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Abstract

To study a core component of human intelligence—our ability to combine the meaning
of words—neuroscientists have looked to theories from linguistics. However, linguistic
theories are insufficient to account for all brain responses that reflect linguistic composi-
tion. In contrast, we adopt a data-driven computational approach to study the combined
meaning of words beyond their individual meaning. We term this product “supra-word
meaning” and investigate its neural bases by devising a computational representation
for it and using it to predict brain recordings from two imaging modalities with comple-
mentary spatial and temporal resolutions. Using functional magnetic resonance imaging,
we reveal that hubs that are thought to process lexical-level meaning also maintain
supra-word meaning, suggesting a common substrate for lexical and combinatorial se-
mantics. Surprisingly, we cannot detect supra-word meaning in magnetoencephalography,
which suggests the hypothesis that composed meaning might be maintained through
a different neural mechanism than the synchronized firing of pyramidal cells. This
sensitivity difference has implications for past neuroimaging results and future wearable
neurotechnology.

Understanding language in the real-world requires us to compose the meaning of individual
words in a way that makes the final composed product more meaningful than the string
of isolated words. For example, we understand the statement that “Mary finished the
apple" to mean that Mary finished eating the apple, even though “eating" is not explicitly
specified (Pylkkänen, 2020). This supra-word meaning, or the product of meaning composition
beyond the meaning of individual words, is at the core of language comprehension, and
its neurobiological bases and processing mechanisms must be specified in the pursuit of a
complete theory of language processing in the brain.

Different types of supra-word meaning exist. In addition to coercion, such as “finished
eating" in “Mary finished the apple" (Pylkkänen, 2020), other examples of supra-word
meaning include: a specific contextualized meaning of a word or phrase (e.g. “green banana"
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evokes the meaning of an unripe, rather than simply green-colored, banana) that can also
distinguish between different senses of the same word (e.g. “play a game" versus “theater
play"), and the different meaning of two events that can be described with the same words but
reversed semantic roles (e.g. “John gives Mary an apple" and “Mary gives John an apple").
Previous works have focused on specific types of supra-word meaning in carefully controlled
experiments (Pylkkänen and McElree, 2007; Baggio et al., 2010; Bemis and Pylkkänen, 2011;
Brooks and Cid de Garcia, 2015; Kim and Pylkkänen, 2019). However, much is left to know
about the brain processing of supra-word meaning in naturalistic language. For instance, in
order to understand how meaning is processed and composed and how the brain makes sense
of language, knowing where the supra-word meaning is maintained is an essential requirement.
One proposed hypothesis is that the ventro-medial prefrontal cortex is the possible area that
represents the product of meaning composition (Pylkkänen, 2020).

How can we find the regions that represent supra-word meaning? One approach is to
focus on every type of supra-word meaning and design a controlled experiment to study it.
This approach is not without challenges as it would require a large number of experimental
conditions, and carefully balancing the condition of interest and the control condition for all
types of supra-word meaning might be challenging. One alternative is to use a complex natural
text that readily contains various types of supra-word meaning and build representations
that characterize this set of supra-word meanings. Deep neural network language models are
the current most powerful tools for building such representations (Peters et al., 2018; Devlin
et al., 2018; Brown et al., 2020). Though these NLP systems are not specifically designed to
mimic the processing of language in the brain, representations of language extracted from
these NLP systems have been shown to predict the brain activity of a person comprehending
language better than ever before (Wehbe et al., 2014a; Jain and Huth, 2018; Toneva and
Wehbe, 2019; Schrimpf et al., 2020; Caucheteux and King, 2020; Goldstein et al., 2021).

After being trained to predict a word in a specific position from its context on extremely
large corpora of text, neural network language models achieve unprecedented performance
on various natural language processing (NLP) tasks(Peters et al., 2018; Devlin et al., 2018;
Brown et al., 2020). One can use these models to extract representations for the meaning of
stimulus text. While these representations are often difficult to interpret (we don’t know
what the dimensions of the representational space correspond to, what processes are being
computed, or what type of composition is happening at a given time), they can still help
us achieve our goal of identifying the regions that represent supra-word meaning. This is
because the neural network representations could be assumed to contain at least some of the
aspects of supra-word meaning (otherwise they would fail at many of the NLP tasks(Levesque
et al., 2012; Marvin and Linzen, 2018)). If we can isolate the information in the neural
network representations of a sequence of words that is not contained in the individual words
themselves, then we would be isolating some aspects of supra-word meaning. We can then
identify brain regions that are well predicted by this isolated supra-word meaning.

We thus build a computational object for supra-word meaning using neural network
representations, which we call a supra-word embedding. Specifically, we construct the
following computational representation of supra-word meaning: a “supra-word embedding"
is the part of a contextualized word embedding extracted from the NLP system that is
orthogonal to the individual word meanings that make-up the adjacent context. This
computational object acts as a set that includes some types of supra-word meaning and that
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enables us to investigate brain representations and identify regions that encode supra-word
meaning. The current work relies on deep learning models because of their expressivity and
ability to predict brain activity in naturalistic contexts, which at the moment is not matched
by methods that are tied to linguistic theory. Linguistic theory has traditionally focused on
a different set of problems than the problem of predicting words and word sequences with
high accuracy across a large variety of contexts, and is well equipped to shed light on more
systematic features of language (Baroni, 2021). While our analysis relies on deep learning
models, it does not exclude future analyses that are more closely tied to linguistic theory.
Future work can indeed focus on constructing representations for specific types of supra-word
meaning, or on interpreting the contents of supra-word embeddings to identify which types
of supra-word meaning they contain.

We study the neural bases of supra-word meaning by using its computational represen-
tation “supra-word embedding" and data from naturalistic reading in two neuroimaging
modalities. We find that the supra-word embedding predicts functional magnetic resonance
imaging (fMRI) activity in the anterior and posterior temporal cortices, suggesting that
these areas represent composed meaning. The posterior temporal cortex is considered to be
primarily a site for lexical (i.e. word-level) semantics (Hagoort, 2020; Hickok and Poeppel,
2007) so our finding that it also maintains supra-word meaning suggests a common substrate
for lexical and combinatorial semantics. Furthermore, we find clusters of voxels in both the
posterior and anterior temporal lobe that share a common representation of supra-word
meaning, suggesting the two areas may be working together to maintain the supra-word
meaning. We replicate these findings in an independent fMRI dataset recorded from a
different experimental paradigm and a different set of participants.

The second neuroimaging modality that we utilize to investigate the neural bases of
supra-word meaning is magnetoencephalography (MEG). While MEG and fMRI are both
thought to be primarily driven by post-synaptic cellular processes and many traditional
localization studies have found similar location of activations in fMRI and MEG for the same
task, the relationship between these two modalities is complex and still not fully understood
(Hall et al., 2014). For example, some discordances have been observed in the primary cortex,
where MEG has sensitivity to spatial frequency (Muthukumaraswamy and Singh, 2008, 2009)
and color (Swettenham et al., 2013) while fMRI does not (Muthukumaraswamy and Singh,
2008, 2009; Swettenham et al., 2013). At the same time, fMRI-MEG fusion, a method that
relates the representations of the same stimuli in both modalities, has identified regions
that are sensitive to the properties of written individual words when measured in fMRI but
without a significant correspondence in MEG (Leonardelli and Fairhall, 2022). We also find
a mismatch between our MEG and fMRI results. We find that it is very difficult to detect
the representation of supra-word meaning in MEG activity. MEG has been shown to reveal
signatures of the computations involved in incorporating a word into a sentence (Halgren
et al., 2002; Lyu et al., 2019), which are themselves a function of the composed meaning of
the words seen so far. However, our results suggest that the sustained representation of the
composed meaning may rely on neural mechanisms that do not lead to reliable MEG activity.
This hypothesis calls for a more nuanced understanding of the body of literature on meaning
composition and has important implications for the future of brain-computer interfaces.
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Results

Computational controls of natural text

We built on recent progress in NLP that has resulted in algorithms that can capture the
meaning of words in a particular context. One such algorithm is ELMo (Peters et al., 2018), a
powerful language model with a bi-directional Long Short-Term Memory (LSTM) architecture.
ELMo estimates a contextualized embedding for a word by combining a non-contextualized
fixed input vector for that word with the internal state of a forward LSTM (containing
information from previous words) and a backward LSTM (containing information from future
words). To capture information about word t, we used the input vector for word t. To
capture information about the context preceding word t, we used the internal state of the
forward LSTM computed at word t − 1 (Fig. 1B). We did not include information from the
backward LSTM, since it contains future words which have not yet been seen at time t. Note
that ELMo’s forward and backward LSTMs are trained independently and do not influence
one another (Peters et al., 2018). We have also experimented with GPT-2 (Radford et al.,
2019), which is a more complex language model with a transformer-based architecture and 12
internal layers, and observed that our findings from ELMo replicate (see Results). We choose
to focus on ELMo because of its good performance at language tasks and at predicting brain
recordings (Toneva and Wehbe, 2019), and yet relative simplicity with respect to other recent
language models.

To study supra-word meaning, the meaning that results from the composition of words
should be isolated from the individual word meaning. ELMo’s context embeddings contain
information about individual words (e.g., ’finished’, ’the’, and ’apple’ in the context ’finished
the apple’) in addition to the implied supra-word meaning (e.g., eating) (Fig. 1C). In fact,
ELMo’s context embedding of a word t is strongly linearly related to the next word t+1,
current word t, and the previous word t-1 (see Suppl. Fig. S1). We post-processed the context
embeddings produced by ELMo to remove the contribution due to the context-independent
meanings of individual words. We constructed a “residual context embedding" by removing
the shared information between the context embedding and the meanings of the individual
words (Fig. 1D, also Suppl. Fig. S1).

To investigate the neural substrates and temporal dynamics of supra-word meaning, we
trained encoding models, as a function of the constructed residual context embedding, to
predict the brain recordings of nine fMRI participants and eight MEG participants as they
read a chapter of a popular book in rapid serial visual presentation. We further replicate our
fMRI findings in a second fMRI dataset with a different experimental paradigm that was
collected while 6 participants viewed a popular movie. The encoding models predict each
fMRI voxel and MEG sensor-timepoint, from the text read by the participant up to that time
point (Fig. 1A). The prediction performance of these models was tested by computing the
correlation between the model predictions and the true held-out brain recordings. Hypothesis
tests were used to identify fMRI voxels and MEG sensor-timepoints that were significantly
predicted by the residual context embedding . For more details about the training procedure
and hypothesis tests, see Materials and Methods.
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Figure 1: Approach. (A) An encoding model f learns to predict a brain recording as a function
of representations of the text read by participant during the experiment. A different function is
learned for each voxel in fMRI and sensor-timepoint in MEG. (B) Stimulus representations are
obtained from an NLP model that has captured language statistics from millions of documents.
This model represents words using context-free embeddings (shown in yellow and blue) and context
embeddings (shown in red). Context embeddings are obtained by continuously integrating each new
word’s context-free embedding with the most recent context embedding. (C) Context and word
embeddings share information. The performance of the context and word embeddings at predicting
the words at surrounding positions is plotted for different positions. The context embedding
contains information about up to 6 past words, and word embeddings contains information about
embeddings of surrounding words. To isolate the representation of supra-word meaning, it is
necessary to account for this shared information. (D) Supra-word meaning is modeled by obtaining
the residual information in the context embeddings after removing information related to the
word embeddings. We refer to this residual as the supra-word embedding or residual context
embedding. The supra-word embedding is used as an input to an encoding model f , revealing
which fMRI voxels and MEG sensor-timepoints are modulated by supra-word meaning.
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Detecting regions that are predicted by supra-word meaning

To identify brain areas that represent supra-word meaning, we focus on the fMRI portion of
the experiment. We find that many areas previously implicated in language-specific processing
(Fedorenko et al., 2010; Fedorenko and Thompson-Schill, 2014) and word semantics (Binder
et al., 2009) are significantly predicted by the full context embeddings across subjects (voxel-
level permutation test, Benjamini-Hochberg FDR control at 0.01 (Benjamini and Hochberg,
1995)). These areas include the bilateral posterior and anterior temporal cortices, angular
gyri, inferior frontal gyri, posterior cingulate, and dorsomedial prefrontal cortex (Fig. 2A
and Suppl. Fig. S2 and S3). A subset of these areas is also significantly predicted by residual
context embeddings. To quantify these observations, we select regions of interest (ROIs)
based on the works above (Fedorenko et al., 2010; Binder et al., 2009), using ROI masks
that are entirely independent of our analyses and data (see Materials and Methods). Full
context embeddings predict a significant proportion of the voxels within each ROI across
all 9 participants (Fig. 2B; ROI-level Wilcoxon signed-rank test, p < 0.05, Holm-Bonferroni
correction (Holm, 1979)). In contrast, residual context embeddings predict a significant
proportion of only the anterior and posterior temporal lobes. While the full context embedding
is predictive of much of the fMRI recordings in the language and semantic networks, the
the residual context embedding is more selectively predictive of two language regions - the
anterior (ATL) and posterior temporal lobes (PTL). These results are not specific to word
representations obtained from ELMo. Using a different language model–GPT-2–to obtain
the full and residual context embeddings replicates the results using ELMo (see Materials
and Methods), showing that all bilateral language ROI are predicted significantly by the full
context embedding, and that the bilateral ATL and PTL are predicted significantly by the
residual context embedding (see Suppl. Fig. S6).

Do the parts of the ATL and PTL that are predicted by supra-word meaning process the
same information? Inspired by temporal generalization matrices (King and Dehaene, 2014),
we introduce spatial generalization matrices that estimate the pairwise similarity of voxel
representations (see Materials and Methods). The spatial generalization matrices reveal
that the PTL can be divided into two main clusters such that the models of voxels in one
cluster can also predict other voxels in that cluster but not in the other cluster (Fig. 2C and
Suppl. Fig. S4; voxel-level permutation test, Benjamini-Hochberg FDR controlled at level
0.01). Furthermore, the models of voxels within one of the PTL clusters, but not the other,
significantly predict voxels in the ATL. The division of the PTL into two clusters, one of which
is predictive of the ATL, can be observed within- (Fig. 2C, left), and across-participants (Fig.
2C, right). In contrast, the ATL voxels show only one cluster of voxels that are predictive
both of other ATL voxels and also of PTL voxels (Suppl. Fig. S4). This pattern indicates
that the organization of information in the ATL and parts of the PTL is shared and consistent
across participants. To localize this shared representation, we visualize how well each ATL
and PTL voxel predicts the other participants’ ATLs (Fig. 2D and Suppl. Fig. S5). ATL
voxels are predictive of significant proportions of the ATL across participants, reinforcing
the single cluster of ATL voxels observed in the spatial generalization matrices. Much of the
left PTL predicts a significant proportion of the ATL across participants, whereas much of
the right PTL does not (ROI-level Wilcoxon signed-rank test, p < 0.05, Holm-Bonferroni
correction). The left PTL appears further subdivided, with a cluster of voxels in the posterior
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Figure 2: fMRI results. Visualizations for 4 of 9 participants with remainder available in Suppl.
Fig. S3-S5. Voxel-level significance is FDR corrected at α = 0.01. (A) Voxels significantly
predicted by full-context embeddings (blue), residual-context embeddings (red), or both (white),
visualized in MNI space. Most of the temporal cortex and IFG is predicted by full context
embeddings, with residual context embeddings mostly predicting a subset of those areas. (B)
ROI-level results. (Top) Language system ROIs (Fedorenko et al., 2010) and two semantic ROIs
(Binder et al., 2009). (Bottom) Proportion of ROI voxels significantly predicted by (Left) full
context and (Right) residual context embeddings. Displayed are the median proportions across all
participants and the medians’ 95% confidence intervals. Full context predicts all ROIs (ROI-level
Holm-Bonferroni correction, p < 0.05), while residual context predicts only bilateral ATL and
PTL. (C) Spatial Generalization Matrices. Models trained to predict PTL voxels are used to
predict PTL and ATL voxels (within-participant (Left), and across-participants (Right)). PTL
cross-voxel correlations form two clusters: models that predict activity for voxels in one cluster
can also predict activities of other voxels in the same cluster, but not activities for voxels in the
other cluster. Across participants, only one of these clusters has voxels that predict ATL voxels.
(D) Performance of models trained on ATL and PTL voxels at predicting other participants’ ATL.
All participants show a cluster of predictive voxels in the pSTS.
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Superior Temporal Sulcus (pSTS) being more predictive. This suggests that the ATL and
the left pSTS process a similar facet of supra-word meaning.

To test whether the findings that the ATL and PTL support supra-word meaning are
specific to our dataset or experimental paradigm, we conducted a replication analysis using
a second fMRI dataset. In this second fMRI dataset, acquired by the Courtois NeuroMod
Group, participants viewed a full-length popular movie and the computational representation
of supra-word meaning (i.e. the residual context embedding) was computed based on the
speech in the movie. We find that the results from the naturalistic reading paradigm that
the residual context embedding predicts most significantly the bilateral ATL and PTL are
repeated with this dataset (see Suppl. Fig. S7 for ROI-level results, Suppl. Fig. S8 for
group-level voxel-wise significance masks, and Suppl. Fig. S9 for individual voxel-wise
significance masks). In addition to the bilateral ATL and PTL, the residual context
embedding significantly predicts the inferior frontal gyrus (IFG) orbitalis and the posterior
cingulate at a FDR-corrected pvalue of 0.045. We further also see that the ATL and a portion
of the left PTL are predicted by a similar facet of supra-word meaning (Suppl. Fig. S11,S4).
These results replicate our findings about the bilateral ATL and PTL being significantly
predicted by the supra-word meaning computational representation, which is encouraging
because the two fMRI datasets were collected under completely different paradigms, different
sensory modalities (reading vs. listening), and different participant population.

The processing of supra-word meaning is invisible in MEG

To study the temporal dynamics of the emergence and representation of supra-word meaning,
we turn to the MEG portion of the experiment (Fig. 3). We computed the proportion of
sensors that are significantly predicted at different spatial granularity – the whole brain
(Fig. 3A), by lobe subdivisions (Suppl. Fig. S12), and finally at each sensor neighborhood
location (Fig. 3B; sensor-timepoint level permutation test, Benjamini-Hochberg FDR control
at α = 0.01, see Suppl. Fig. S14 for sensor-level results for individual participants). The
full context embedding is significantly predictive of the recordings across all lobes (Fig. 3A,
performance visualized in lighter colors; timepoint-level Wilcoxon signed-rank test, p < 0.05,
Benjamini-Hochberg FDR correction). Surprisingly, we find that the residual context does
not significantly predict any timepoint in the MEG recordings at any spatial granularity. This
surprising finding leads to two conclusions. First, supra-word meaning is invisible in MEG.
Second, what is instead salient in MEG recordings is information that is shared between
the context and the individual words. These results are not specific to word representations
obtained from ELMo. Using a different language model–GPT-2–to obtain the full and
residual context embeddings replicates the results using ELMo (see Materials and Methods),
showing that while the full context embedding predicts the MEG recordings significantly,
the residual context embedding fails to significantly predict any sensor-timepoint across
participants (see Suppl. Fig. S15). Further, these results repeated in data from one subject
listening to 70 minutes of spoken stories (totalling 15030 words) from Huth et al. (2016)
(Huth et al., 2016), shown in Suppl. Fig. S16. We followed a similar analysis with this data
to reveal that while the full context embedding is well predictive of many sensor-timepoint
combinations, the residual context is not predictive at any sensor or timepoint.

To understand the source of this salience, we investigated the relationship between the
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* full emb >> resid emb

* resid emb >> chance

A. Performance across all sensors

B. Performance per sensor location

context(t-1) residual word(t-1) residual word(t) residual

Figure 3: MEG prediction results at different spatial granularity. All subplots present the median
across participants and errorbars signify the medians’ 95% confidence intervals. (A) Proportion of
sensors for each timepoint significantly predicted by the full and residual embeddings (visualized
in lighter and darker colors respectively). Removing the shared information among the full current
word, the previous word and the context embeddings results in a significant decrease in performance
for all embeddings and lobes. The decrease in performance for the context embedding (left
column) is the most drastic, with no timewindows being significantly different from chance for the
residual context embedding. (B) Proportions of sensor neighborhoods significantly predicted by
each residual embedding. Only the significant proportions are displayed (FDR corrected, p < 0.05).
Context-residuals do not predict any sensor-timepoint neighborhood while both the previous and
the current word residuals predict a large subset of sensor-timepoints, with performance peaks in
occipital and temporal lobes.
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MEG recordings and the word embeddings for the currently-read and previously-read words.
One approach to reveal this relationship is to train an encoding model as a function of
the word embedding (Jain and Huth, 2018; Toneva and Wehbe, 2019). However, the word
embedding corresponding to a word at position t is correlated with the surrounding word
embeddings (Fig. 1C). Therefore, part of the prediction performance of the word t embedding
may be due to processing related to previous words. To isolate processing that is exclusively
related to an individual word, we constructed “residual word embeddings", following the
approach of constructing the residual context embeddings (see Materials and Methods).
We observe that the residual word embeddings for the current and previous words lead to
significantly worse predictions of the MEG recordings, when compared to their corresponding
full embeddings (Fig. 3A, middle and right panels; timepoint-level Wilcoxon signed-rank test,
p < 0.05, Benjamini-Hochberg FDR correction). This indicates that a significant proportion
of the activity predicted by the current and previous word embeddings is due to the shared
information with surrounding word embeddings. Nonetheless, we find that the residual
current word embedding is still significantly predictive of brain activity everywhere the full
embeddings was predictive. This indicates that properties unique to the current word are
well predictive of MEG recordings at all spatial granularity. The residual previous word
embedding predicts fewer time windows significantly, particularly 350-500ms post word t
onset. This indicates that the activity in the first 350ms when a word is on the screen is
predicted by properties that are unique to the previous word. Taken together, these results
suggest that the properties of recent words are the elements that are predictive of MEG
recordings, and that MEG recordings do not reflect the supra-word meaning beyond these
recent words.

Lastly, we directly compared how well each imaging modality can be predicted by each
meaning embedding (Fig. 4). Residual embeddings predict fMRI and MEG with significantly
different accuracy (Fig. 4A), with fMRI being significantly better predicted than MEG by
the residual context, and MEG being significantly better predicted by the residual of the
previous and current words (Wilcoxon rank-sum test, p < 0.05, Holm-Bonferroni correction).
In contrast, the full context embeddings do not show a significant difference in predicting
fMRI and MEG recordings(Fig. 4B). We further observe that the residual embeddings lead
to an opposite pattern of prediction in the two modalities(Fig. 4C). While the residual
context predicts fMRI the best out of the three residual embeddings, it performs the worst
out of the three at predicting MEG (Wilcoxon signed-rank test, p < 0.05, Holm-Bonferroni
correction). In contrast, the full context and previous word embeddings do not show a
significant difference in MEG prediction (Fig. 4D), suggesting that it is the removal of
individual word information from the context embedding that leads to a significantly worse
MEG prediction. These findings further suggest that fMRI and MEG reflect different aspects
of language processing – while MEG recordings reflect processing related to the recent context,
fMRI recordings capture the contextual meaning that is beyond the meaning of individual
words.

Discussion

We enabled the investigation of emergent multi-word meaning, or supra-word meaning, in
the brain by devising a computational representation of it that combines representations
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Figure 4: Direct comparisons of prediction performance of different meaning embeddings.
Displayed are the median proportions across participants and the medians’ 95% confidence
intervals. Differences between modalities are tested for significance using a Wilcoxon rank-sums
test. Differences within modality are tested using a Wilcoxon signed-rank test. All p-values are
adjusted for multiple comparisons with the Holm-Bonferroni procedure at α = 0.05. (A) Residual
previous word, context, and current word embeddings predict fMRI and MEG with significant
differences. (B) Full context embeddings do not predict fMRI and MEG with significant differences,
while the full current word and previous word embeddings predict MEG significantly better than
fMRI. (C) MEG and fMRI display a contrasting pattern of prediction by the residual embeddings.
The current word residual best predicts MEG activity, significantly better than the previous word
residual, which in turns predicts MEG significantly more than the context residual. In contrast,
the context residuals significantly predict fMRI activity better than the previous and current word
residuals. (D) Full previous word and context embeddings do not predict MEG significantly
differently. (E) All full embeddings predict both fMRI and MEG significantly better than the
corresponding residual embeddings.
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of natural text from recent neural network algorithms with a computational control that
disentangles composed- from individual-word meaning. We investigated the spatial and
temporal processing signatures of supra-word meaning by evaluating its ability to predict
specific locations and timepoints of recorded brain activity via fMRI and MEG respectively.

After conducting a replication analysis with a second fMRI dataset from a movie-watching
paradigm and an independent set of participants, we found that our devised supra-word
meaning representation consistently predicts fMRI recordings in the bilateral anterior and
posterior temporal lobes (ATL and PTL). This finding supports some current hypotheses of
language composition in the literature. Specifically, our results provide new evidence that
the ATL processes composed meaning beyond simple concrete concepts, which supports the
hypothesis that the ATL is a semantic integration hub (Visser et al., 2010; Pallier et al.,
2011; Pylkkänen, 2020). Our results may also align with the hypothesis that the posterior
superior temporal sulcus (pSTS, part of the PTL) is involved in building a type of supra-word
meaning, by integrating information about the verb and its arguments with other syntactic
information (Friederici, 2011; Frankland and Greene, 2015; Skeide and Friederici, 2016).
Further, our findings pose questions for the theory that posits left PTL as primarily a site of
lexical (i.e. word-level) semantics, and left IFG as a hub of integrated contextual information
(Hagoort, 2020). It also poses questions for the theory that combinatorial semantics are
processed in the ATL while lexical semantics are processed in more posterior regions (Hickok
and Poeppel, 2007). Our finding that the PTL maintains supra-word meaning indicates that
the role of the PTL extends beyond word-level semantics and suggests a common substrate
for lexical and combinatorial semantics. Further, we do not find evidence for supra-word
meaning in left IFG, though this does not prove that left IFG does not represent supra-word
meaning – the lack of significance may be due to low statistical power. Lastly, the finding
that clusters of voxels in the PTL and ATL share a common representation of composed
meaning suggests that the two areas may be working together to maintain the supra-word
meaning.

Strikingly, we found that, even though our devised supra-meaning representation predicted
a significant proportion of fMRI voxels, it did not significantly predict any sensor-timepoints
in MEG. Instead, the MEG recordings were significantly predicted by information unique to
both the currently-read and previously-read words. This result was repeated when using
another language model (GPT-2) to analyse the reading data and when using data from a
subject listening to spoken stories. We emphasize that this null result is accompanied by two
strongly significant results which, when taken together, should alleviate some concerns about
the quality of the MEG data and the quality of the supra-word meaning embedding. These
two strongly significant results are that: 1) the MEG data is indeed strongly predicted by
representations of both individual words and context (Fig. 3), and 2) the supra-word meaning
embedding predicts significant proportions of the fMRI recordings (Fig. 2). There is a null
result only when the supraword meaning embeddings are used to predict the MEG data.
Given these results, we are confident that removing the individual word information from
the adjacent context eliminates much of the information that is useful to predict the MEG
recordings. These findings suggest a difference in the underlying brain processes that fMRI
and MEG capture. Indeed, while it is widely known that fMRI and MEG recordings result
from different physiological signals, whether they capture the same underlying brain processes
is still debated (Hall et al., 2014). Our results suggest that fMRI recordings are sensitive
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to supra-word meaning, while MEG recordings reflect instantaneous processes related to
both the current word being read and the previously-read word. A likely candidate for the
instantaneous process reflected in MEG is the process of integrating the current word with the
previous context. The sensitivity to the previously-read word has many possible explanations.
One possible explanation is that a word might take longer to process and integrate into the
composed meaning than the duration it is on the screen. Another possible explanation is
that a word may constrain the processing of the word that follows it, highlighting its relevant
properties and aiding with composition. The hypothesis that MEG recordings reflect the
process of composition aligns well with a vast number of previous findings characterizing
transient responses evoked by a stimulus that is difficult to integrate with the preceding
context (Kutas and Federmeier, 2011; Kuperberg et al., 2003; Kuperberg, 2007; Rabovsky
et al., 2018) and results showing that MEG recordings are better fit by a model constrained
by the meaning of the immediately preceding words (Lyu et al., 2019). Indeed, our results
are not in disagreement with this literature – they do not show that MEG activity does
not reveal word integration processes that depend on previous context. Instead, our results
suggest that the representation of that previous context is not visible in MEG.

The observed difference in predicting fMRI and MEG recordings raises the hypothesis
that the process of maintenance of the composed meaning does not rely on neural mechanisms
that are thought to generate the MEG signal (such as synchronized current flow in pyramidal
cell dendrites (Hall et al., 2014)) but on some other mechanisms that are not visible in the
MEG signal or might be indistinguishable from noise (e.g. unsynchronized neural firing),
but that have enough metabolic demands to generate a BOLD response. One explanation
may be that because the MEG signal is thought to be most related to synchronized firing of
pyramidal cells, it best reflects the representation of language processes which are thought
to be supported by pyramidal cells. For example, the N400 and other ERPs related to
composition operations, are measurable in both MEG and EEG, and thus are likely to recruit
pyramidal cells. Working memory processes have also been shown to involve pyramidal cell
firing (Goldman-Rakic, 1996). While both the N400 and working memory are thought to
reflect short-term transient processing (Luck et al., 1996; Courtney et al., 1997), maintaining
the supra-word meaning may depend on longer-term memory processes, which may be
supported by different cell types or mechanisms. Alternate possible explanations for the lack
of predictability of MEG by supra-word meaning are that the representation of supra-word
meaning may be too distributed to be captured by MEG due to its poor spatial resolution.
However, we observe that the supra-word meaning predicts about 5 − 10% of all cortical
fMRI voxels across participants, mostly centered in the ATL and PTL. Thus, it is unlikely
that no MEG sensor-timepoint is sensitive to this signal if it is detectable in the magnetic
field changes. Further, MEG is known to be sensitive to neural activity that originates in
the sulci, and since we find that the voxels that are sensitive to supra-word meaning are in
the sulci, this explanation is even less likely. Another possibility is that our MEG dataset
presented a false negative due to particularities of the experimental paradigm, or statistical
variability due to noise. The replication in one additional subject with a natural speech
listening paradigm, while encouraging, will need to be followed by future work that considers
a larger number of subjects with a comparable number of trials per subject ( 5000 for the
Harry Potter MEG experiment), which are both important for evaluating the significance of
the results (Chen et al., 2022). Such future work will require the use of MEG datasets where
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each subject listens to a natural connected speech for a long duration (at least an hour per
subject). Our results, if replicated in other studies, will call for a more nuanced understanding
of previous work that aims to study composition of sentence-level meaning using MEG as
well as possibly other types of imaging modalities that rely on synchronized firing, such
as EEG and ECoG. Our results suggest that observed increases in activity measured by
these modalities during sentence reading (Fedorenko et al., 2016; Hultén et al., 2019) and
improved fit by a model constrained by very recent context (Lyu et al., 2019) may be due to
instantaneous integration processes rather than the maintenance of sentence-level meaning.
Future work is needed to understand whether and how these imaging modalities can be used
to study sentence-level meaning.

According to our definition, every sentence has some supra-word meaning. Mathematically,
we know that the supra-word meaning embedding (i.e. the embedding calculated by context(t-
1)-g(word(t), word(t-1),..word(t-n)) contains information because context(t-1) is a non-
linear function of word(t-1),..word(t-n), whereas g(word(t), word(t-1),..word(t-n)) is a linear
function. Whether that supra-word meaning is brain-relevant is not known, and this is what
we test in the current work. Our results show that the supra-word meaning embedding
contains brain-relevant information, because the supra-word meaning embedding predicts
significant proportions of several language regions (Fig. 2B). In addition, we show that the
supra-word meaning embedding contains multiple facets of brain-relevant meaning–one facet
that is predictive of the bilateral ATL and the left pSTS, and the other of the right PTL.
We further show that while the full context embedding from the first hidden layer of ELMo
evaluated at word t is strongly linearly related to the next word t+1, current word t, and the
previous word t-1, the supra-word embedding for word t does not strongly depend on any
individual word, as it was designed to limit contributions of individual words (Suppl. Fig.
S1). The presence of the strong linear relationship between the full context representation
and the closely adjacent words means that any linear prediction of brain recordings may be
overwhelmingly related to these adjacent words.

Pinpointing what linguistic or psychological information relates to the significant pre-
diction of the bilateral ATL and PTL that we observe using the supra-word embeddings
is an important question for future work. However, we want to emphasize that even if we
understand that information X, Y, and Z is contained in the supra-word embeddings, that will
not answer this question. The reason is that the supra-word embedding contains X, Y, Z, and
possibly other information W, that we have not measured, and any one of them may be the
information that is predictive of the bilateral ATL and PTL. For example, as our work shows,
the MEG recordings are predicted by the full context embedding, but not by the information
in the full context embedding that is orthogonal to the individual word embeddings (i.e.
supra-word embeddings). Therefore, only knowing 2 things—1) full context embeddings
predict MEG, and 2) some supra-word information is contained in the full context embed-
dings—is not enough to reveal what information in the full context embeddings is predictive
of the MEG recordings, and suggesting that it may be because of the supra-word information
would be misleading. Similarly, linguistic information X,Y, and Z may be contained in the
supra-word embedding, but may not be necessary for predicting the bilateral ATL and PTL.
This is in fact one of the central points of this work, and we believe it is critical to make
this point as it is becoming increasingly popular to relate brain recordings to complex neural
network-derived embeddings that contain multiple sources of information (Toneva et al.,
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2021). In this work, we show one way forward from this by utilizing computational controls.
If linguistic information X,Y, and Z are shown to be contained in the supra-word embedding,
one could regress all combinations of the corresponding linguistic labels from the supra-word
embedding and observe how the prediction of fMRI recordings in the bilateral ATL and
PTL changes as a result. These analyses are not simple and they would require the stimulus
dataset to be annotated with various linguistic and psychological labels, some of which may
require expert linguists who might even disagree amongst themselves. We believe this is an
important undertaking and certainly a next step in this research direction of benefiting from
recent progress in large neural network models while also granting us more control over the
scientific inferences we can make.

Our analysis depends on the degree to which the computational neural network we have
chosen is able to represent composed meaning. Based on ELMo’s competitive performance
on downstream tasks (Peters et al., 2018) and ability to capture complex linguistic structure
(Tenney et al., 2019), we believe that ELMo is able to extract some aspects of composed
meaning. In addition, using a different language model (GPT-2) to extract the supra-word
meaning also significantly predicts the bilateral ATL and PTL. The supra-word meaning
obtained from GPT-2 additionally predicts the bilateral Angular Gyrus (AG) and Posterior
Cingulate (PC). This added predictive power may be due to several factors that we cannot
control without training a model from scratch: GPT-2 has larger embeddings (768 vs 512 for
the forward LSTM in ELMo), has more hidden layers (12 vs 2 in ELMo), was pretrained
on more data (40GB of text data vs 11GB of text data for ELMo), and has an all-together
different architecture (Transformer-based vs recurrence-based for ELMo). Overall, evaluating
the ability of different architectures to encode supra-word meaning is an interesting question,
but it also needs to be approached with care due to these many differences. The degree to
which the composed meaning in NLP models reflects the one in the brain is an important
question that we have only begun to study and needs further investigation. Secondly,
our residual approach accounts only for the linear dependence between individual word
embeddings and context embeddings. By construction, the internal state of the LSTM in
ELMo contains non-linear dependencies on the input word vector and the previous LSTM
state. It is possible however that some dimensions of the internal state of the ELMo LSTM
corresponds to non-linear operations on the dimensions of the input vector alone, without
a contribution from the previous internal state of the LSTM (see Materials and Methods
for the LSTM equations). This non-linear transformation of the input word might not be
removed by our residual procedure, and whether it aligns with processing of individual words
in the brain is a question for future research.

The surprising finding that supra-word meaning is difficult to capture using MEG has
implications for future neuroimaging research and applications where natural language
is decoded from the brain. While high temporal imaging resolution is key to reaching
a mechanistic level of understanding of language processing, our findings suggest that a
modality other than MEG may be necessary to detect long-range contextual information.
Further, the fact that an aspect of meaning can be predictive in one imaging modality and
invisible in the other calls for caution while interpreting findings about the brain from one
modality alone, as some parts of the puzzle are systematically hidden. Our results also suggest
that the imaging modality may impact the ability to decode the contextualized meaning of
words, which is central to brain-computer interfaces (BCI) that aim to decode attempted
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speech. Recent success in decoding speech from ECoG recordings (Makin et al., 2020) is
promising, but needs to be evaluated carefully with more diverse and naturalistic stimuli.
Using BCI to decode speech in real life is complicated by the inherent uncertainty in decoding
each word and the fact that the space of all possible utterances is not constrained. It is yet
to be determined if word-level information conveyed by electrophysiology will be enough to
decode a person’s intent, or if the lack of supra-word meaning should be compensated in
other ways.

Materials and Methods

fMRI data and preprocessing: reading a chapter of a book

We use fMRI data of 9 participants reading chapter 9 of Harry Potter and the Sorcerer’s
Stone (Rowling, 2012), collected and made available online by Wehbe et al. (2014b). Words
were presented one at a time at a rate of 0.5s each. fMRI data was acquired at a rate of 2s
per image, i.e. the repetition time (TR) is 2s. The images were comprised of 3 × 3 × 3mm
voxels. The data for each participant was slice-time and motion corrected using SPM8 (Kay
et al., 2008), then detrended and smoothed with a 3mm full-width-half-max kernel. The
brain surface of each participant was reconstructed using Freesurfer (Fischl, 2012), and a
grey matter mask was obtained. The Pycortex software (Gao et al., 2015) was used to handle
and plot the data. For each participant, 25000 − 31000 cortical voxels were kept.

fMRI data and preprocessing: watching a full-length movie

We replicated our fMRI findings in a second fMRI dataset, which is provided by the Courtois
NeuroMod group (data release cneuromod-2020). In this dataset, 6 healthy participants
view the movie Hidden Figures in English. In total, approximately 120 minutes of data were
recorded per participant during 12 scans of roughly equal length. The fMRI sampling rate
(TR) was 1.49 seconds. The data was prepossessed using fMRIPrep 20.1.0 (Esteban et al.,
2018). Three participants are native French speakers and three are native English speakers.
All participants are fluent in English and report regularly watching movies in English. This
data is available by request at https://docs.cneuromod.ca/en/latest/ACCESS.html.

MEG data and preprocessing

The same paradigm was recorded for 8 participants using MEG by the authors of (Wehbe
et al., 2014a) and shared upon our request. This data was recorded at 306 sensors organized
in 102 locations around the head. MEG records the change in magnetic field due to neuronal
activity and the data we used was sampled at 1kHz, then preprocessed using the Signal Space
Separation method (SSS) (Taulu et al., 2004) and its temporal extension (tSSS) (Taulu and
Simola, 2006). The signal in every sensor was downsampled into 25ms non-overlapping time
bins. For each of the 5176 word in the chapter, we therefore obtained a recording for 306
sensors at 20 time points after word onset (since each word was presented for 500ms).
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ELMo details

At each layer, for each word ELMo combines the internal representations of two independent
LSTMs – a forward LSTM (containing information from previous words) and a backward
LSTM (containing information from future words). We extracted context embeddings only
from the forward LSTM in order to more closely match the participants, who have not seen
the future words. For a word token t, the forward LSTM generates the hidden representation
h
l
t in layer l using the following update equations:

c̃ = tanh(wc[hlt−1;hl−1t ] + bc),
ct = ft × ct−1 + it × c̃t,

h
l
t = ot × tanh(ct),

where bc and wc represent the learned bias and weight, and ft, ot, and it represent the forget,
output, and input gates. The states of the gates are computed according to the following
equations:

ft = σ(wf[hlt−1;hl−1t ] + bf),
it = σ(wi[hlt−1;hl−1t ] + bi),
ot = σ(wo[hlt−1;hl−1t ] + bo),

where σ(x) represents the sigmoid function and bx and wx represent the learned bias and
weight of the corresponding gate. The learned parameters are trained to predict the identity
of a word given a series of preceding words, in a large text corpus. We use a pretrained
version of ELMo with 2 hidden LSTM layers provided by Gardner et al. (2018). This model
was pretrained on the 1 Billion Word Benchmark (Chelba et al., 2014), which contains
approximately 800 million tokens of news crawl data from WMT 2011.

GPT-2 details

GPT-2 (Radford et al., 2019) is a transformer-based model. The pretrained GPT-2 model
that we used (GPT-2 small) consists of 12 stacked transformer decoders. Unlike BERT
(Devlin et al., 2018), GPT-2 is a causal language model, which only takes the past as input
to predict the future (as opposed to both the past and the future). GPT-2 was pretrained
on 8 million web pages, which were scraped using Reddit.

Obtaining full stimulus representations

We obtain a full ELMo word embedding (as opposed to a residual word embedding) for word
wn by passing word wn through the pretrained ELMo model and obtaining the token-level
embeddings (i.e. from layer 0) for wn. If word wn contains multiple tokens, we average the
corresponding token-level embeddings and use this average as the final full word embedding.
We obtain a full ELMo context embedding for word wn by passing the most recent 25 words
(wn−24, .., wn) through the pretrained ELMo model and obtaining the embeddings from the
first hidden layer (i.e. from layer 1) of the forward LSTM for wn. If word wn contains
multiple tokens, we average the corresponding layer 1 embeddings and use this mean as the
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final full context embedding for word wn. We use 25 words to extract the context embedding
because it has been previously shown that ELMo and other LSTMs appear to reduce the
amount of information they maintain beyond 20 − 25 words in the past (Khandelwal et al.,
2018; Toneva and Wehbe, 2019).

We follow the same technique to obtain full stimulus representations from GPT-2. We
extract the word representations from the penultimate hidden layer in the network (layer 11
of 12).

Obtaining residual stimulus representations

We obtain three types of residual embeddings for each word at position t in the stimulus
set: 1) residual context(t-1) embedding, 2) residual word(t-1) embedding, and 3) residual
word(t) embedding. We compute all three types using the same general approach of training
a regularized linear regression, but with inputs xt and outputs yt that change depending on
the type of residual embedding. The steps to the general approach are the following, given
an input xt and output yt:
Step 1: Learn a linear function g that predicts each dimension of yt as a linear combination
of xt. We follow the same steps outlined in the training of function f in the encoding model.
Namely, we model g as a linear function, regularized by the ridge penalty. The model is
trained via four-fold cross-validation and the regularization parameter is chosen via nested
cross-validation.
Step 2: Obtain the residual y′t ≜ yt − ĝ(xt), using the estimate of the g function learned
above. This is the final residual stimulus representation.

For the residual context(t-1) embedding, the input xt is the concatenation of the full word
embeddings for the 25 consecutive words wt−24, ..., wt and the output yt is the full context(t-1)
embedding. For the residual word(t-1) embeddings, the input xt is the concatenation of
the full context(t-1) embedding and the full word embeddings for the 24 consecutive words
wt−24, ..., wt that exclude the full word embedding for word(t-1) and the output yt is the
full word(t-1) embedding. For the residual word(t) embeddings, the input xt is the the
concatenation of the full context(t-1) embedding and the full word embeddings for the 24
consecutive words wt−24, ..., wt−1 and the output yt is the full word(t) embedding.

We also performed experiments with the residual context(t-1) obtained from the second
hidden layer of ELMo. We did not find any significant differences in the proportion of
language regions that are predicted significantly by the supra-word meaning obtained from
the first hidden layer vs the supra-word meaning obtained from the second hidden layer.

Encoding model evaluation

We evaluate the predictions of each encoding model by computing the Pearson correlation
between the held-out brain recordings and the corresponding predictions in the four-fold
cross-validation setting. We compute one correlation value for each of the 4 cross-validation
folds and report the average value as the final encoding model performance.
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General encoding model training

For each type of embedding et, we estimate an encoding model that takes et as input and
predicts the brain recording associated with reading the same words that were used to derive
et. We estimate a function f , such that f(et) = b, where b is the brain activity recorded with
either MEG or fMRI. We follow previous work (Sudre et al., 2012; Wehbe et al., 2014b,a;
Nishimoto et al., 2011; Huth et al., 2016) and model f as a linear function, regularized by
the ridge penalty.

The fMRI and MEG Harry Potter data is collected in 4 runs. To estimate all encoding
models using this data, we perform 4-fold cross validation and the regularization parameter
is chosen via nested cross-validation. Each fold holds out data corresponding to 1 run that
we use to test the generalization of the estimated models. The edges of each run are removed
during preprocessing (data corresponding to 20TRs from the beginning and 15TRs from the
end of each run), and we further remove data corresponding to additional 5TRs between the
training and test data. We follow the same procedures for the movie fMRI data, with the
exception that we perform 12-fold cross validation because this dataset was recorded in 12
runs.

fMRI Encoding Models

Ridge regularization is used to estimate the parameters of a linear model that predicts
the brain activity yi in every fMRI voxel i as a linear combination of a particular NLP
embedding x. For each output dimension (voxel), the Ridge regularization parameter is
chosen independently by nested cross-validation. We use Ridge regression because of its
computational efficiency and because of the results of Wehbe et al. (2015) showing that
for fMRI data, as long as proper regularization is used and the regularization parameter is
chosen by cross-validation for each voxel independently, different regularization techniques
lead to similar results. Indeed, Ridge regression is indeed a common regularization technique
used for building predictive fMRI (Mitchell et al., 2008; Nishimoto et al., 2011; Wehbe et al.,
2014b; Huth et al., 2016).

For every voxel i, a model is fit to predict the signals yi = [yi1, yi2, . . . , yin], where n
is the number of time points, as a function of the NLP embedding. The words presented
to the participants are first grouped by the TR interval in which they were presented.
Then, the NLP embedding of the words in every group are averaged to form a sequence
of features x = [x1, x2, . . . , xn] which are aligned with the brain signals. The models are
trained to predict the signal at time t, yt, using the concatenated vector zt formed of
[xt−1, xt−2, xt−3, xt−4]. The features of the words presented in the previous volumes are
included in order to account for the lag in the hemodynamic response that fMRI records.
Indeed, the response measured by fMRI is an indirect consequence of brain activity that
peaks about 6 seconds after stimulus onset, and the solution of expressing brain activity as
a function of the features of the preceding time points is a common solution for building
predictive models (Nishimoto et al., 2011; Wehbe et al., 2014b; Huth et al., 2016). The
reason for doing this is that different voxels may exhibit different hemodynamic response
functions (HRFs) so this approach allows for a data-driven estimation of the HRF instead of
using the canonical HRF for all voxels.

For each given participant and each NLP embedding, we perform a cross-validation
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procedure to estimate how predictive that NLP embedding is of brain activity in each voxel
i. For each fold:

• The fMRI data Y and feature matrix Z = z1, z2, . . . zn are split into corresponding
train and validation matrices. These matrices are individually normalized (mean of 0
and standard deviation of 1 for each voxel across time), ending with train matrices Y R

and ZR and validation matrices Y V and ZV .

• Using the train fold, a model wi is estimated as:

argmin
wi

∣∣yR,i − ZRwi∣22 + λi∣∣wi∣∣22.

A ten-fold nested cross-validation procedure is first used to identify the best λi for
every voxel i that minimizes nested cross-validation error. wi is then estimated using
λ
i on the entire training fold.

• The predictions for each voxel on the validation fold are obtained as p = ZV wi.

The above steps are repeated for each of the four cross-validation folds and average correlation
is obtained for each voxel i, NLP embedding, and participant.

MEG encoding models

MEG data is sampled faster than the rate of word presentation, so for each word, we have
20 times points recorded at 306 sensors. Ridge regularization is similarly used to estimate
the parameters of a linear model that predicts the brain activity yi,τ in every MEG sensor i
at time τ after word onset. For each output dimension (sensor/time tuple i, τ), the Ridge
regularization parameter is chosen independently by nested cross-validation.

For every tuple i, τ , a model is fit to predict the signals yi,τ = [yi,τ1 , y
i,τ
2 , . . . , y

i,τ
n ], where

n is the number of words in the story, as a function of NLP embeddings. We use as input
the word vector x without the delays we used in fMRI because the MEG recordings capture
instantaneous consequences of brain activity (change in the magnetic field). The models are
trained to predict the signal at word t, yi,τt , using the vector xt.

For each participant and NLP embedding, we perform a cross-validation procedure to
estimate how predictive that NLP embedding is of brain activity in each sensor-timepoint i.
For each fold:

• The MEG data Y and feature matrix X = x1, x2, . . . xn are split into corresponding
train and validation matrices and these matrices are individually normalized (to get a
mean of 0 and standard deviation of 1 for each voxel across time), ending with train
matrices Y R and XR and validation matrices Y V and ZV .

• Using the train fold, a model w(i,τ) is estimated as:

arg min
w(i,τ)

∣∣y(i,τ),R −XR
w

(i,τ)∣22 + λ(i,τ)∣∣w(i,τ)∣∣22.

A ten-fold nested cross-validation procedure is first used to identify the best λ(i,τ) for
every sensor, time-point tuple (i, τ) that minimizes the nested cross-validation error.
w

(i,τ)` is then estimated using λ(i,τ) on the entire training fold.
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• The predictions for each sensor, time-point tuple (i, τ) on the validation fold are
obtained as p = XV

w
(i,τ).

The above steps are repeated for each of the four cross-validation folds and an average
correlation is obtained for each sensor location, time-point tuple (s, τ), each NLP embedding,
and each participant.

Spatial Generalization Matrices

We introduce the concept of spatial generalization matrices, which tests whether an encoding
model trained to predict a particular voxel can generalize to predicting other voxels. This
approach can be applied to voxels within the same participant or in other participants. The
purpose of this method is to test whether two voxels relate to specific representation of the
input (e.g. NLP embedding) in a similar way. If an encoding model for a particular voxel
is able to significantly predict a different voxel’s activity, we conclude that the two voxels
process similar information with respect to the input of the encoding model.

For each pair of voxels (i, j), we first follow our general approach of training an encoding
model to predict voxel i as a function of a specific stimulus representation, described above,
and test how well the predictions of the encoding model correlate with the activity of
voxel j. We do this for all pairs of voxels in the PTL and ATL across all 9 participants.
We finally normalize the resulting performance at predicting voxel j by dividing it by the
performance at predicting test data from voxel i, that was heldout during the training process.
The significance of the performance of the encoding model on voxel j is evaluated using a
permutation test, described in the next subsection.

Since we are interested in semantic representation, we can formalize the tuning differences
of two voxels as sensitivity to a different part of the semantic space. We can assume
there exists a global, large semantic space that encodes semantic information, with the
understanding that which semantic dimensions are encoded by each region, and the way in
which they are encoded, can differ. We use as an approximation of the semantic space the
supra-word embedding, and the way that a brain region encodes the dimensions in that space
corresponds to the estimated weights of the encoding model. It is most likely that a brain
region will be encoding information using a different semantic basis than our neural network
derived embedding, and two brain regions might not be using the same basis. Note that
the spatial generalization takes into consideration only regions that are already significantly
predicted by the supra-word embedding. Since the two hypothetical regions are predicted by
the encoding model using the supra-word embedding, we can assume that the supra-word
embedding captures some of the dimensions spanned by their bases, up to a transformation.
The difference between the bases of the two regions could manifest as some difference in the
weights of the learned encoding models for the two regions. Therefore spatial generalization
allows us to test how similar the semantic sensitivity of two regions are by measuring how well
the estimated encoding of one voxel transfers to another voxel. Note that this is similar to
methods that directly compare the encoding model weights estimated for two voxels (Çukur
et al., 2013; Huth et al., 2016; Deniz et al., 2019), but spatial generations looks not only at
how much the weights are different, but also at how much this difference affects the ability
to predict held-out data. It could be considered a more stringent method, ignoring small
differences in weights that don’t affect generalization performance
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Permutation tests

Significance of the degree to which a single voxel or a sensor-timepoint is predicted is evaluated
based on a standard permutation test. To conduct the permutation test, we block-permute
the predictions of a specific encoding model within each of the four cross-validation runs
and compute the correlation between the block-permuted predictions and the corresponding
true values of the voxel/sensor-timepoint. We use blocks of 5TRs in fMRI (corresponding to
20 presented words) and 20 words in MEG in order to retain some of the auto-regressive
structure in the permuted brain recordings. We used a heuristic to set the block size to
5TRs–because our TR is 2 seconds, we set the block size such that it would include most of
a canonical hemodynamic response, which peaks around 6 seconds and falls back to baseline
over the next several seconds. We conduct 1000 permutations and calculate the number of
times the resulting mean correlation across the four cross-validation folds of the permuted
predictions is higher than the mean correlation from the original unpermuted predictions.
The resulting p-values for all voxels/sensor-timepoints/time-windows are FDR corrected for
multiple comparisons using the Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995).

Chance proportions of ROI/timewindows predicted significantly

To establish whether a significant proportion of an ROI/timewindow is predicted by a specific
encoding model, we contrast the proportion of the ROI/timewindow that is significantly
explained by the encoding model with a proportion of the ROI/timewindow that is signifi-
cantly explained by chance. We do this for all proportions of the same ROI/timewindow
across participants, using a Wilcoxon signed-rank test. We compute the proportion of
an ROI/timewindow that is significantly predicted by chance using the permutation tests
described above. For each permutation k, we compute the p-value of each voxel in this
permutation according to its performance with respect to the other permutations. Next
for each ROI/timewindow, we compute the proportion of this ROI/timewindow with p-
values< 0.01 after FDR correction, for each permutation. The final chance proportion of
an ROI/time-window for a specific encoding model and participant is the average chance
proportion across permutations.

Confidence intervals

We use an open-source package (Sheppard et al., 2020) to compute the 95% bias-corrected
confidence intervals of the median proportions across participants. We use bias-corrected
confidence intervals (Efron and Tibshirani, 1994) to account for any possible bias in the
sample median due to a small sample size or skewed distribution (Miller, 1988).

Experiments revealing shared information among NLP embeddings

For each of the 3 NLP embedding types (i.e. context(t-1) embedding, word(t-1) embedding,
word(t) embedding), we train an encoding model taking as input each NLP embedding and
predicting as output the word embedding for word(i), where i ∈ [t − 6, t + 2]. We evaluate
the predictions of the encoding models using Pearson correlation, and obtain an average
correlation over the four cross-validation folds.
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Data availability

Two of the three datasets analyzed during this study are included in this published article
(and its supplementary information files). The remaining dataset is available by request at
https://docs.cneuromod.ca/en/latest/ACCESS.html.

Code availability

All custom scripts are included in the supplementary files of this published article, and are
available without restrictions.

References

Baggio, G., Choma, T., Van Lambalgen, M., and Hagoort, P. (2010). Coercion and composi-
tionality. Journal of cognitive neuroscience, 22(9), 2131–2140.

Baroni, M. (2021). On the proper role of linguistically-oriented deep net analysis in linguistic
theorizing. arXiv preprint arXiv:2106.08694 .

Bemis, D. K. and Pylkkänen, L. (2011). Simple composition: A magnetoencephalography
investigation into the comprehension of minimal linguistic phrases. Journal of Neuroscience,
31(8), 2801–2814.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society: series B
(Methodological), 57(1), 289–300.

Binder, J. R., Desai, R. H., Graves, W. W., and Conant, L. L. (2009). Where is the
semantic system? a critical review and meta-analysis of 120 functional neuroimaging
studies. Cerebral cortex , 19(12), 2767–2796.

Brooks, T. L. and Cid de Garcia, D. (2015). Evidence for morphological composition in
compound words using meg. Frontiers in human neuroscience, 9, 215.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
Advances in neural information processing systems, 33, 1877–1901.

Caucheteux, C. and King, J.-R. (2020). Language processing in brains and deep neural
networks: computational convergence and its limits. BioRxiv .

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., and Robinson, T. (2014).
One billion word benchmark for measuring progress in statistical language modeling.

Chen, G., Pine, D. S., Brotman, M. A., Smith, A. R., Cox, R. W., Taylor, P. A., and Haller,
S. P. (2022). Hyperbolic trade-off: the importance of balancing trial and subject sample
sizes in neuroimaging. NeuroImage, 247, 118786.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2020.09.28.316935doi: bioRxiv preprint 

https://docs.cneuromod.ca/en/latest/ACCESS.html
https://doi.org/10.1101/2020.09.28.316935
http://creativecommons.org/licenses/by-nc-nd/4.0/


Courtney, S. M., Ungerleider, L. G., Keil, K., and Haxby, J. V. (1997). Transient and
sustained activity in a distributed neural system for human working memory. Nature,
386(6625), 608–611.

Çukur, T., Nishimoto, S., Huth, A. G., and Gallant, J. L. (2013). Attention during natural
vision warps semantic representation across the human brain. Nature neuroscience, 16(6),
763–770.

Deniz, F., Nunez-Elizalde, A. O., Huth, A. G., and Gallant, J. L. (2019). The representation
of semantic information across human cerebral cortex during listening versus reading is
invariant to stimulus modality. Journal of Neuroscience, 39(39), 7722–7736.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Esteban, O., Blair, R., Markiewicz, C. J., Berleant, S. L., Moodie, C., Ma, F., Isik, A. I.,
Erramuzpe, A., Kent, James D. andGoncalves, M., DuPre, E., Sitek, K. R., Gomez, D.
E. P., Lurie, D. J., Ye, Z., Poldrack, R. A., and Gorgolewski, K. J. (2018). fmriprep.
Software.

Fedorenko, E. and Thompson-Schill, S. L. (2014). Reworking the language network. Trends
in cognitive sciences, 18(3), 120–126.

Fedorenko, E., Hsieh, P.-J., Nieto-Castanon, A., Whitfield-Gabrieli, S., and Kanwisher, N.
(2010). New method for fMRI investigations of language: Defining ROIs functionally in
individual subjects. Journal of Neurophysiology , 104(2), 1177–1194.

Fedorenko, E., Scott, T. L., Brunner, P., Coon, W. G., Pritchett, B., Schalk, G., and
Kanwisher, N. (2016). Neural correlate of the construction of sentence meaning. Proceedings
of the National Academy of Sciences, 113(41), E6256–E6262.

Fischl, B. (2012). Freesurfer. Neuroimage, 62(2), 774–781.

Frankland, S. M. and Greene, J. D. (2015). An architecture for encoding sentence meaning
in left mid-superior temporal cortex. Proceedings of the National Academy of Sciences,
112(37), 11732–11737.

Friederici, A. D. (2011). The brain basis of language processing: from structure to function.
Physiological reviews, 91(4), 1357–1392.

Gao, J. S., Huth, A. G., Lescroart, M. D., and Gallant, J. L. (2015). Pycortex: an interactive
surface visualizer for fmri. Frontiers in neuroinformatics, 9, 23.

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N. F., Peters, M., Schmitz,
M., and Zettlemoyer, L. (2018). Allennlp: A deep semantic natural language processing
platform. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS), pages
1–6.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2020.09.28.316935doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316935
http://creativecommons.org/licenses/by-nc-nd/4.0/


Goldman-Rakic, P. S. (1996). Regional and cellular fractionation of working memory.
Proceedings of the National Academy of Sciences, 93(24), 13473–13480.

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder,
A., Emanuel, D., Cohen, A., et al. (2021). Thinking ahead: prediction in context as a
keystone of language in humans and machines. bioRxiv , pages 2020–12.

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder,
A., Emanuel, D., Cohen, A., et al. (2022). Shared computational principles for language
processing in humans and deep language models. Nature neuroscience, 25(3), 369–380.

Hagoort, P. (2020). The meaning-making mechanism (s) behind the eyes and between the
ears. Philosophical Transactions of the Royal Society B , 375(1791), 20190301.

Halgren, E., Dhond, R. P., Christensen, N., Van Petten, C., Marinkovic, K., Lewine, J. D.,
and Dale, A. M. (2002). N400-like magnetoencephalography responses modulated by
semantic context, word frequency, and lexical class in sentences. Neuroimage, 17(3),
1101–1116.

Hall, E. L., Robson, S. E., Morris, P. G., and Brookes, M. J. (2014). The relationship between
meg and fmri. Neuroimage, 102, 80–91.

Hickok, G. and Poeppel, D. (2007). The cortical organization of speech processing. Nature
Reviews Neuroscience, 8(5), 393–402.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70.

Hultén, A., Schoffelen, J.-M., Uddén, J., Lam, N. H., and Hagoort, P. (2019). How the
brain makes sense beyond the processing of single words–an meg study. Neuroimage, 186,
586–594.

Huth, A. G., Heer, W. A. D., Griffiths, T. L., Theunissen, F. E., and Gallant, J. L. (2016).
Natural speech reveals the semantic maps that tile human cerebral cortex. Nature,
532(7600), 453–458.

Jain, S. and Huth, A. (2018). Incorporating context into language encoding models for fmri.
In Advances in neural information processing systems, pages 6628–6637.

Kay, K. N., Naselaris, T., Prenger, R. J., and Gallant, J. L. (2008). Identifying natural
images from human brain activity. Nature, 452(7185), 352.

Khandelwal, U., He, H., Qi, P., and Jurafsky, D. (2018). Sharp nearby, fuzzy far away: How
neural language models use context. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 284–294.

Kim, S. and Pylkkänen, L. (2019). Composition of event concepts: Evidence for distinct
roles for the left and right anterior temporal lobes. Brain and language, 188, 18–27.

King, J.-R. and Dehaene, S. (2014). Characterizing the dynamics of mental representations:
the temporal generalization method. Trends in cognitive sciences, 18(4), 203–210.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2020.09.28.316935doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316935
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: Challenges to
syntax. Brain research, 1146, 23–49.

Kuperberg, G. R., Holcomb, P. J., Sitnikova, T., Greve, D., Dale, A. M., and Caplan, D.
(2003). Distinct patterns of neural modulation during the processing of conceptual and
syntactic anomalies. Journal of Cognitive Neuroscience, 15(2), 272–293.

Kutas, M. and Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the
n400 component of the event-related brain potential (erp). Annual review of psychology ,
62, 621–647.

Leonardelli, E. and Fairhall, S. L. (2022). Similarity-based fmri-meg fusion reveals hierarchical
organisation within the brain’s semantic system. NeuroImage, 259, 119405.

Levesque, H., Davis, E., and Morgenstern, L. (2012). The winograd schema challenge. In
Thirteenth International Conference on the Principles of Knowledge Representation and
Reasoning . Citeseer.

Luck, S. J., Vogel, E. K., and Shapiro, K. L. (1996). Word meanings can be accessed but not
reported during the attentional blink. Nature, 383(6601), 616–618.

Lyu, B., Choi, H. S., Marslen-Wilson, W. D., Clarke, A., Randall, B., and Tyler, L. K.
(2019). Neural dynamics of semantic composition. Proceedings of the National Academy of
Sciences, 116(42), 21318–21327.

Makin, J. G., Moses, D. A., and Chang, E. F. (2020). Machine translation of cortical activity
to text with an encoder–decoder framework. Technical report, Nature Publishing Group.

Marvin, R. and Linzen, T. (2018). Targeted syntactic evaluation of language models. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing ,
pages 1192–1202, Brussels, Belgium. Association for Computational Linguistics.

Miller, J. (1988). A warning about median reaction time. Journal of Experimental Psychology:
Human Perception and Performance, 14(3), 539.

Mitchell, T., Shinkareva, S., Carlson, A., Chang, K., Malave, V., Mason, R., and Just, M.
(2008). Predicting human brain activity associated with the meanings of nouns. Science,
320(5880), 1191–1195.

Muthukumaraswamy, S. D. and Singh, K. D. (2008). Spatiotemporal frequency tuning of
bold and gamma band meg responses compared in primary visual cortex. Neuroimage,
40(4), 1552–1560.

Muthukumaraswamy, S. D. and Singh, K. D. (2009). Functional decoupling of bold and
gamma-band amplitudes in human primary visual cortex. Human brain mapping , 30(7),
2000–2007.

Nishimoto, S., Vu, A., Naselaris, T., Benjamini, Y., Yu, B., and Gallant, J. (2011). Re-
constructing visual experiences from brain activity evoked by natural movies. Current
Biology .

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2020.09.28.316935doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316935
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pallier, C., Devauchelle, A., and Dehaene, S. (2011). Cortical representation of the constituent
structure of sentences. Proceedings of the National Academy of Sciences , 108(6), 2522–2527.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
(2018). Deep contextualized word representations. In Proceedings of NAACL-HLT , pages
2227–2237.

Pylkkänen, L. (2020). Neural basis of basic composition: what we have learned from the
red–boat studies and their extensions. Philosophical Transactions of the Royal Society B ,
375(1791), 20190299.

Pylkkänen, L. and McElree, B. (2007). An meg study of silent meaning. Journal of cognitive
neuroscience, 19(11), 1905–1921.

Rabovsky, M., Hansen, S. S., and McClelland, J. L. (2018). Modelling the n400 brain
potential as change in a probabilistic representation of meaning. Nature Human Behaviour ,
2(9), 693–705.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI blog , 1(8), 9.

Rowling, J. (2012). Harry Potter and the Sorcerer’s Stone. Harry Potter US. Pottermore
Limited.

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N. G.,
Tenenbaum, J. B., and Fedorenko, E. (2020). Artificial neural networks accurately predict
language processing in the brain. BioRxiv .

Sheppard, K., Khrapov, S., Lipták, G., mikedeltalima, Capellini, R., Hugle, esvhd, Fortin, A.,
JPN, Adams, A., jbrockmendel, Rabba, M., Rose, M. E., Rochette, T., RENE-CORAIL,
X., and syncoding (2020). bashtage/arch: Release 4.15.

Skeide, M. A. and Friederici, A. D. (2016). The ontogeny of the cortical language network.
Nature Reviews Neuroscience, 17(5), 323–332.

Sudre, G., Pomerleau, D., Palatucci, M., Wehbe, L., Fyshe, A., Salmelin, R., and Mitchell,
T. (2012). Tracking neural coding of perceptual and semantic features of concrete nouns.
NeuroImage, 62, 451–463.

Swettenham, J. B., Muthukumaraswamy, S. D., and Singh, K. D. (2013). Bold responses
in human primary visual cortex are insensitive to substantial changes in neural activity.
Frontiers in human neuroscience, 7, 76.

Taulu, S. and Simola, J. (2006). Spatiotemporal signal space separation method for rejecting
nearby interference in MEG measurements. Physics in medicine and biology , 51(7), 1759.

Taulu, S., Kajola, M., and Simola, J. (2004). Suppression of interference and artifacts by the
signal space separation method. Brain topography , 16(4), 269–275.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2020.09.28.316935doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316935
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., Kim, N., Van Durme,
B., Bowman, S., Das, D., et al. (2019). What do you learn from context? probing for
sentence structure in contextualized word representations. In 7th International Conference
on Learning Representations, ICLR 2019 .

Toneva, M. and Wehbe, L. (2019). Interpreting and improving natural-language processing
(in machines) with natural language-processing (in the brain). In Advances in Neural
Information Processing Systems, pages 14928–14938.

Toneva, M., Williams, J., Bollu, A., Dann, C., and Wehbe, L. (2021). Same cause; different
effects in the brain. In First Conference on Causal Learning and Reasoning .

Visser, M., Jefferies, E., and Lambon Ralph, M. (2010). Semantic processing in the anterior
temporal lobes: a meta-analysis of the functional neuroimaging literature. Journal of
cognitive neuroscience, 22(6), 1083–1094.

Wehbe, L., Vaswani, A., Knight, K., and Mitchell, T. (2014a). Aligning context-based
statistical models of language with brain activity during reading. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Wehbe, L., Murphy, B., Talukdar, P., Fyshe, A., Ramdas, A., and Mitchell, T. (2014b).
Simultaneously uncovering the patterns of brain regions involved in different story reading
Subprocesses. PloS one, 9(11), e112575.

Wehbe, L., Ramdas, A., Steorts, R. C., and Shalizi, C. R. (2015). Regularized brain reading
with shrinkage and smoothing. Annals of Applied Statistics, 9(4), 1997–2022.

Acknowledgments

The authors thank Erika Laing and Daniel Howarth for help with data collection and
preprocessing, and Michael J. Tarr for helpful feedback on the manuscript. This research
was supported in part by start-up funds in the Machine Learning Department at Carnegie
Mellon University, the Google Faculty Research Award and the Air Force Office of Scientific
Research through research grants FA95501710218 and FA95502010118.

Author Contributions

L.W. and T.M. selected the experimental stimuli. L.W. collected the fMRI and MEG data.
All authors helped conceive and design the experimental analyses and analysed the data. M.T.
developed the technique to remove shared information in neural network embeddings and
conducted subsequent analyses. M.T. and L.W. wrote the original draft of the manuscript.
All authors contributed to the review and editing.

Competing Interests

The authors declare no competing interests.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2020.09.28.316935doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316935
http://creativecommons.org/licenses/by-nc-nd/4.0/

