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Supplementary Table 1. Summary of the datasets for peptide secondary structures of3
three states.4

Datasets
Structural states Sequence

numberH E C

Training set 33,455 16,901 29,177 1,028

Testing set 5,294 1,119 3,733 257
5

Supplementary Table 2. Summary of the datasets for peptide secondary structures of6
eight states.7

Datasets
Structural states Sequence

numberH G I E B T S C
Training

set
48,132 7,262 35 49,205 2,994 24,006 22,394 46,940 1,018

Testing
set

1,616 150 0 1,089 86 707 513 966 42

Note: We randomly selected 1,018 sequences out of all 1,060 sequences as the training set8
and the remaining 42 sequences as our test set.9

10
Supplementary Table 3. The experimental results of all the methods on independent11
test set12

Method Observedj
Predicted Accj

(%)
Acc
(%)

SOV
(%)H E C

Jpred
H 4,195 146 953 79.24

78.05 60.62E 64 467 588 52.54
C 337 259 3,136 84.03

PSSP-MVIRT
H 4,773 99 422 90.16

78.50 75.81E 139 636 344 56.84
C 836 341 2,556 68.47

PROTEUS2
H 4,656 81 557 87.95

82.45 72.61E 34 770 315 68.81
C 364 430 2,913 78.73

RaptorX
H 4,493 142 659 84.87

82.98 78.39E 27 693 399 61.93
C 306 194 3,233 86.61



PHAT
H 4,716 61 517 89.08

84.07 79.78E 49 803 267 71.76
C 482 240 3,011 80.66

13
Supplementary Table 4. Results of the models with different encoding strategies.14

Method Observedj
Predicted Accj

(%)
Acc
(%)

SOV
(%)H E C

HyperGMA
H 4,698 294 302 88.74

63.04 49.08E 191 192 736 65.77
C 1,256 1,515 962 25.77

ProtT5
H 4,814 133 347 90.93

82.30 73.99E 68 873 178 78.02
C 629 440 2,664 71.36

HyperGMA(+)ProtT5
H 4,726 73 495 89.27

82.71 74.14E 66 776 277 69.35
C 553 290 2,890 77.42

TextCNN(+)ProtT5
H 4729 89 476 89.32

81.95 76.34E 64 800 255 71.49
C 606 341 2786 74.63

TextCNN(*)ProtT5
H 4548 58 688 85.91

82.33 76.08E 66 679 374 60.68
C 442 165 3126 83.74

HyperGMA(*)ProtT5
H 4,716 61 517 89.08

84.07 79.78E 49 803 267 71.76
C 482 240 3,011 80.66

Note: (+) represents the fusion of encoding features with the element-wise multiplication15
strategy, and (*) represents the fusion of encoding features with the element-wise additive16
strategy.17

18
Supplementary Table 5. Results of our model with different training strategies.19

Method
Observedj Predicted Accj

(%)
Acc
(%)

SOV
(%)H E C

Cross Entropy
loss function

H 4,723 91 480 89.21
83.24 77.32E 63 801 255 71.58

C 537 274 2,922 78.27

CRF score
function

H 4,716 61 517 89.08
84.07 79.78E 49 803 267 71.76

C 482 240 3,011 80.66

20
Supplementary Table 6. The results of comparison in prediction of peptide toxicity.21

Method SN SP FDR FPR Acc MCC



ATSE
(original
method)

95.11%
(+0.12%,
-0.12%)

92.72%
(+0.12%,
-0.13%)

8.72%
(+0.13%,
-0.13%)

7.81%
(+0.13%,
-0.13%)

94.13%
(+0.14%,
-0.13%)

89.07%
(+0.12%,
-0.14%)

ATSE
(PSSP-MVIRT)

94.81%
(+0.42%,
-0.40%)

93.03%
(+0.42%,
-0.44%)

8.62%
(+0.40%,
-0.43%)

7.99%
(+0.41%,
-0.41%)

93.86%
(+0.41%,
-0.41%)

87.75%
(+0.40%,
-0.44%)

ATSE
(PROTEUS2)

94.89%
(+0.20%,
-0.21%)

93.22%
(+0.18%,
-0.20%)

7.90%
(+0.19%.
-0.19%)

7.24%
(+0.21%,
-0.20%)

94.31%
(+0.20%,
-0.20%)

89.12%
(+0.19%,
-0.18%)

ATSE
(PHAT)

95.06%
(+0.20%,
-0.21%)

93.4%
(+0.22%,
-0.23%)

8.51%
(+0.21%.
-0.21%)

7.53%
(+0.20%,
-0.22%)

94.74%
(+0.20%,
-0.20%)

89.62%
(+0.20%,
-0.24%)

Note: We report the average after performing each experiment 20 times by splitting the data22
set for other methods based on the data set of ATSE.23

24
Supplementary Table 7. The results of comparison in prediction of T-cell receptor25
interactions with MHC-peptide complexes.26

Method Acc Precision Recall F1-score
NetTCR-2.0

(original
method)

93.43%
(+1.07%,
-3.23%)

42.03%
(+4.98%,
-11.23%)

78.67%
(+4.44%,
-4.47%)

54.68%
(+4.93, -10.78%)

NetTCR-2.0
(PROTEUS2)

93.45%
(+2.25%,
-4.05%)

43.25%
(+11.55%,
-15.75%)

79.21%
(+3.39%,
-5.01%)

55.47%
(+8.33%, -12.27%)

NetTCR-2.0
(PSSP-MVIRT)

93.66%
(+2.44%,
-2.65%)

43.93%
(+14.57,
-9.83%)

78.83%
(+3.7%,
-6.7%)

56.01%
(+10.69%, -10.71%)

NetTCR-2.0
(PHAT)

94.04%
(+2.76%,
-2.54%)

45.54%
(+19.26,
-10.44%)

78.6%
(+6.57%,1.

53%)

57.29%
(+13.81%, -7.99%)

Note: We report the average after performing each experiment 20 times by splitting the data27
set for other methods based on the data set of NetTCR-2.0.28

29
Supplementary Table 8. The results of comparison in prediction of protein-peptide30
binding sites.31

Method AUC MCC

PepBCL (SPOT-1D-Single) 78.6% 35.7%

PepBCL (PROTEUS2) 79.02% 31.3%
PepBCL (PSSP-MVIRT) 78.7% 30.9%

PepBCL (PHAT) 79.6% 36.0%
Note: We report the average after performing each experiment 20 times by splitting the data32
set for other methods based on the data set of PepBCL.33



34
Supplementary Table 9. The experimental results of PHAT and SSpro8 on independent35
test set for eight states.36

Method
Accj(%) Acc

(%)
SOV
(%)H G I E B T S C

PHAT
78.0

6
67.78 0 77.55 63.21

76.1
0

68.32
74.3

7
75.4

9
76.1

1

SSpro8
79.5

2
66.74 0 79.19 62.45

69.4
7

70.18
76.3

3
75.1

9
73.6

2
37

Supplementary Table 10. Summary of the datasets for peptide distance/contact map38

Datasets Max length Min length Average length Sequence number

Training set 100 31 73 2715

Testing set 99 30 72 200
Note: The peptide sequences are from SCRATCH-1D and the corresponding structures are39
extracted from Protein Data Bank.40

41



Supplementary Figures42
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44
Supplementary Figure 1. Bi-LSTM Architecture. It can be shown that the forward layer and45
the backward layer are connected to the output layer, which contains shared weights w1-w6.46
In the forward layer, the forward calculation is performed from time 1 to time t, and the output47
of the forward hidden layer at each time is obtained and saved. In the backward layer, reverse48
the calculation from time t to time 1 to get and keep the output of the backward hidden layer at49
each time. Finally, the final output is obtained by combining the output results of the50
corresponding forward layer and backward layer at each time.51

52
53

54
Supplementary Figure 2. CRF Architecture. The emission matrix consisting of the possibility55
of different sub-structures at each residue can be learned by Bi-LSTM layer. The local56
transition matrix is the fusion of the global transition matrix and the residue features from57
Bi-LSTM for transformation scoring among sub-structures.58

59



60
Supplementary Figure 3. (A) Acc is used as the evaluation metric; (B) F1-score is used as61
the evaluation metric. (C–F) represent t-SNE visualization results of the fused extractors62
in multiplication or additive and individual extractors of ProtT5, HyperGMA, respectively.63
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Supplementary Figure 4. Visualization of the secondary structures of the two peptide66
sequences predicted by our method.67

68
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69
Supplementary Figure 5. Visualization of secondary structures mapped into tertiary70
structures for our method and existing methods including RaptorX, PSSP-MVIRT,71
PROTEUS2 and Jpred. The visualization of predictions by our method and existing methods72
for the peptide with PDB ID: 1ejb. The prediction regions with large differences from different73
methods are marked with circles.74
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Experimental settings77

To train a robust and accurate model, we apply the layer normalization and dropout techniques.78
The layer normalization is used in integrating the features from the pretrained model ProtT579
and HyperGMA. Layer normalization can impose constraints on the "scale" problem, which80
may be caused by the embedding of multiple features in the learning process, effectively81
reducing the model variance. As for dropout, it is inserted into the attention layer of HyperGMA,82
solving the overfitting problem.83

84
During slicing peptides into fragments and dividing fragments into residue groups to construct85
the structure of the hypergraph, we set 12 residues long as the length of the fragment, and86
there are four residues coincident between two neighboring fragments. As for the residues87
group, two residues are used to form a group with one same residue in the neighboring two88
groups. In our study, the whole deep learning models were trained globally by the Adam89
algorithm with a learning rate l = 1e-4 to minimize the cost function Loss. The training epoch is90
set to 200, and it performs best in the around 121 epoch. All the training and testing91
procedures were performed based on Nvidia RTX 3090 GPUs and implemented by python92
based on PyTorch.93

94
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Supplementary metrics96
97

To evaluate the results of comparison in prediction of peptide toxicity, we used six traditional98
evaluation metrics commonly used in binary classification tasks, including Sensitivity (SN),99
Specificity (SP), False discovery rate (FDR), False positive rate (FPR), Accuracy (ACC) and100
Mathew’s correlation coefficient (MCC). The metrics are calculated as follows:101
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107
where TP (true positive) and TN (true negative) represent the numbers of correctly predicted108
positive samples and negative samples, respectively; FP (false positive) and FN (false109
negative) represent the numbers of incorrectly predicted positive samples and negative110
samples, respectively. The metric SN measures the prediction ability of a predictor for positive111
samples, while the metric SP measures the ability of the predictor for negative samples. FDR112
calculates the proportion of errors in the positive samples predicted by the predictor, while113
FPR calculates the proportion of negative samples that are mistaken as positives by the114
predictor. ACC and MCC are used to evaluate the overall performance of a predictor.115
Moreover, the ROC (receiver operating characteristic) curve and PR (precision-recall) curve116
are often used to intuitively evaluate the overall predictive performance of a predictor. Here,117
we calculated the area under the ROC curve (AUC) to assess the overall predictive118
performance. The value of AUC is from 0.5 to 1. The larger the value of AUC, the better and119
more robust performance.120


