ratio relative to their bacterial host.  277 
 278 
Phanta performs well on virus-enriched metagenomes 279 
Viral enrichment, either through filtration or other approaches to achieve viral particle isolation, is 280 
commonly used in viromics studies to enhance the detection of viral DNA in metagenomes58. 281 
Therefore, we wanted to test Phanta’s performance in metagenomes originating from virus-282 
enriched samples. We applied Phanta to paired bulk and virus-enriched shotgun metagenomes 283 
from infants (Supplementary Data Files 3-6; source data: Liang et al.59). We first tested the 284 
performance of Phanta on the virus-enriched samples by correlating the viral-like particle counts 285 
(from Supplementary Table 2 in 59) to the number of viral species identified (i.e., viral species 286 
richness) by various assembly or classification methods. Phanta-based richness was the most 287 
strongly correlated with VLP counts (Fig. 5A). 288 
 289 
Viral profiles from bulk and virus-enriched metagenomes overlap, but complement each 290 
other  291 
Given its high sensitivity, we hypothesized that Phanta would detect a comparable number of viral 292 
species in bulk metagenomes as in virus-enriched metagenomes. Indeed, the number of species 293 
detected was similar in paired bulk and virus-enriched metagenomes (Fig. 5B). We further tested 294 
whether the bulk and viral-enriched metagenomes provide a similar profile of the viral community 295 
by examining pairs of bulk and viral-enriched metagenomes from the same sample. First, we 296 
examined 10 pairs of metagenomes with relatively deep sequencing of the bulk metagenomes 297 
(range of 150bp paired-end reads 8.6M - 13.3M; median = 9.3M). Species present in bulk 298 
metagenomes captured a median of 94% of the viral abundance in virus-enriched metagenomes 299 
(Fig. 5C). The variance in this quantity is mostly explained by the sequencing depth of the bulk 300 
metagenomes (Supplementary Fig. 5). To complement this analysis, we examined 10 pairs of 301 
metagenomes with highly successful viral enrichment (see Methods). Species present in virus-302 
enriched metagenomes captured a median of 69% of the viral abundance in bulk metagenomes 303 
(Fig. 5D). Those differences are expected as shotgun metagenomes can capture viruses that did 304 
not enrich in the VLP enrichment process for a variety of reasons, technical or biological31. For 305 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502982doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502982
http://creativecommons.org/licenses/by-nc-nd/4.0/


example, prophages lack viral-like particles, and are therefore more likely to be captured by bulk 306 
metagenomes. Given the inclusive nature of bulk metagenomes, they capture more viral species 307 
per total number of viral reads (Supplementary Fig. 6A), whereas viral-enriched metagenomes 308 
capture more viral species per total number of metagenome reads (Supplementary Fig. 6B). With 309 
the ability to identify prophages in bulk metagenomes, we hypothesized that the fraction of 310 
temperate phages would be higher in virus-enriched metagenomes. Indeed, we observed a 3-fold 311 
higher virulent/temperate abundance ratio in virus-enriched metagenomes relative to bulk (Fig. 312 
5E; Supplementary Fig. 6C).  313 
 314 
Phanta is highly effective for simultaneous quantification of phages and their hosts from 315 
a single metagenomics experiment 316 
One advantage of using Phanta to profile bulk metagenomes, as opposed to virus-enriched 317 
metagenomes, is the ability to examine phages and their hosts simultaneously and from a single 318 
dataset, instead of two separately generated datasets. Using a Phanta-based analysis of the bulk 319 
metagenomic dataset from Liang et al.59 investigating the impact of diet on the infant gut, we found 320 
that Bifidobacterium and its phages are ~2-fold more abundant in breastfed infants relative to 321 
formula-fed or infants that were fed with a mixed breast milk and formula diet (Fig. 5F). This 322 
observation, although expected, demonstrates the power of Phanta to simultaneously identify 323 
phages and their bacterial hosts and to associate them with known traits.  324 
 325 
Phanta accurately identifies and quantifies human-infecting viruses 326 
Lastly, we wished to test the ability of Phanta to accurately identify human-infecting viruses in 327 
metagenomes. Liang et al. were able to identify viruses in the family of Adenoviridae using qPCR 328 
from their infant stool samples59. Phanta identified 5 samples with the mastadenovirus C species, 329 
with almost perfect correlation between the estimation of genome copies per uL using qPCR and 330 
Phanta’s estimation of genome copies per million reads (Fig. 5G). Phanta was able to identify 331 
Adenoviruses in bulk shotgun metagenomic samples with as low as 88 copies/uL in qPCR and 332 
successfully identified all samples with >550 copies/uL. Phanta demonstrated higher sensitivity 333 
in identifying Adenoviruses relative to using assembly-based methods (Fig. 5H), which only 334 
detected Adenoviruses in samples that had >20,000 copies/uL by qPCR. Of note, we used the 335 
assembled contigs to confirm that Phanta successfully identified the right Adenovirus species, by 336 
aligning the contigs to all Adenovirus genomes from RefSeq. 337 
 338 
Discussion 339 
 340 
A major goal of microbiome studies is to identify microbial features associated with traits of 341 
interest, such as phenotypes, lifestyle factors, and health status. In an ideal world, organisms 342 
from all domains could be accurately quantified in a single experiment. The first step in achieving 343 
this goal is to profile microbial communities - i.e., to determine their composition from sequencing 344 
data. Although shotgun metagenomes capture both prokaryotes and viruses, profiling the viral 345 
fraction of microbial communities has historically presented a greater challenge and has required 346 
specially tailored methods. For example, popular reference-based methods have allowed 347 
accurate profiling of prokaryotes from metagenomes24 without being able to accurately capture 348 
viruses due to the historical lack of comprehensive reference databases of viral genomes27. 349 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502982doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502982
http://creativecommons.org/licenses/by-nc-nd/4.0/


Because of these limitations, profiling viruses has required additional orthogonal analyses, based 350 
on assembling metagenomic reads and identifying viral genomes de novo25,26. In addition, due to 351 
the relatively low abundance of viral sequences in bulk metagenomes, it has been common to 352 
conduct an entirely separate experiment to profile the virome by enriching for viral sequences 353 
prior to making sequencing libraries58.  354 
 355 
With the recent development of much more comprehensive databases of viral genomes27,31–34, 356 
deeply sequenced bulk metagenomes, and fast and accurate read classifiers22,38, technical and 357 
experimental advances have converged to make it possible to integrate prokaryotic and viral 358 
profiling. By harnessing the latest developments, Phanta enables simultaneous profiling of 359 
bacteriophages and their prokaryotic hosts, in a single experiment and with a single analysis. This 360 
simultaneous profiling has several advantages. First, it reduces the need to sequence both viral-361 
enriched and bulk metagenomes, thus reducing research time and costs, in addition to eliminating 362 
technical differences between two separate experiments. Second, it bypasses the need to use 363 
separate computational workflows to profile prokaryotes and viruses. Lastly, and most 364 
importantly, it allows the study of cross-domain interactions between phages and their hosts, 365 
either in novel datasets, or in the wealth of metagenomic datasets that are already publicly 366 
available.  367 
 368 
Although Phanta can be applied with different databases, Phanta’s default database was 369 
constructed with the human gut in mind. For decades, the viral portion of the human gut was 370 
mostly unknown, and considered as “dark matter”60,61. There is still much to learn, with some basic 371 
discoveries occurring only in the past few years. For example, the first representative of one of 372 
the most abundant bacteriophage clades - crAss-like viruses - was discovered only in 201456. 373 
Similar examples, such as the highly prevalent Hankyphage (p00)57 and LoVEphage37, were 374 
discovered only in 2018 and 2021, respectively. We anticipate that Phanta, when applied with its 375 
default database, will allow similar key discoveries to be made. In this study alone, we were able 376 
to estimate a ~2:1 ratio of viruses to bacteria in the human gut, determine that temperate and 377 
Bacteroides-infecting phages dominate the gut phageome, and demonstrate a high interindividual 378 
variability of the gut virome, as compared to the bacteriome. These and other core principles can 379 
serve as a springboard for more extensive discovery, such that “gut microbiome” will no longer 380 
be publicly synonymous with “gut bacteria,” but rather understood as a complex community with 381 
many types of interacting members. 382 
 383 
Importantly, Phanta was developed with careful attention to the risk of spurious discovery, as 384 
read-based classifiers are frequently known to make mistakes, and thus to identify false positive 385 
taxa40. As described, to mitigate false classification we increase classification confidence and filter 386 
out species with low genome coverage, an idea that was previously described in the 387 
implementation of KrakenUniq40. Of course, these decisions come with potential costs. For 388 
example, increasing the required confidence of classification may lead reads from some species 389 
to all classify at higher taxonomic ranks during the Kraken2 step of the workflow. In such a 390 
scenario, the sensitivity of viral identification would be decreased, since during Bracken, classified 391 
reads are only redistributed to species that initially received some direct classifications. Similarly, 392 
requiring a certain genome coverage reduces the probability of identifying lowly abundant species 393 
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with long genomes. However, all the relevant parameters of Phanta are user-adjustable, and 394 
using our simulations we were able to show that a combination of minor increments in both 395 
thresholds is sufficient to reduce most of the noise with a very small cost to signal (Figs. 2D-E). 396 
 397 
More broadly, Phanta offers a flexible setup that can be modified according to the user’s analysis 398 
goals and main concerns. If a user aims to minimize false negatives, i.e. to increase the probability 399 
of identifying all species while allowing a substantial increase in false positives, the user can 400 
decrease (1) the confidence cutoff, (2) the coverage requirement, and (3) the minimal number of 401 
reads directly classified to a species for it to receive an abundance estimate. On the other hand, 402 
if a user wishes to minimize false positives while taking the risk of decreasing true positives, the 403 
user can increase these three parameters. Phanta also provides an alternative database to the 404 
default, in which predicted prophages in the HumGut genomes were masked. This masked 405 
database can be used to increase the likelihood of identifying prophages. In addition to 406 
parameters and database choice, the characteristics of a sequencing experiment can impact the 407 
power of identification by Phanta. Although we did find high agreement between viral-enriched 408 
and bulk shotgun metagenomes (Fig. 5C), enriching the library for viral particles would be 409 
recommended if a researcher (i) prioritizes identification of viruses that are particles over 410 
prophages, (ii) is not focused on determining cross-domain interactions, and (iii) is limited by the 411 
possible depth of metagenomic sequencing. Conversely, bulk metagenomic analysis allows users 412 
to: (i) profile prophages in addition to virulent phages, (ii) avoid potential biases introduced by the 413 
process of isolating viral particles, and (iii) identify cross-domain interactions, both within and 414 
across samples. Given the low and rapidly decreasing costs of shotgun sequencing, and our 415 
findings that bulk metagenomes of fairly standard depth allow for comparable virus identification 416 
to viral particle-enriched fractions, we anticipate that many researchers may opt to enhance their 417 
standard analyses of bulk metagenomes by applying Phanta.  418 
 419 
While Phanta enhances the knowledge that can be gained about viruses from bulk metagenomes, 420 
it has several limitations. First, while Phanta has high sensitivity, using a reference-based method 421 
restricts identifications to the genomes in the database, and thus limits resolution. For example, 422 
Phanta’s default database is biased toward dsDNA viruses identified in the human gut. Similarly, 423 
while Phanta does include some eukaryotes in its default database, our knowledge of this domain 424 
in the gut is still limited; this is, in part, due to limitations in reference databases for protists, 425 
amoeba, helminths and fungi. Improvements in eukaryotic reference databases should enhance 426 
eukaryote classification in the coming years. Second, extending Phanta to characterize the virome 427 
in other human microbiomes, such as the skin or vaginal microbiome, may require curation of 428 
additional metagenome-derived virome databases generated from these niches. Furthermore, 429 
classifying short reads to reference genomes is challenging when reads originate from genomic 430 
regions that are conserved between species. Moreover, the usage of k-mer-based methods, 431 
although fast and computationally efficient, does not provide information required for aligning 432 
reads to a specific region in the genome, and thus does not allow investigation of genome 433 
variation. Finally, viral taxonomy is not as well-defined as prokaryotic taxonomy, and thus Phanta 434 
cannot currently provide specific named designations to many viral species, beyond family- or 435 
order-level assignments. We anticipate that as knowledge of the virome increases, this challenge 436 
will begin to be addressed. 437 
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  438 
Despite these limitations, Phanta is benchmarked, easy to use, carefully tuned to limit false 439 
positives, and able to provide simultaneous profiling of various domains from a single experiment. 440 
These advantages suggest that Phanta will help accelerate the study of the virome in human gut 441 
microbiomes, as well as illuminate cross-domain interactions in this niche. Phanta enables much 442 
higher resolution of the viral portion in a human gut sample when analyzing a bulk metagenome 443 
relative to current approaches or databases, and thus it promises to provide exciting insights when 444 
applied to the tens of thousands of human gut metagenomes that have already been sequenced, 445 
to date. We expect that Phanta will be both: (1) used to re-analyze publicly available data, and 446 
(2) taken into account when planning new experiments. Overall, Phanta lowers the barrier to virus-447 
inclusive studies of the gut microbiome, and we expect that its application will confidently identify 448 
numerous novel associations between viruses, prokaryotes, and human traits.  449 
 450 
  451 
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Online Methods 452 
 453 
Constructing a comprehensive, taxonomy-aware, domain-inclusive database of human gut 454 
microbes 455 
 456 
Phanta’s default database was constructed to be compatible with the Kraken2/Bracken tools22,38. 457 
Therefore, its construction required curating: 1) a large collection of genomes, and 2) taxonomy 458 
files placing each genome within a tree of named nodes. 459 
 460 
The viral genomes within the database were sourced from: 1) the recently published human gut-461 
focused MGV catalog (available at (https://portal.nersc.gov/MGV/)27 and 2) RefSeq21, the 462 
database of reference genomes maintained by NCBI (MM/YY of download: 02/22). 463 
 464 
After downloading the viral genomes, the viral taxonomy tree was constructed. The first step was 465 
to download the complete NCBI taxonomy using the kraken2-build --download-taxonomy utility. 466 
Next, branches of the taxonomy were pruned so that only the branches leading to the RefSeq 467 
viral genomes remained. 468 
 469 
After providing taxonomic assignments to RefSeq genomes, assignments were provided to the 470 
MGV genomes. The first step in doing so was to group the MGV genomes into the 54,118 ANI-471 
based species specified by the MGV paper27. Each of these species came with a designated 472 
“species representative genome” that was chosen based on features such as circularity and 473 
length. Code on the MGV GitHub page 474 
(https://github.com/snayfach/MGV/tree/master/aai_cluster) was then used to cluster species into 475 
genera based on amino acid identity (AAI) and gene sharing between the representative 476 
genomes. 477 
 478 
To avoid species duplications between MGV and RefSeq viruses, and to provide a full NCBI 479 
taxonomy for MGV genomes where available, average nucleotide identity was calculated between 480 
all of the 54,118 species representative genomes in MGV and all the RefSeq viral genomes using 481 
fastANI62. In cases where an MGV species representative genome had > 95% ANI to a RefSeq 482 
viral genome, all of the genomes in the relevant MGV species were re-assigned to RefSeq, i.e., 483 
designated as strains of the RefSeq viral genome. 484 
 485 
To determine where each AAI-based MGV genus fit into the NCBI taxonomy, we utilized a file 486 
from the MGV website (https://portal.nersc.gov/MGV/) that provides - when possible - NCBI-487 
recognized taxonomic annotations for each genome at the genus, family, and/or order levels, 488 
based on amino acid alignments to a protein database27. We used this information to remove 489 
some of the AAI-based genera and re-assign their contained species to the relevant NCBI-490 
recognized genus. Specifically, for each AAI-based genus, we calculated the percentage of 491 
species representative genomes within the genus that had an NCBI genus annotation provided. 492 
If this percentage was greater than 50%, and the NCBI genus annotation was consistent for > 493 
90% of the species representative genomes with annotations, the AAI-based genus was removed 494 
and all of its species were re-assigned to the NCBI genus. 495 
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 496 
The remaining AAI-based genera were then assigned as direct descendants of the lowest 497 
possible NCBI-recognized taxonomic level, by iterating a variant of the strategy described above. 498 
More specifically, starting with family: if > 50% of the species representative genomes within a 499 
given AAI-based genus had an NCBI family annotation, and the NCBI family annotation was 500 
consistent for > 90% of the species representative genomes with annotations, the AAI-based 501 
genus was assigned as a direct descendant of the relevant NCBI family. The remaining AAI-502 
based genera (i.e., those without a family assignment) were then assigned to an order - when 503 
possible - in the same manner. All of the AAI-based genera without an order assignment were 504 
assigned as direct descendants of the superkingdom of Viruses.  505 
 506 
The prokaryotic genomes within Phanta’s database were sourced from HumGut, a recently 507 
published human gut-focused catalog of prevalent bacterial and archaeal genomes19. The 508 
HumGut catalog was in turn sourced from both the Unified Human Gastrointestinal Genome 509 
(UHGG) collection18 and RefSeq21. An NCBI-compatible taxonomy file for the HumGut genomes 510 
was downloaded directly from the HumGut website (http://arken.nmbu.no/~larssn/humgut/). The 511 
branches of the NCBI taxonomy leading to the human genome were also included in this 512 
taxonomy file and thus we also included the human genome (hg38) in our database. 513 
 514 
We sourced fungal genomes from RefSeq and common contaminant sequences from the Core 515 
UniVec database using the kraken2-build download-library command provided by the Kraken2 516 
developers (MM/YY of download: 02/22). The relevant branches of the NCBI taxonomy were then 517 
obtained in the same way that they were obtained for the RefSeq viral genomes (i.e., by “pruning” 518 
the full NCBI taxonomy, please see above). 519 
 520 
Finally, the constructed taxonomy files for each portion of the database were concatenated, and 521 
a Kraken2/Bracken-compatible database was built using the commands provided on the Github 522 
sites (https://github.com/DerrickWood/kraken2; https://github.com/jenniferlu717/Bracken).  523 
 524 
Masking prophages in prokaryotic genomes 525 
 526 
An alternative version of Phanta’s default database was also created, in which predicted 527 
prophages were masked (i.e., replaced with Ns) within all the prokaryotic genomes from HumGut. 528 
VIBRANT (v1.2.1)42 was used to predict prophages within the HumGut genomes. Prophage 529 
coordinates were extracted and masking was conducted using the bedtools utility 530 
MaskFastaFromBed63. All of the analyses in this paper were conducted using the unmasked 531 
version of the database, except where explicitly noted otherwise. 532 
 533 
Workflow implementation 534 
 535 
Phanta was implemented using the workflow management system Snakemake. Core scripts are 536 
written in Python, bash, and R. A step-by-step tutorial detailing workflow installation and usage is 537 
provided on the main page of the Phanta GitHub (https://github.com/bhattlab/phanta). Briefly, 538 
after cloning the GitHub repository to their system, users should: 1) download the desired 539 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502982doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502982
http://creativecommons.org/licenses/by-nc-nd/4.0/


database - default (unmasked) or masked - via the command line, 2) make slight edits to a 540 
configuration file, and 3) execute the provided Snakemake command on the command line, within 541 
the appropriate conda environment that is fully specified in a provided yaml file. As detailed in the 542 
GitHub tutorial, the repository also provides a test data set that can be used to verify that the 543 
workflow was installed correctly.  544 
 545 
Classification of metagenomic reads to taxa 546 
 547 
The first step of the Phanta workflow is classification of metagenomic reads in each sample 548 
against the desired database of genomes (default/unmasked or masked, see above). 549 
Classification is conducted using the Kraken2 tool (currently v2.1.2)22, which classifies reads 550 
using a k-mer-based approach. More specifically, to classify each read, Kraken2 slides along the 551 
read length, computes a “minimizer” (i.e., compact version) of each k-mer, and looks up where 552 
the minimizer maps in the genome database. After all the minimizers in the read have been looked 553 
up, Kraken2 classifies the read to the lowest taxonomic level possible, considering the user’s 554 
preference for the confidence in the assignment (supplied via the --confidence parameter to 555 
Kraken2). By default, Phanta supplies a confidence of 0.1 to Kraken2, but this value can be 556 
adjusted by the user in the Snakemake configuration file. This parameter ranges from 0 to 1 and 557 
essentially specifies a certain fraction of a read’s k-mers to be mapped to a given taxon, in order 558 
for Kraken2 to make that classification. E.g., 0.1 = 10%. 559 
 560 
Phanta also makes use of the --report-minimizer-data parameter available in Kraken2 v2.1.2, that 561 
is based on ideas from KrakenUniq40. Providing this parameter modifies the standard Kraken2 562 
output to report an additional data point for each taxon, specifically: how many unique minimizers 563 
in the genomes of this taxon are covered by read sequences? 564 
 565 
Filtering of false positive species after classification 566 
 567 
Phanta filters likely false positive species from each sample after the initial classification step and 568 
before species-level abundance estimates are calculated (Figure 1). This filtering step makes use 569 
of the minimizer data reported by Kraken2 during the classification step (described above, in the 570 
section “Classification of metagenomic reads to taxa”). 571 
 572 
Specifically, a proxy for genome coverage is calculated for each genome of each species 573 
identified during classification. This proxy is calculated by dividing: 1) the reported number of 574 
unique minimizers in the genome that are covered by read sequences, by 2) the total number of 575 
unique minimizers contained in the genome. The denominator of this fraction is not reported in 576 
the Kraken2 output, but is obtained by Phanta from an “inspect.out” file contained within the 577 
genome database (originally generated using the kraken2-inspect functionality). 578 
 579 
Bacterial and viral species are marked as false positives and filtered out if none of their strain-580 
level genomes have a calculated coverage above a user-specified threshold. Suggested 581 
thresholds are provided in the Snakemake configuration file (0.01 for bacterial species; 0.1 for 582 
viral species). These suggested thresholds were chosen because they yielded a high signal-to-583 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502982doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502982
http://creativecommons.org/licenses/by-nc-nd/4.0/


noise ratio in identified species when tested on the mixed simulated metagenomes described 584 
below. 585 
 586 
Users can also require that the numerator of the fraction above (i.e., the number of unique 587 
minimizers covered by reads) be higher than a specified threshold for at least one strain-level 588 
genome of each “true positive” species. In other words, it is possible to specify that a high 589 
calculated genome coverage will not “count” unless the number of unique minimizers is higher 590 
than a specific value (e.g., > 300 unique minimizers) for at least one strain-level genome. By 591 
default, this option is not utilized by Phanta but can be implemented by the user by making use 592 
of the minimizer_thresh_viral and minimizer_thresh_bacterial parameters in the Snakemake 593 
configuration file. 594 
 595 
Species abundance estimation and correction for genome length 596 
 597 
After species are filtered from the Kraken2 output, abundances of the remaining species are 598 
estimated using the Kraken2-compatible tool Bracken (currently v2.7)38. Bracken estimates 599 
species-level abundances by redistributing all classified reads to the species level. 600 
 601 
Of note, Bracken accepts a threshold parameter that specifies one last filter for false positive 602 
species - how many sample reads must have been classified to a species during Kraken2 603 
classification for Bracken to estimate its abundance? By default, Phanta specifies this threshold 604 
as 10 reads - the accepted standard for running Bracken - but this number can be adjusted by 605 
the user through the filter_thresh argument in the Snakemake configuration file. 606 
 607 
We also utilize Bracken output to calculate relative taxonomic abundance estimates for each 608 
species by considering genome length. Specifically, the abundance estimate for each species is 609 
scaled by the median length of the genomes under the species. Additional normalizations are 610 
also provided in this corrected output file, such as reads per million reads per million base pairs 611 
(analogous to RPKM in transcriptomics), copies per million reads, and more. 612 
 613 
Provided post-processing scripts 614 
 615 
There are three main post-processing scripts in the Phanta GitHub. 616 
 617 
The first calculates “lifestyle statistics” for the viral community in each metagenome (e.g., ratio of 618 
virulent:temperate viruses), based on lifestyle predictions for viral species that are provided in 619 
Phanta’s default database. Lifestyle predictions for species from MGV were obtained from the 620 
mgv_contig_info file provided in the MGV database27. These predictions were calculated using 621 
BACPHLIP64 and we used the same tool (v0.9.6) to make lifestyle predictions for viral species 622 
from RefSeq. Throughout the manuscript, viruses with a BACPHLIP-predicted virulence score 623 
above 0.5 were considered virulent; others were considered temperate. 624 
 625 
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The second collapses viral abundances in each sample by predicted host, based on provided 626 
host predictions for viral species in Phanta’s default database. Host predictions were made using 627 
iPHoP65. 628 
 629 
The third correlates the abundances of bacterial and viral species in each sample. This cross-630 
kingdom correlation is done by fastspar66,67- a method designed to correlate compositional data. 631 
 632 
Also provided are post-processing scripts to filter or sum abundance tables (counts, relative read 633 
abundances, or relative taxonomic abundances) to a desired taxonomic rank (e.g., species or 634 
genus).  635 
 636 
Simulating mixed metagenomes 637 
 638 
10 mixed metagenomes (each containing ~6.5M paired-end 150bp reads) were simulated using 639 
CAMISIM (v1.3)68. These simulated metagenomes were used to generate the data in Figure 2. 640 
Each simulated metagenome consisted of: 1) 95% prokaryotic reads from 300 randomly chosen 641 
genomes from the HumGut catalog, and 2) 5% viral reads from 50 randomly chosen genomes 642 
from the MGV catalog. 643 
 644 
Download and processing of publicly available, short-read human gut metagenomes 645 
 646 
245 shotgun gut metagenomes from healthy human adults in a Japanese cohort were 647 
downloaded from SRA (accession DRP004793 - Yachida et al.43). Shotgun gut metagenomes 648 
from infants were also downloaded from SRA (accession PRJNA524703 - Liang et al.59). The full 649 
list of downloaded samples, along with accession numbers, is available within Supplementary 650 
Table 2.  651 
 652 
Following download, each metagenome was preprocessed as follows. First, reads that exactly 653 
matched each other (PCR duplicates) were removed using hts_SuperDeduper (v1.2.0). Next, 654 
TrimGalore (v0.6.5 healthy adults; v0.6.7 infants) was used to: 1) trim low-quality bases (Phred 655 
score < 30) from the ends of reads, and 2) discard reads with a final length of < 60bp. Human 656 
reads were then removed using BWA alignment against the human genome (GRCh37). Initial 657 
and final quality checks were performed using MultiQC (v1.7 healthy adults; v1.11 infants). 658 
 659 
All results from applying Phanta to these metagenomes were obtained using Phanta’s default 660 
database and parameters, except where explicitly noted otherwise (i.e., varied databases were 661 
tested in Figures 3A and 3B). Note also that for the infant cohort, the database file required for 662 
running Bracken was slightly modified from default (adjusted for 120bp reads rather than 150bp, 663 
following the instructions on the Bracken GitHub). 664 
 665 
Separate from running Phanta, a subset of these metagenomes was assembled into contigs and 666 
scaffolds using metaSPADES50 version 3.15. Specifically, the following metagenomes were 667 
assembled: 1) fifty randomly selected metagenomes from the healthy adult cohort, and 2) all bulk 668 
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metagenomes from the “four-month” subgroup of the infant cohort. The specific metagenomes 669 
that were successfully assembled are indicated in Supplementary Table 2. 670 
 671 
Assembly-based method for identifying viral species in healthy adult gut metagenomes 672 
 673 
To generate the results in Fig. 3C, the 50 assembled healthy adult gut metagenomes were run 674 
through two standard methods for phage identification from metagenomic assemblies. The first 675 
method, VIBRANT, uses a hybrid machine learning and protein similarity approach to identify viral 676 
signatures42. The second method, VirSorter, predicts protein-coding genes in assembled DNA 677 
sequences and assesses their similarity to known viral proteins45.  678 
 679 
VIBRANT (v.1.2.0) was run on assembled scaffolds and the quality and completeness of identified 680 
phages were estimated by CheckV (v.0.7.0)51 using database v0.6. Low-quality phage scaffolds 681 
were filtered out.  682 
 683 
A similar procedure was performed using VirSorter (v1.0.6, downloaded in February 2018), where 684 
phage contigs were classified as category 1, 2, or 3 depending on confidence level. Category 3 685 
predictions were filtered out before running CheckV. 686 
 687 
Finally, dRep (v3.2.2)69 was applied to the combined set of quality-filtered phage contigs predicted 688 
by VIBRANT+VirSorter in each sample to extract a unique set of phage genomes based on an 689 
ANI threshold of 0.95 and coverage threshold of 0.5. fastANI was applied for secondary clustering 690 
and genome filters included a minimum length of 1000 bp, an N50 weight of 0, and a size weight 691 
of 1. 692 
 693 
The full list of parameters utilized with the “drep dereplicate” utility was: -sa 0.95 --S_algorithm 694 
fastANI -nc .5 -l 1000 -N50W 0 -sizeW 1 --ignoreGenomeQuality --clusterAlg single 695 
 696 
Assembly-based method for identifying Adenoviruses in stool samples 697 
The assembled bulk metagenomes from the “four-month” subgroup of the infant cohort were used 698 
to calculate the column labeled “Assembly” in Fig. 5H. FastANI was used to calculate average 699 
nucleotide identity between all assembled contigs in each sample and 1801 Adenoviridae 700 
genomes available in NCBI (retrieved by datasets download genome taxon Adenoviridae). Each 701 
contig with ANI score >=95% to at least one Adenoviridae genome was counted as an Adenovirus.  702 
 703 
Calculation of dissimilarities between metagenomes 704 
 705 
Bray-Curtis and Jaccard distances were calculated using the R package vegan, version 2.5-7. 706 
 707 
Choosing pairs of metagenomes for overlap analysis 708 
 709 
For the analyses in Figs. 5C-5D, we wanted to determine how well each type of metagenome 710 
could represent the information in the other, excluding samples with low sequencing depth of the 711 
bulk metagenomes, or low enrichment of virus-enriched metagenomes.  712 
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 713 
For the analysis in Fig. 5C, we chose pairs of metagenomes with decent viral enrichment and 714 
deeply sequenced bulk metagenomes. Specifically: (1) We identified the top 50% of samples 715 
based on the percent of reads that Phanta assigned to viruses in the virus-enriched 716 
metagenomes; (2) Of these, we selected 10 samples whose paired bulk metagenomes were the 717 
most deeply sequenced.. 718 
 719 
For the analysis in Fig. 5D, we chose pairs of metagenomes with decent bulk sequencing depth 720 
and highly successful viral enrichment. Specifically: (1) We identified the top 50% of samples 721 
based on the sequencing depth of the bulk metagenomes; (2) Of these, we selected 10 samples 722 
with the highest percent of reads that Phanta assigned to viruses in the virus-enriched 723 
metagenomes. 724 
 725 
Determination of size and number of genomes in each Kraken2/Bracken-compatible 726 
database tested 727 
To determine the size of each Kraken2/Bracken-compatible database tested (listed in Table 1), 728 
we summed the sizes of the following files and rounded to the nearest GB: hash.k2d, opts.k2d, 729 
taxo.k2d, seqid2taxid.map, database150mers.kmer_distrib. These are the files necessary for 730 
running Kraken2 and Bracken. We obtained the number of prokaryotic and viral genomes in each 731 
database that we did not construct directly from the relevant publications: Wright et al., 2022 (for 732 
Standard Kraken2 and RefSeq Complete)39; Almeida et al., 2021 (for UHGG)18; Hiseni et al., 2021 733 
(for HumGut)19. 734 
  735 
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Data and code availability 736 
 737 
Phanta is publicly available at https://github.com/bhattlab/phanta with a detailed tutorial 738 
describing installation and usage. Accession numbers of all publicly available metagenomes used 739 
for analysis are provided in Supplementary Table 2. Workflows used for preprocessing and 740 
assembly were used in this manuscript and are available at: 741 
https://github.com/bhattlab/bhattlab_workflows.  742 
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 756 

Database 
 

Size (GB) 
 

Prokaryotic 
genomes* 

 

Viral 
genomes* 

 

Median 
classification 
time (sec)** 

Median % 
classified 
reads** 

Standard 
Kraken2 51 21,920  10,489 491 56.31 

RefSeq 
Complete 1,192 215,725 10,863 4,889 93.61 

UHGG 16 4,644 0 548 88.75 

HumGut 26 30,691 0 549 97.57 

Phanta 32 30,691 201,305 544 98.07 
*Numbers were obtained from the original papers, see Methods. 757 
**Classification times and percentages of classified reads were determined by conducting 758 
Kraken2 classification of five random samples from the healthy human cohort from Figure 3, 759 
and calculating median classification times and percentages across the samples. 760 
 761 
Table 1. Characteristics of the different Kraken2/Bracken-compatible databases tested in this 762 
study.  763 
 764 
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Figure 1. Overview of Phanta’s comprehensive, virus-inclusive metagenomic 766 
annotation workflow. 767 
(A) Phanta’s workflow. First, reads from each sample are classified against a 768 
comprehensive, virus-inclusive database of genomes from the human gut. Reads are 769 
classified to the lowest possible taxonomic level. After classification, genome coverage is 770 
estimated for each detected species in each sample. Species with low estimated genome 771 
coverage are filtered out to prevent false positive identifications. Next, Phanta quantifies 772 
the abundances of the remaining species in each sample. Reads originally classified 773 
above the species level (for example to the genus or family level) are redistributed 774 
downwards. Then, two types of abundance are calculated: (1) relative read abundance, 775 
which normalizes species-level read counts by read depth, and (2) relative taxonomic 776 
abundance (see panel B). Post-processing scripts are provided to determine cross-777 
domain relationships. 778 
(B) Motivation behind Phanta’s provided correction of relative read abundance of relative 779 
taxonomic abundance. Shown here is a simple gut microbial community with a 1:1 ratio 780 
between bacteria and viruses (one bacterium of species E. coli; one virus of species T4). 781 
Even if E. coli and T4 genomes are equally covered by reads in a shotgun metagenome, 782 
the dramatic difference between their genome lengths will inflate the ratio of bacteria to 783 
viruses, if relative read abundance is used as the metric. By contrast, relative taxonomic 784 
abundance, which corrects for genome length, accurately captures the 1:1 ratio of these 785 
species. 786 
 787 
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Figure 2. Evaluation of Phanta’s performance using simulated metagenomes.  792 
(A) Composition of simulated metagenomes. Results in (B) - (G) were obtained by 793 
applying Phanta to these simulated metagenomes while using Phanta’s default database 794 
and parameters. 795 
(B) Accuracy of Phanta’s final estimates of relative read abundance at the domain level. 796 
The dashed line indicates the true relative read abundance of prokaryotes. 797 
(C) Accuracy of Phanta’s classification step at each taxonomic rank. For each rank, the 798 
two shades of blue represent reads that were classified to a lineage that included the 799 
correct value of the rank. Specifically, light blue shading indicates the median fraction of 800 
reads (across simulated samples) that were classified correctly at or below the rank - e.g. 801 
for family, they were classified either to the correct family, or to the correct genus/species, 802 
which is even more specific than the correct family. Darker blue shading indicates the 803 
median fraction of reads that were classified correctly above the rank - e.g. for family, 804 
they were classified to the correct order or phylum, which is less specific than the correct 805 
family but still accurate. The dark green and black portions of each bar represent reads 806 
that were either: (i) classified to a lineage that did not include the correct value of the rank, 807 
or (ii) unclassified, respectively. The red line indicates the median fraction of classified 808 
reads that were classified at or below each rank (e.g., what fraction of reads were 809 
classified at or below the family level). 810 
(D) Accuracy of Phanta’s final estimates of relative read abundance for 1,606 bacterial 811 
species, across all simulated samples. The dashed line is the x=y diagonal. Each dot 812 
represents one bacterial species in one simulated sample. The x-axis is the simulated 813 
abundance in the sample, and the y-axis is the abundance estimated by Phanta. The R 814 
value indicates Pearson's correlation coefficient, considering all the dots, i.e. all bacterial 815 
species in all simulated samples. Colors of the overlaid boxes represent numbers (counts) 816 
of dots.  817 
(E) Same as (D), for 500 viral species. 818 
(F) Signal-to-noise ratio of bacterial species identified by Phanta vs. the Kraken2/Bracken 819 
workflow, using default parameters for both workflows and using Phanta’s default 820 
database as the reference database. 821 
(G) Same as (F), for viral species.  822 
 823 
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 824 
Figure 3. Evaluation of Phanta’s performance using shotgun gut metagenomes 825 
from 245 healthy human adults. Metagenomes sourced from Yachida et al.43 826 
(A) Percentage of sample reads that could be classified during Phanta’s initial 827 
classification step using Phanta’s default parameters and a variety of Kraken2/Bracken-828 
compatible databases. Boxplots display the percentage distribution across the set of 829 
metagenomes. Database abbreviations: STD = standard Kraken244, UHGG = Unified 830 
Human Gastrointestinal Genome Collection18, RefSeq = RefSeq Complete v20539, 831 
HumGut = HumGut19, Phanta = Phanta’s default database. The insert shows the same 832 
information as the boxplots for STD and Phanta. 833 
(B) Similar to (A) but comparing the relative read abundance of viruses after Phanta’s 834 
filtering and abundance estimation steps. 835 
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(C) Comparing the number of distinct viral species identified by Phanta using the default 836 
database and parameters vs. a standard, assembly-based workflow to identify viral 837 
species in shotgun metagenomes. Dots represent individual metagenomes and lines 838 
are drawn between dots representing the same metagenome. Distributions of dots are 839 
shown using both boxplots and violin plots.  840 
Note: in all boxplots, boxes represent the interquartile range (IQR), the horizontal line 841 
indicates the median, and whiskers extend between (25th percentile - 1.5*IQR) and 842 
(75th percentile + 1.5*IQR). 843 
 844 
 845 
 846 
 847 
 848 
 849 
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 850 

 851 
Figure 4. Core properties of the healthy adult virome. Metagenomes sourced from 852 
Yachida et al.43 (same as Figure 3). 853 
(A) Ratio of viral to bacterial abundance in the gut, using relative read abundance vs. 854 
relative taxonomic abundance. Boxplots display the distribution of this ratio across the 855 
set of 245 healthy adult metagenomes. 856 
(B) Abundance values used to calculate the ratios in (A). 857 
(C) Comparing the variability of the gut phageome and bacteriome across 858 
metagenomes. Bray-Curtis dissimilarities were calculated twice between all 859 
metagenome pairs, once using relative taxonomic abundances of bacterial species 860 
(horizontal axis of scatterplot) and once using relative taxonomic abundances of viral 861 
species (vertical axis of scatterplot). The boxplots display the same data - B = 862 
bacteriome, V = virome. The gray line on the scatterplot is the x=y diagonal. 863 
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(D) Abundance and prevalence of bacterial and viral species. Abundance is the mean 864 
relative taxonomic abundance across metagenomes and prevalence is the number of 865 
positive individuals divided by the cohort size (245). Violin plots aligned with the x- and 866 
y-axes represent distributions of abundance and prevalence, respectively. 867 
(E) Distribution of predicted host genera for viral species in various prevalence 868 
categories (e.g., category 75-100 represents the top 25% of viruses in terms of 869 
prevalence). These results are based on host genus predictions that were made using 870 
iPHoP65 and are provided in Phanta’s default database. 871 
(F) Relationship between abundance ratio of viruses and bacteria and abundance ratio 872 
of virulent and temperate phages. Boxplots aligned with the x- and y-axes display the 873 
distributions of each ratio. Results are based on viral lifestyle predictions made by 874 
BACPHLIP64 (provided in Phanta’s default database). Displayed R is Pearson’s 875 
correlation coefficient. Relative taxonomic abundance was used as the abundance 876 
metric. To prevent low quality samples from affecting the analysis, 11 outliers for 877 
sequencing depth - i.e., >1.5*IQR above or below the median depth - were removed 878 
(n=234). 879 
Note: in all boxplots, boxes represent the interquartile range (IQR), the horizontal line 880 
indicates the median, and whiskers extend between (25th percentile - 1.5*IQR) and 881 
(75th percentile + 1.5*IQR).  882 
 883 
 884 
 885 
 886 
 887 
 888 
 889 
 890 
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Figure 5. Application of Phanta to paired virus-enriched and bulk metagenomes 894 
from the infant gut. Metagenomes sourced from Liang et al.59 Longitudinal cohort = 20 895 
infants sampled at months 0, 1, and 4 (60 samples total). Four-month cohort = 83 infants 896 
sampled at month 4.  897 
(A) All-by-all  Spearman’s correlations between statistics related to viral content, for all 898 
virus-enriched metagenomes from infants in the longitudinal cohort (n=60). Specifically, 899 
four statistics were correlated: (1) VLP Count: number of viral-like particles per gram 900 
feces, (2) Richness Kraken: viral species richness based on applying Kraken2 with a 901 
RefSeq-based database, (3) Richness Assembly: viral species richness based on 902 
applying an assembly-based method, and (4) Richness Phanta: viral species richness 903 
based on applying Phanta. Phanta’s richness estimation has the highest correlation with 904 
VLP count (red box). VLP Count, Richness Kraken and Richness Assembly were 905 
originally reported by Liang et al.. 906 
(B) Number of viral species identified by Phanta in all metagenome pairs, from both infant 907 
cohorts. Each dot represents a metagenome and lines connect metagenome pairs. 908 
(C) Overlap between viral species identified by Phanta in 10 pairs of metagenomes (see 909 
Methods) from infants in the four-month cohort. Each bar represents the total relative 910 
taxonomic abundance of viruses identified in a virus-enriched metagenome. Colors depict 911 
the proportion of this abundance from species also found in the paired bulk metagenome. 912 
(D) Complementary analysis to (C), showing the proportion of relative taxonomic 913 
abundance in bulk metagenomes from species also found in virus-enriched 914 
metagenomes. 915 
(E) Abundance ratio of virulent to temperate species detected by Phanta in virus-enriched 916 
and bulk metagenomes from the four-month cohort. Ratios were obtained using one of 917 
Phanta’s provided post-processing scripts, along with viral lifestyle predictions that were 918 
made by BACPHLIP and are provided in Phanta’s default database. 919 
(F) Phanta’s abundance estimates for Bifidobacterium and predicted Bifidobacterium 920 
phages in bulk metagenomes from infants in the four-month cohort (who had a range of 921 
diets). This analysis was facilitated by one of Phanta’s provided post-processing scripts, 922 
along with host genus predictions that were made by iPHoP65 and are provided in 923 
Phanta’s default database. 924 
(G) Relationship between the originally reported abundance of Adenovirus in infant stool 925 
samples (based on qPCR), vs. the newly determined abundance, based on applying 926 
Phanta to the corresponding metagenomes. This analysis considered all stool samples 927 
from the four-month cohort; most were negative or weakly positive by both methods (i.e. 928 
plotted close to (0, 0)). 929 
(H) Heatmap of Adenovirus abundance in stool samples from infants in the four-month 930 
cohort, as determined by four complementary methods. Shown are stool samples 931 
originally reported to be positive for Adenovirus by qPCR. Method abbreviations: qPCR 932 
= qPCR for Adenovirus from DNA extracted from virus-like particles; quantified by 933 
genome copies / μl DNA. Assembly = alignment of assembled contigs from bulk 934 
metagenomes to Adenovirus genomes; quantified by number of contigs identified as 935 
Adenovirus. Bulk/virus-enriched = application of Phanta to bulk or virus-enriched 936 
metagenomes, using the default Phanta database; quantified by genome copies per 937 
million reads. 938 
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Note: in all boxplots, boxes represent the interquartile range (IQR), the horizontal line 939 
indicates the median, and whiskers extend between (25th percentile - 1.5*IQR) and (75th 940 
percentile + 1.5*IQR).  941 
 942 
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