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13 Abstract

14 Human heart development is governed by transcription factor (TF) networks 

15 controlling dynamic and temporal gene expression alterations. Therefore, to comprehensively 

16 characterize these transcriptional regulations, day-to-day transcriptomic profiles were 

17 generated throughout the directed cardiac differentiation, starting from three distinct human 

18 induced pluripotent stem cell lines from healthy donors (32 days). We applied an expression-

19 based correlation score to the chronological expression profiles of the TF genes, and clustered 

20 them into 12 sequential gene expression waves.  We then identified a regulatory network of 

21 more than 23 000 activation and inhibition links between 216 TFs. Within this network, we 

22 observed previously unknown inferred transcriptional activations linking IRX3 and IRX5 TFs to 

23 three master cardiac TFs: GATA4, NKX2-5 and TBX5. Luciferase and co-immunoprecipitation 

24 assays demonstrated that these 5 TFs could (1) activate each other’s expression, (2) interact 

25 physically as multiprotein complexes and (3) together, finely regulate the expression of 

26 SCN5A, encoding the major cardiac sodium channel. Altogether, these results unveiled 

27 thousands of interactions between TFs, generating multiple robust hypotheses governing 

28 human cardiac development.

29
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32 Transcription factor, Gene regulatory networks, Transcriptomics, Transcription factor 

33 complexes, Iroquois transcription factors
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34 Abbreviations

36 CHD : Congenital Heart Diseases
37 DEG : Differentially Expressed Genes
38 GO : Gene Ontology
39 hiPSCs : human induced Pluripotent Stem Cells
40 IGNiTe : Gene expression-based sub-network involving IRX3, IRX5, GATA4, NKX2-5 and TBX5
41 IRX : Iroquois homeobox transcription factor family
42 LEAP : Lag-based Expression Association for Pseudotime-series
43 MAC : Maximum Absolute Correlation
44 mESC : Mouse Embryonic Stem Cell
45 PC : Principal component
46 PCA : Principal Component Analysis
47 PPI : Protein-Protein Interaction
48 TF : Transcription Factor
49

50 Introduction

51 Heart formation is a complex process that requires spatio-temporal interplay between 

52 distinct and interdependent cell types through specific signaling and transcriptional pathways, 

53 leading to their differentiation and specification (1,2). Defects in this developmental process 

54 result in congenital heart disease as well as in a number of inherited cardiac disorders in adults 

55 (3). The specific gene expression program, governing the formation of a functional heart, 

56 needs precise regulation, in a time-, cell- and space-dependent manner (4). This program is 

57 mediated by transcription factors (TFs) regulating the expression of other TF-encoding genes 

58 and establish specific TF networks, such as between GATA4, NKX2-5 and TBX5 (5,6). These 

59 networks control and permanently remodel over time the transcriptional expression program 

60 that govern heart development.

61 A thorough understanding of these networks is crucial to gain knowledge on the 

62 transcriptional regulations and dysregulations that govern normal and pathological cardiac 

63 development, respectively. However, full knowledge of the global TF regulatory network of 

64 cardiac development is still missing. For instance, while several studies on Iroquois homeobox 

65 TF family (IRX) have shown their key roles on the regulation of adult cardiac electrical 

66 conduction (7–11), their function during human cardiac development has not been 

67 investigated yet. Cellular models derived from human induced Pluripotent Stem Cells (hiPSCs) 
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68 offer a unique opportunity to address these challenges, as they reproduce the cellular 

69 differentiation processes which lead stem cells to acquire a cardiac cell phenotype, carrying 

70 the genome of either healthy subjects or patients with inherited cardiac diseases.

71 In the present study, we first validated hiPSC cardiac differentiation model as a 

72 relevant tool to unravel the global TF regulatory network governing human cardiac 

73 development, identifying a network of 216 TFs with time-dependent activations and 

74 inactivations. Among these, we identified and biologically validated an undescribed TF 

75 regulatory network involving IRX3, IRX5 and three main cardiac TFs, GATA4, NKX2-5 and TBX5. 

76 Furthermore, we generated new hypotheses on the potential mechanisms leading to the 

77 cooperative effect of these TFs that could form a functional multiprotein complex activating 

78 the promoter of SCN5A, encoding the main cardiac sodium channel.

79 Results

80 Directed cardiac differentiation robustly generates functional cardiac cells

81 Cardiac differentiation of three hiPSC lines reprogrammed from three healthy donors 

82 was used as a cellular model of cardiac development (Fig 1A). After directed cardiac 

83 differentiation, all three hiPSC lines expressed cardiac-specific troponin I (Fig 1B), and 

84 displayed spontaneous contractions (Fig 1C), demonstrating their capability to form functional 

85 cardiomyocytes.

86

87 Fig 1. Transcriptomic and functional characterization of cardiac cells derived from hiPSCs. 

88 (A) Diagram illustrating the experimental design involving three distinct cardiac differentiations of 

89 three hiPSC lines reprogrammed from healthy donors. (B) Immunocytochemistry staining of troponin 

90 I (red) and DAPI (blue) at D30 of cardiac differentiation for all 3 hiPSC lines. (C) Representative 

91 contraction patterns captured by MUSCLEMOTION software on movies at D30 of cardiac 

92 differentiation for the 3 hiPSC lines. (D) UMAP displaying single-cell RNA-seq data at D30 of cardiac 

93 differentiation of hiPSC-A line. The color code indicates the different cell types identified. Cell 

94 population fractions are listed on the right. See also Fig S1.

95

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.11.503560doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503560
http://creativecommons.org/licenses/by/4.0/


96 Based on single-cell transcriptomic data from 14 520 cells obtained at the end of 

97 directed cardiac differentiation (Fig 1D and Supplementary Fig S1), about 95% of the cells 

98 could be successfully annotated to one of the 15 cell types described in the developing human 

99 fetal heart (4), including 34% cardiomyocytes, 21% epicardial cells, and 15% fibroblast-like 

100 cells. This distribution was similar to previous findings in the adult human heart (12). These 

101 data indicate that directed cardiac hiPSC differentiation generated the cellular diversity 

102 observed in human fetal heart, known to be not only necessary for cardiac function, but also 

103 required for the establishment of cardiomyocytes (13).

104 To investigate how gene expression variations are orchestrated throughout cardiac 

105 differentiation, we then generated daily transcriptomic data, from hiPSC stage (D-1) to day 30 

106 (D30), for three independent cardiac differentiations of each of the three hiPSC lines (Fig 2A). 

107 Directed cardiac differentiation was associated to gradual temporal transcriptomic changes, 

108 represented on the first principal component (PC1) of the principal component analysis (Fig 

109 2B). PC1 was significantly correlated with time from the onset of cardiac differentiation 

110 (spearman correlation coefficient rho=0.87, p-value < 2.2.10-16). Cardiac differentiation 

111 evolution, represented by PC1 (Fig 2C), showed that 85% of transcriptomic variations were 

112 achieved by D14 (Fig 2D). Altogether, these data demonstrate that the first 14 days of hiPSC 

113 cardiac differentiation represent the ideal time window to investigate the molecular processes 

114 that lead to functional cardiac cells.

115

116 Fig 2. Transcriptomic time-course analysis of hiPSC cardiac differentiation. 

117 (A) Methodological workflow. Steps are represented in white rectangle and outputs in red rectangles. 

118 (B) Global transcriptomic variations displayed with the first two components of the Principal 

119 Component Analysis. Three cardiac differentiations were studied for each of the three hiPSC lines. For 

120 each cardiac differentiation, a line connects the time-points in chronological order. (C) Boxplots 

121 displaying the distribution of PC1 coordinates of each replicates at each day (median +/- quartile). (D) 

122 Histogram comparing distribution of PC1 coordinates at the beginning (D-1), the middle (D14) and the 

123 end (D30) of hiPSC cardiac differentiations (Mean +/- SEM; Wilcoxon matched-pairs signed rank test).

124

125 Transcriptomic kinetics of hiPSC cardiac differentiation unveiled biological processes 

126 involved during cardiac development
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127 Focusing on gene expression changes related to hiPSC cardiac differentiation, the 3 

128 000 genes with the most significant expression variation during directed cardiac 

129 differentiation (differentially expressed genes; DEG) were identified and grouped into 12 

130 clusters, chronologically ordered based on the time point when their expression level changes 

131 the most, showing distinct temporal gene expression profiles (Fig 3A). The average temporal 

132 expression pattern of each cluster was then compared to transcriptomic data obtained for the 

133 same genes from an in vivo reference model of murine cardiac development ((14); Fig 3B). As 

134 cardiac cells derived from hiPSCs are usually described as reaching an equivalent of, at the 

135 most, E18.5 stage in murine embryonic development (15), we restricted the comparison of 

136 the hiPSC dataset to murine developmental transcriptomic data obtained between murine 

137 embryonic stem cells and E18.5 stage. Apart from cluster D, all clusters displayed strikingly 

138 similar expression patterns between hiPSC cardiac differentiation and murine cardiac 

139 development. Nevertheless, genes of cluster D were associated with gastrulation biological 

140 processes (Fig 3B – Cluster D middle panel) which is completed before E7.5. As no data was 

141 available between the mouse embryonic stem cell (mESC) and E7.5 stages in the murine 

142 experiments, relevant gene expression changes associated to this process were likely to be 

143 absent in the murine transcriptomic dataset but remained detectable in the daily hiPSCs 

144 cardiac differentiation dataset. For all other 11 clusters, hiPSC cardiac differentiation could be 

145 confidently matched to sequential gene expression waves that occur during murine cardiac 

146 development. Altogether, these clusters recapitulate key steps of cardiac development, 

147 including (1) expression decrease of genes related to pluripotency and stemness maintenance 

148 (Fig 3B – Cluster A to C), followed by the transient expression of genes related (2) to 

149 gastrulation and mesoderm formation (Fig 3B – Cluster D) and (3) to early cardiac 

150 development (Fig 3B – Cluster E). These specific patterns were then followed by the successive 

151 implementation and persistence over time of gene expression waves that set up the 

152 sequential establishment of the functional cardiac phenotype (Fig 3B – Cluster F to L). To 

153 confirm these results, similar analyses were conducted on the top 3 000 DEG during murine 

154 cardiac development from mESCs to E18.5 (Supplementary Fig S2). This again revealed 

155 consistency of gene expression changes during hiPSC cardiac differentiation and during 

156 murine cardiac development. Collectively, these analyses demonstrate that hiPSC cardiac 

157 differentiation precisely recapitulates transcriptomic processes related to human and mouse 

158 cardiac development.
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159

160 Fig 3. Expression profile and functional annotation of the top 3 000 differentially expressed genes 

161 (DEGs) during hiPSC cardiac differentiation, and comparison with murine cardiac development gene 

162 expression dataset. 

163 (A) Heatmap displaying DEG expression levels. The entire data set was used to aggregate the genes 

164 into 12 clusters and the mean expression level of 9 replicates is represented. (B) For each cluster, 

165 average gene expression level during hiPSC cardiac differentiation (left panel for each cluster) and of 

166 their orthologs during murine cardiac development (mESCs to E18.5 stage, right panel for each cluster) 

167 are shown. Replicate gene expression levels were averaged for each hiPSC line (n=3 per hiPSC line and 

168 per timepoint) and for murine data (n=3 to n=6 per timepoint, depending on the stage). The 15 most 

169 significantly related GO terms are displayed for each cluster on the middle panel. See also Fig S2.

170

171 Prediction of gene regulatory networks governing hiPSC cardiac differentiation

172 TFs are known to be key players of developmental processes (6,16). Therefore, to 

173 elucidate gene regulatory networks that underlie human cardiac development, gene 

174 expression analysis was then focused on all 216 TFs that were found to be differentially 

175 expressed during the time-course of cardiac differentiation (Fig 4A; Supplementary Table 1). 

176 Overall, 69% of these TFs have been already linked to cardiac (patho)physiological phenotypes 

177 (Supplementary Table 1). We chose to adapt an expression correlation score involving time 

178 delay (LEAP method, see Methods) to capture gene associations that are hidden by time lags 

179 (i.e. time delay between the mRNA expression of the source gene and the mRNA expression 

180 of its target gene). Using this method on the 216 TFs, we predicted interactions that activated 

181 or inhibited the expression of target TFs by source TFs, building a regulatory network. This 

182 gene expression-based network included 11 467 activating interactions and 11 539 inhibitory 

183 interactions (Fig 4B left panel; Supplementary Table 2). We then evaluated the biological 

184 relevance of these TF interactions, using the STRING protein-protein interaction (PPI) 

185 database to generate an undirected PPI-based network restricted to the 216 TFs (Fig 4B right 

186 panel). Interestingly, 182 TFs (84%) were found to share at least one known PPI interaction. 

187 This included interactions between TFs belonging to the same gene cluster but also, 

188 interactions between TFs from different gene clusters, suggesting coordination between TFs 

189 to regulate the successive gene expression waves.
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190

191 Fig 4. Inferred TF regulatory network governing hiPSC cardiac differentiation. 

192 (A) Normalized gene expression of the 216 TFs (identified within the top 3 000 differentially expressed 

193 genes during hiPSC cardiac differentiation) were quantified and averaged in each gene cluster. UPM: 

194 UMI per million. The number in () indicates the TF number per cluster. (B) Graphical representation of 

195 gene expression-based network and protein-protein interaction-based network (LEAP- and STRING- 

196 based method, respectively) of the same TFs as in A. Interactions between TFs of successive clusters 

197 are shown using bold lines. (C-E) Comparative quantitative analysis between both networks. (F-G) 

198 Examples of two literature-based sub-networks. Interactions uncovered in gene expression-based 

199 network are shown in blue, in PPI-based network, in yellow, and by literature curation, in black. Node 

200 colors correspond to the one of their corresponding gene cluster (as in A). Paper PMID associated with 

201 literature-based links: [A] 33803261; [B] 23417899; [C] 34901033; [D] 15253934; [E] 17011492; [F] 

202 21632880; [G] 22402664; [H] 22438573.

203

204 Comparing both networks, the gene expression-based network (LEAP-based) 

205 contained a greater amount of information than the PPI-based network (STRING-based) (Fig 

206 4B). Indeed, although both networks were generated using the same TF query list, the density 

207 (i.e. normalized averaged number of neighbors) of the gene expression-based network was 

208 5.5 fold higher, as compared to the PPI-based network. Deeper analysis showed that about 

209 100% of the nodes and 80% of the links found in the PPI-based network were also found in 

210 the gene expression-based network (Fig 4C-D). Moreover, focusing on links between 

211 successive expression clusters, more than 76% of those found in PPI-based network were also 

212 found in the gene expression-based network (Fig 4E). Further confirming the accuracy of gene 

213 expression-based strategy, sub-networks that have been well-described in the literature were 

214 also present in both networks: (1) the network composed of the main actors of pluripotency 

215 (e.g POU5F1) and early phases of cardiac development (e.g EOMES, MESP1; Fig 4F), and (2) 

216 the TF network implicated in cardiogenesis (e.g ISL1, MEF2C; Fig 4G). This validated the 

217 relevance of such expression correlation score approach taking into account time delay to 

218 comprehensively analyze TFs and their interactions throughout cardiac differentiation. 

219 Altogether, while the gene expression-based network confirmed already known and validated 

220 interactions, it also inferred 21 530 new interactions unveiling numerous new hypotheses on 

221 TF networks potentially critical for cardiac development. 
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222 IRX3 and IRX5 are involved in triggering expression of GATA4, NKX2-5, TBX5 cardiac 

223 transcription factor network

224 Leveraging this new gene expression-based network to uncover new regulation 

225 mechanisms, and based on our previous focus of interest (7,10) we evaluated IRX TF family 

226 involvement in the establishment of cardiac developmental processes. Expression levels of 

227 the 6 different IRX TF genes was analyzed during cardiac differentiation in the three hiPSC lines 

228 (Fig 5A). Expression of IRX6 was undetectable and expression of IRX1 and IRX2 did not vary 

229 over time. Only IRX3, IRX4 and IRX5 expression increased significantly between D-1 and D30 

230 of cardiac differentiation. Interestingly, based on their expression profiles, IRX3 and IRX5 

231 ranged from the earliest cardiac-specific gene cluster with an expression level that was 

232 maintained until the end of cardiac hiPSC differentiation (cluster F). This suggested a potential 

233 role for IRX3 and IRX5 in the early establishment of gene regulatory networks essential for 

234 cardiac fate, and beyond. In contrast, IRX4 expression was detected in one of the latest 

235 clusters (cluster K). Therefore, we then focused on both IRX3 and IRX5 TFs.

236

237 Fig 5. Exploration of the inferred IIGNT sub-network. 

238 (A) Table of TF selection criteria for the IRX genes family. Timecourse expression rank is the output of 

239 the timecourse package and illustrates the variation in gene expression during directed cardiac 

240 differentiation (a lower number indicating a higher variation). The Expression cluster column refers at 

241 the expression cluster in which each TF ranged as in Fig 4A. Selection and exclusion criteria are 

242 indicated in green and red respectively. (B) Potential target TFs of IRX3 and/or IRX5 identified in the G-

243 to-L clusters based on the gene expression-based network. (C) Gene expression-based network of IRX3, 

244 IRX5, GATA4, NKX2-5 and TBX5 TFs. Node colors represent their corresponding clusters as in Fig 4A: 

245 IRX3 and IRX5 – cluster F; GATA4 – cluster G; NKX2-5 – cluster I; TBX5 – cluster L.  Lag is shown in days. 

246 References to literature-based links: [A] Book chapter DOI: 10.1016/B978-0-12-381332-9.00027-X.; [B] 

247 PMID: 23457256; [C] PMID: 22449847; [D] PMID: 32450132; [E] PMID: 25280899. (D) Graphs displaying 

248 activity levels of luciferase that is under the control of GATA4 (-1800_TSS_+200), NKX2-5 (-

249 2000bp_Start codon) and TBX5 (-1800_TSS_+200) promoter constructs. Mean +/- SD; * and **: p < 

250 0.05 and p < 0.01, respectively (Mann-Whitney test).

251
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252 In order to investigate the role of IRX3 and IRX5 in cardiac differentiation progression, 

253 all their potential TF targets in the subsequent G to L clusters were extracted from the gene 

254 expression-based network (Fig 5B). Interestingly, the master cardiac TF genes GATA4 (cluster 

255 G), NKX2-5 (cluster I) and TBX5 (cluster L) were individually found to be potential targets of 

256 both IRX3 and IRX5. It is well established that GATA4 acts in a multiprotein complex with NKX2-

257 5 (cluster I) and TBX5 (cluster L) cardiac TFs (6,17,18). To further explore potential new 

258 interactions, we then focused on the gene expression-based sub-network involving IRX3, IRX5, 

259 GATA4, NKX2-5 and TBX5, referred later as IGNiTe sub-network (Fig 5C). In the IGNiTe sub-

260 network, IRX3 and IRX5 were inferred as activators of GATA4, NKX2-5 and TBX5, and 

261 confirming the literature (5,19–21), GATA4 was inferred as activator of NKX2-5 and both 

262 GATA4 and NKX2-5 were activators of TBX5 expression. 

263 In order to investigate the biological relevance of these inferred interactions, luciferase 

264 assays were conducted on GATA4, NKX2-5 and TBX5 core promoters (Fig 5D). IRX3 and IRX5 

265 proteins were, separately (fold changes 4.2 and 1.5 respectively) or together (fold change 4.5), 

266 able to bind the promoter of GATA4 and to activate luciferase expression. A slight tendency 

267 towards potentiation of both activating effects is observable when IRX3 and IRX5 were present 

268 but was not statistically significant. On the NKX2-5 promoter, IRX5 alone was able to activate 

269 luciferase expression (1.3-fold change), but not IRX3, suggesting that the inferred activation 

270 of NKX2-5 by IRX3 found in the IGNiTe sub-network was due to IRX5, and that the high 

271 similarity between IRX3 and IRX5 expression profiles caused the false-positive link to appear. 

272 Together, IRX3 and IRX5 were able to activate NKX2-5 promoter, with a tendency towards 

273 potentiation too (fold change 1.2 between IRX5 alone and IRX3/IRX5 conditions; p>0.05). 

274 According to the order of appearance of TFs in IGNiTe sub-network, NKX2-5 promoter 

275 activation was assessed in the combined presence of IRX3, IRX5 and GATA4, which showed an 

276 activator effect (1.8-fold change). Although a potentiation tendency was observed when 

277 GATA4 was present in addition with IRX3 and IRX5, this effect was not statistically significant. 

278 On TBX5 promoter, IRX3 and IRX5 were able to bind and activate gene expression either 

279 individually (2.7- and 1.2-fold change, respectively) or together (3.6-fold change). Potentiation 

280 of both activator effects was clearly observable and statistically significant when IRX3 and IRX5 

281 were together on the TBX5 promoter. Finally, considering the joint expression of IRX3, IRX5, 

282 GATA4 and NKX2-5 from D10, we proved the activator effect of these TFs on TBX5 promoter 
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283 (6.6-fold change), which is statistically increase from the IRX3/IRX5 condition (1.8-fold 

284 change). Collectively, these results biologically validated the new interactions inferred with 

285 the gene expression-based network and illustrated the progressive temporal activation of the 

286 major TFs GATA4, NKX2-5 and TBX5, by IRX3 and IRX5 during cardiac cell lineage 

287 establishment.

288 IRX3 and IRX5 physically interact with GATA4, NKX2-5 and TBX5 to control SCN5A expression  

289 As the expression of the IGNiTe sub-network members was maintained until D30 of 

290 hiPSC cardiac differentiation (Fig 6A), the functional role of IRX3, IRX5, GATA4, NKX2-5, and 

291 TBX5 as a multiprotein complex was evaluated using co-immunoprecipitation and luciferase 

292 assays in heterologous expression systems. Luciferase assays were conducted on the 

293 promoter of SCN5A, a known target of these TFs (7,22–25). According to the chronological 

294 order of expression of these five TFs along cardiac differentiation of hiPSCs (Fig 6A), we first 

295 investigated the role of IRX3 and IRX5. As previously described (26), IRX3 and IRX5 physically 

296 interacted (Fig 6B top panel and Supplementary Fig S3) and could cooperatively activate the 

297 SCN5A promoter (Fig 6B bottom panel). While IRX3 alone activated the SCN5A promoter (2.3-

298 fold change), IRX5 potentiated its effect with a 1.5-fold change. GATA4 was able to physically 

299 interact with IRX5 but not with IRX3 (Fig 6C top panels) and when the three TFs were co-

300 transfected, only GATA4 and IRX5 interacted, suggesting a competitive effect between IRX3 

301 and GATA4 to bind IRX5 (Fig 6C bottom left panel). Also, the addition of GATA4 potentiated 

302 (1.5-fold change) the activity of the IRX3/IRX5 couple on SCN5A promoter (Fig 6C bottom right 

303 panel). NKX2-5 interacted with both IRX3 and IRX5 individually (Fig 6D left panels), but again, 

304 when the four TFs were co-transfected we only observed an interaction between IRX5, GATA4, 

305 and NKX2-5, suggesting again a competition between IRX3 and IRX5, in favor of IRX5, in these 

306 interactions (Fig 6D central panel). NKX2-5 amplified (8.0-fold change) the effect of the 

307 IRX3/IRX5/GATA4 trio on the SCN5A promoter (Fig 6D right panels). Finally, when IRX3, IRX5, 

308 GATA4, NKX2-5 and TBX5 were co-transfected a global protein complex could be formed 

309 between IRX5, GATA4, NKX2-5 and TBX5, but not with IRX3, even if IRX3 alone was able to 

310 interact with TBX5 (Fig 6E left and central panels). However here, TBX5 slightly reduced (-1.6-

311 fold change) the effect of the IRX3/IRX5/GATA4/NKX2-5 quartet on SCN5A promoter (Fig 6E 

312 right panel) suggesting a down-regulating role of TBX5 in this global complex. Collectively, we 

313 showed that following IRX3, IRX5, GATA4, NKX2-5 and TBX5 gene expression increase during 
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314 cardiac differentiation, the direct activation of SCN5A expression is under the control of a 

315 time-changing multi-TFs complex that controls the temporal expression profile of SCN5A.

316

317 Fig 6. Physical and functional interactions of IRX3/IRX5/GATA4/NKX2-5/TBX5 multiprotein complex.

318 (A) Normalized mean expression level overtime of IRX3, IRX5, GATA4, NKX2-5, TBX5 and of SCN5A ion 

319 channel genes. UPM: UMI per million. (B-E) Co-immunoprecipitation and luciferase results associated 

320 to the transfection of (B) IRX3 and/or IRX5, (C) IRX3, IRX5 and/or GATA4, (D) IRX3, IRX5, GATA4 and/or 

321 NKX2-5, (E) IRX3, IRX5, GATA4, NKX2-5 and/or TBX5. Immunoblots representative of the various co-

322 immunoprecipitations and the schematic illustration of the results. Graphs display activity levels of 

323 luciferase that is under the control of the -2109/+1072 region of human SCN5A promoter, in the 

324 various transfection conditions. Mean +/- SEM; * and **: p < 0.05 and p < 0.0001, respectively (Mann-

325 Whitney test). See also Fig S3.

326

327 Discussion

328 In this study, based on a transcriptomic kinetics study on cardiac differentiation of 

329 hiPSCs, we identified the global TF regulatory network that is required for heart development. 

330 We notably identified novel time-dependent TF-gene regulations that connect IRX3 and IRX5 

331 to the core cardiac GATA4, NKX2-5 and TBX5 TFs. We also found that these five TFs form 

332 protein complexes to regulate target gene expression, such as SCN5A. Altogether, this time-

333 course bulk transcriptomic data provided a dynamic model relevant to identify new roles for 

334 TFs in developmental processes. 

335 In vitro modeling of time in cardiac development

336 This study demonstrates that hiPSC cardiac differentiation is a relevant model to study 

337 the successive steps leading to the establishment of the gene expression program during 

338 human cardiac development. To date, most studies contributing to the knowledge on heart 

339 development and TF regulation have been conducted in animal models, mainly in mice (27), 

340 as access to human embryonic cardiac tissue, is indeed very limited. If regulatory mechanisms 

341 of development are overall highly evolutionary conserved, some are human-specific (28,29). 

342 Therefore, investigation of human cardiac development also requires suitable human models. 

343 HiPSC cardiac differentiation models have proved to generate functional cardiac cells and 
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344 suggested that punctual time points during this differentiation might reflect some key 

345 developmental stages (7,30,31). However, fully assessing the relevance of hiPSC cardiac 

346 differentiation model to study human cardiac development, requires demonstrating that it 

347 thoroughly and accurately reproduces human cardiac development in a temporally 

348 coordinated fashion. All phenotypic changes that occur during cardiogenesis are known to be 

349 embodied by dynamic alterations in cellular transcriptome. Yet, although the ideal situation 

350 would be to compare transcriptomic changes along hiPSC differentiation to the ones occurring 

351 during human cardiac development, no public human transcriptomic dataset studying well-

352 distributed stages across the entire cardiac development is available. In the present study, we 

353 therefore used murine cardiac transcriptomic data generated from specific stages that 

354 appropriately rang from conception to birth (14), to compare with hiPSC cardiac 

355 differentiation data. Their high level of consistency confirmed that our hiPSC cardiac 

356 differentiation model accurately reproduces cardiogenesis. An important added value of the 

357 present data is that it filled a gap of knowledge on the global gene expression changes that 

358 occur daily, between these developmental stages in human cells. 

359 A major limitation of hiPSC-derived models is immaturity: cardiac cells produced by 

360 current hiPSC differentiation protocols have a fetal-like phenotype far from adult cells (32). 

361 Although this limitation does not affect the study of prenatal stages of cardiac development, 

362 obtaining mature cardiac cells would broaden the scope of these models to study later stages 

363 of development as well as aging processes.

364 In vitro modeling of cardiac development-associated cellular diversity 

365 Cardiomyocytes require substantial cell diversity to support both the proper execution 

366 of their biological functions and their differentiation, since many signaling pathways regulating 

367 their formation are sourced from other cell types (12,13). In this study, we confirmed that 

368 hiPSC cardiac differentiation generates the cellular diversity typically reported in the human 

369 fetal heart and thus provides the opportunity to investigate regulatory mechanisms occurring 

370 between these different cardiac cell types. However, hiPSC cardiac differentiation in two 

371 dimensions does not reproduce the spatial organization of the cell types as observed in the 

372 context of a heart. The emergence of more integrated hiPSC-derived models such as cardioids 

373 (33), will therefore undoubtedly enhance our insights into transcriptional regulation between 

374 cardiac cell types.
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375 Uncovering new regulatory networks using a gene expression kinetics-based strategy

376 An original aspect of this study was the identification of expression regulations 

377 occurring between TFs in a temporal manner. For that we chose to adapt the LEAP 

378 bioinformatic tool designed for single-cell data to kinetic transcriptomic bulk data (34). 

379 Importantly, with this tool, these gene regulations are oriented, indicating not only the 

380 interaction but also which partner is expected to be the target/source. This higher level of 

381 information is important to design more efficiently confirmation experiment, and cannot be 

382 obtain in traditionally-used protein-protein interaction databases, such as STRING (35). 

383 Moreover, our strategy allowed to biologically link genes in a time-dependent manner during 

384 cardiac differentiation, and thus provided important new insights on cardiac gene regulatory 

385 networks (36). Of note, one cannot exclude that some of the inferred links may not reflect 

386 biological interactions (e.g. TF does not directly bind to an inferred target gene). Other studies 

387 embarked in different strategies to study cardiac gene regulation. For instance, Gonzalez-

388 Teran et al. combined, PPI data associated with GATA4 and TBX5 TFs, and genetic data 

389 generated on patients presenting congenital heart diseases (CHD) to identify CHD candidate 

390 genes (37). This integrated strategy of PPI data and CHD-associated genetic data could be a 

391 relevant complementary approach of our chronological gene expression-based strategy in 

392 order to identify new CHD-associated TF regulatory networks and to offer a better 

393 understanding of cardiac disease underlying mechanisms.

394 Activation cascade of GATA4, NKX2-5, TBX5 genes triggered by IRX3 and IRX5

395 It is well established that cardiac transcription factors regulate the expression of other 

396 TF-coding genes. For instance, GATA4 activates NKX2-5 expression and both GATA4 and NKX2-

397 5 activates TBX5 expression (5,19–21). However, the precise molecular bases of these 

398 regulations were still to be uncovered. Using daily-generated transcriptomic data, we 

399 characterized the course of expression of these major cardiac TFs showing that, in accordance 

400 with the functional data, they are successively launched, starting with GATA4 around day 5, 

401 followed by NKX2-5 two days later and finally by TBX5 two days later too. Obviously, this raised 

402 the question of how GATA4 expression is, in the first place, launched. Using gene expression-

403 based network we identified IRX3 and IRX5 TFs as potential activators of GATA4 expression. 

404 Accordingly, the expression of these TFs was launched simultaneously about 1 day prior to 

405 GATA4 expression. These TFs are of growing interest as, while most studies were performed 
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406 in knockout mice showing that they play redundant roles in cardiac development leading to 

407 embryonic lethality, and in postnatal electrophysiological function, their role in human cardiac 

408 function now also emerges (7,38). In this context, the present study therefore further explored 

409 and specified the role of IRX TFs in the course of human cardiac development. 

410 Exploring the functional interplay between IRX3/IRX5 and GATA4, NKX2-5, TBX5

411 It is has been shown that GATA4, NKX2-5 and TBX5 act as multiprotein complex to 

412 regulate cardiac gene expression (19). Here, we completed this knowledge by showing that 

413 IRX3 and IRX5 can also physically bind to this TF regulatory complex. Furthermore, all five TFs 

414 could physically and functionally interact on the promoter of SCN5A that encodes the major 

415 cardiac sodium ion channel. Accordingly, SCN5A expression gradually increases during hiPSC 

416 cardiac differentiation, paralleling the progressive expression establishment of the five TFs. 

417 Some of the interactions between IRX TFs and GATA4, NKX2-5 or TBX5 have previously been 

418 published. For instance, physical and functional interactions between Irx3, Nkx2-5 and Tbx5 

419 have been shown in mice to regulate genes implicated in ventricular conduction system 

420 establishment and maturation (39). Furthermore, our group has previously demonstrated 

421 physical and functional interactions between IRX5 and GATA4 on SCN5A promoter (7). In this 

422 study we further detailed the complexity of the interactions between IRX3, IRX5, GATA4, 

423 NKX2-5 and TBX5, and how these TF complex compositions impact the expression of a target 

424 gene.

425 Perspectives

426 Altogether, this study provides a comprehensive dynamic blueprint of transcription 

427 factors that control transcriptional regulation during human cardiac development as well as a 

428 new methodological approach that may be applied to other research fields. These insights 

429 may help to further understand both pathological cardiac development leading to CHD, as 

430 well as physiological cardiac development, which is a prerequisite to emerging cardiac 

431 regenerative therapy strategies (40). Moreover, in recent years, transcription factor 

432 regulation of cardiac functions was widely supported by Genome Wide Association Studies, 

433 linking numerous common genetic variations at loci harboring TF genes to cardiac diseases 

434 ((41,42); Supplementary Table 1). Confronting the present knowledge to the one obtained 

435 from cardiac differentiation of hiPSCs reprogrammed from patients carrying such genetic 
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436 variants may provide important information regarding their impact on cardiac development 

437 and therefore may lead to new targets for treatment and clinical management improvement.

438 Limitations of the study

439 We have identified several limitations in our study. First, the kinetic transcriptomic 

440 analysis has been performed using bulk-based strategy, however, the use of single-cell 

441 analysis instead would have provided us with a better overview of the cellular transcriptomic 

442 diversity. Second, the limited sample size that has been used prevented us from identifying 

443 the impact of the gender and ethnicity on transcriptomic regulation. Therefore, further studies 

444 will have to investigate if the identified TF networks (1) are activated in a cell-specific manner, 

445 and (2) whether they are specific to gender and/or ethnicity. 

446 Materials and Methods

447 Reprogramming and maintenance of hiPSCs

448 All cell lines, from 3 healthy donors, were previously characterized. The hiPSC-A (C2a 

449 in (43)) line was generated using lentivirus method while hiPSC-B (IRX5-Wt in (44); 

450 RRID:CVCL_B5QD) and hiPSC-C (WT8288 in (45); RRID:CVCL_B5Q5) lines were generated using 

451 Sendai virus method. hiPSC lines were maintained at 37°C, 5% CO2, 21% O2 in StemMACSTM 

452 iPS Brew XF Medium (Miltenyi Biotec) on culture plates coated with Matrigel® hESC-Qualified 

453 Matrix (0.05 mg/mL, Corning). At 75% confluency, cells were passaged using Gentle Cell 

454 Dissociation Reagent (STEMCELLTM Technologies).

455 Cardiac differentiation of hiPSCs

456 Directed cardiac differentiations of hiPSCs were performed using the established 

457 matrix sandwich method (Fig 1A; (46)). Briefly, when hiPSCs reached 90% confluency, an 

458 overlay of Growth Factor Reduced Matrigel (0.033 mg/ml, BD Corning) was added. 

459 Differentiation was initiated 24h later by culturing the cells in RPMI1640 medium (Life 

460 Technologies) supplemented with B27 (without insulin, Life Technologies), 2 mM L-glutamine 

461 (Life Technologies), 1% NEAA (Life Technologies), 100 ng/mL Activin A (Miltenyi Biotec), 1X 

462 Pen/Strep (Life Technologies) and 10 ng/mL FGF2 for 24 hours. On the next day, the medium 

463 was replaced by RPMI1640 medium supplemented with B27 without insulin, 2 mM L-

464 glutamine, 1% NEAA, 10 ng/mL BMP4 (Miltenyi Biotec), 1X Pen/Strep and 5 ng/mL FGF2 for 4 
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465 days. By day 5, cells were cultured in RPMI1640 medium supplemented with B27 complete 

466 (Life Technologies), 2 mM L-glutamine, 1X Pen/Strep and 1% NEAA and changed every two 

467 days until day 30. Specifically, for video analysis and immunofluorescence staining, glucose 

468 starvation was performed to obtain purified cardiomyocyte population: at day 10 the medium 

469 was replaced by Depletion medium (RPMI 1640 medium without glucose (Life Technologies) 

470 supplemented with B27 complete, and 1X Pen/Strep) for 3 days. Cells were dissociated at day 

471 13 with 10X TrypLE solution (Life Technologies) and replated in CMs medium (RPMI1640 

472 medium supplemented with B27 complete, 2 mM L-glutamine, 1X Pen/Strep, 1% NEAA) 

473 supplemented with Y-27632 Rho-kinase inhibitor (STEMCELLTM Technologies). On day 14, the 

474 medium was replaced by Depletion medium for 3 days. From day 17, cells were maintained in 

475 CMs medium.

476 Bulk transcriptomics

477 RNA extraction and sequencing

478 For each hiPSC line, samples were harvested daily from D-1 to D30 of the cardiac 

479 differentiation protocol from three independent cardiac differentiations. Total RNA were 

480 extracted using the NucleoSpin RNA kit (MACHEREY-NAGEL) and their quality assessed by 

481 NanoDropTM 1000 Spectrophotometer (Thermo Fisher Scientific). From D-1 to D14 samples, 

482 all cells were collected while, from D15 to D30, to obtain samples enriched with 

483 cardiomyocytes, only spontaneously beating cell clusters were collected following mechanical 

484 isolation using a needle. 3’RNA libraries were prepared by GenoBiRD core facility according to 

485 their published method (47) and sequenced on 8 individual runs on a NovaSeq 6000 or HiSeq 

486 2500 Sequencing System (Illumina).

487 Primary analysis of bulk transcriptomic data

488 Demultiplexing, alignment on GRCh38 reference genome and counting steps were 

489 conducted on each sequencing run with the Snakemake pipeline developed by the GenoBiRD 

490 core facility (47). Normalized and log-transformed expression matrices were generated using 

491 the multiplates function correcting potential batch effects by treating cardiac differentiation 

492 time points as replicates.

493 PCA
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494 Principal Component Analysis (PCA) was performed with the R package FactoMineR 

495 ((48); RRID:SCR_014602) on the entire mean-centered and log-transformed matrix.

496 Time-course gene expression analysis

497 Genes with significant expression variation between the different cardiac 

498 differentiation time-points (indicated as Differentially Expressed Genes; DEG) were identified 

499 by multivariate empirical Bayes statistics using the R package timecourse ((49); 

500 RRID:SCR_000077) applied to the entire log-transformed matrix. We selected the top 3 000 

501 DEG based on their highest Hotelling 𝑇2 statistics. The same method was used to select genes 

502 with significant expression variation during murine cardiac development from a published 

503 transcriptomic dataset (14). When necessary, human and murine orthologous gene names 

504 were identified using the R package biomaRt ((50); RRID:SCR_019214) and Ensembl databases.

505 Clustering and heatmap

506 DEG were grouped into clusters, based on their expression level variation across the 

507 288 samples, using the R function k-means set on 2 000 iterations, and visualized with the R 

508 package ComplexHeatmap ((51); RRID:SCR_017270).

509 Gene Ontology analyses

510 Gene Ontology (GO) analysis was performed using the R package ClusterProfiler ((52); 

511 RRID:SCR_016884), based on GO Biological Process terms from org.Hs.eg.db_3.14.0 and 

512 org.Mm.eg.db_3.14.0 databases for human and mouse annotations, as appropriate. 

513 Significantly enriched (bonferroni-corrected p-value < 0.05) biological processes, as compared 

514 to reference transcriptome, and with a Gene Set Size (GSSize) between 10 and 500, were 

515 considered for further analysis. The 15 GO terms with the lowest corrected p-value were 

516 visualized with treeplot.

517 Network construction and analysis

518 For each hiPSC line, the gene regulatory network was inferred using the R package 

519 LEAP (Lag-based Expression Association for Pseudotime-series; Specht and Li, 2017), based on 

520 the average from the log-transform data of triplicate cardiac differentiations. Cardiac 

521 differentiation time points were used to rank samples as required by the LEAP tool. The 

522 max_lag_prop parameter was set to 1/10, meaning that, at most, 3-day windows were used 
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523 to calculate the maximum absolute correlation (MAC) score. Only links with a significant MAC 

524 score (determined by a permutation test; p-value < 0.05) and related to a non-null time delay 

525 were considered. Links with a positive correlation score were interpreted as activation 

526 relationships and those with a negative correlation score as repression relationships. STRING 

527 software (35) was used to obtain information on physical and functional interactions between 

528 proteins of interest, with a minimum required interaction score of 0.4. Nodes without any 

529 interaction were excluded. STRING-based or LEAP-based interactions were processed using 

530 Cytoscape 3.9.1 for network reconstruction ((53); RRID:SCR_003032). Networks parameters 

531 were obtained using the Analyze network function.

532 Single-cell transcriptomic

533 Single-cell RNA-seq data generation

534 Cells at D30 of hiPSC-A cardiac differentiation were harvested from three distinct 

535 beating wells, dissociated, using the Multi Tissue Dissociation Kit 3 (Miltenyi Biotec), and 

536 pooled. This experiment was performed in duplicates. Cell suspensions were filtered on a 40 

537 µm Flowmi® Cell Strainer, counted and cell viability was assessed (viability was 92% for the 

538 first experiment and 94% for the second). For each replicate, single-cell droplet libraries were 

539 generated from 16 000 cells with the Chromium Single Cell 3ʹ GEM, Library & Gel Bead Kit v3 

540 (10X Genomics). After qPCR quantification, libraries were pooled and sequenced on a single 

541 run, on a NovaSeq 6000 Sequencing System (Illumina), providing a read depth of >20,000 read 

542 pairs per cell, according to manufacturer’s instructions.

543 Primary analysis of single-cell transcriptomic data

544 Data were processed using cellranger 4.0.0 (10X Genomics). First, demultiplexing of 

545 raw base call files into FASTQ files was accomplished using cellranger mkfastq function. 

546 Second, alignment on GRCh38 reference genome, filtering and counting steps were 

547 performed separately on each replicate with cellranger count function. Lastly, aggregation 

548 with normalization of duplicates was performed using cellranger aggr function.

549 Secondary analysis of single-cell transcriptomic data

550 The gene expression matrix was analyzed using the R package Seurat ((54); 

551 RRID:SCR_016341). Doublets were identified and removed using the R package DoubletFinder 
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552 ((55); RRID:SCR_018771), assuming a 7.5% doublet formation rate. Also, only cells with 200 to 

553 5 000 detected features and with <25% reads aligned to mitochondrial genes were selected 

554 for further analysis. After normalization, unwanted sources of intercellular variations such as 

555 number of detected genes or differences between cell cycle phases were regressed using the 

556 ScaleData function. A principal component analysis was then performed using the 2 000 most 

557 variable genes according to the FindVariableFeatures function and the first 10 components 

558 were used to calculate the UMAP. Cell-type labelling was performed using published single-

559 cell RNA-seq data from a human fetal heart as a reference (4). Cell-type labels from reference 

560 were automatically transferred after cell-to-cell matching at the individual cell level using the 

561 R package CellID (56).

562 Musclemotion

563 hiPSC-CMs were filmed after glucose starvation at D30 in routine culture condition 

564 (37°C, 5% CO2), without electrical stimulation, using Nikon A1 RSI confocal microscope with 

565 X20 Dry N.A 0.75 objective. MUSCLEMOTION software (Gaussian Blur: No; Speed Window: 5; 

566 Noise Reduction: Yes; Automatic Reference Frame Detection: Yes; Transient analysis: Yes; (57)) 

567 was used to obtain contraction traces from 120fps videos. Contraction profiles were analyzed 

568 using homemade R pipeline.

569 HEK293 cell culture and transfection

570 HEK293 cells were maintained at 37°C, 5% CO2, in DMEM media with 10% FBS, 5% L-

571 Glutamine and 5% Pen/Strep. Cells were plated in 24-well plate or 6-well plate and transfected 

572 next day using FuGENE® 6 (Promega, E2691). For luciferase assay, cells were transfected with 

573 a total of 2µg of plasmid including: (1) pGL2-Renilla plasmid, (2) plasmid containing Firefly 

574 luciferase gene upstream promoter of interest and (3) expression plasmids coding for proteins 

575 of interest (Table 1). DNA quantities were equalized in each condition using empty pcDNA3.1 

576 plasmid. Media was changed 24h post transfection, and cell lyses performed 48h post 

577 transfection. For co-immunoprecipitation, cells were transfected only with expression 

578 plasmids prior lysis 24h post transfection.

579 Co-immunoprecipitation

580 Protein sample extraction and quantification
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581 Previously transfected HEK293 cells were lysed (4°C, 15min, with rotation) in lysis 

582 buffer: 1% TritonX-100, 100mM NaCl, 50mM Tris-HCl, 1mM EGTA, 1mM Na3VO4, 50mM NaF, 

583 1mM phenylmethylsulfonyl fluoride, protease inhibitors cocktail (Sigma-Aldrich, P8340), and 

584 centrifuged at 15 000g (4°C, 15 min). Protein quantification was carried out using Pierce™ BCA 

585 Protein Assay Kit (Thermo Fisher, 23225). 

586 Bead-antibody complexes preparation

587 Co-Immunoprecipitation was performed using Dynabeads® Protein G (Invitrogen, 

588 10004D) and DynaMag™-2 Magnet (Invitrogen, 12321D). First, 12.5µL of beads were 

589 conjugated (Room temperature (RT), 40min, with rotation) with 2µg of antibody (Table 1). The 

590 bead-antibody complexes were cross-linked (RT, 30min, with rotation) using 5,4mg/ml 

591 dimethyl pimelimidate (ThermoScientific, 21667). The cross-linking was quenched with 50mM 

592 Tris pH7.5 (RT, 15min, with rotation). Beads were washed using (1) PBS 1X, (2) 0.1M citrate 

593 pH3.1, (3) Na-phosphate solutions, then incubated in PBS 0.5% NaDOC (RT, 15min, with 

594 rotation) and were finally washed with lysis buffer.

595 Immunoprecipitation and western blotting analysis

596 Bead-antibody complexes were incubated with 1mg protein samples (4°C, 2h, with 

597 rotation). Supernatant was then discarded and beads were washed 3 times with lysis buffer. 

598 Beads-protein complexes were then heated (50°C, 10min) in NuPAGE™ LDS Sample Buffer (4X) 

599 (Invitrogen, NP0008). Samples were magnetized prior supernatants collection and incubated 

600 (70°C, 10min) in NuPAGE® Sample Reducing Agent 10X (Invitrogen, NP0009). Finally, samples 

601 were loaded onto a 4–15% precast polyacrylamide gel (Biorad, 4568083) together with 10μg 

602 of total protein used as control. Revelation was performed using corresponding antibody 

603 (Table 1) with ECL Clarity Max (Biorad, 1705062). Images were acquired with ChemiDoc 

604 camera (Biorad) and analysed using Image Lab Software (Biorad).

605 Table 1. Plasmids and antibodies references

Plasmid Name Sequence/Reference Supplier

Nkx2.5 promoter - FireflyLuc -2000bp_Start codon Vectorbuilder
GATA4 promoter - FireflyLuc -1800_TSS_+200 Vectorbuilder
Tbx5 promoter - FireflyLuc -1800_TSS_+200 Vectorbuilder
SCN5A promoter - FireflyLuc -2109_TSS_ +1072 Adapted from (7)
pGL2 Renilla luciferase Promega
IRX5 RG234228 Origene
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IRX3 RG205722 Origene
GATA4 RC210945 Origene
Tbx5 SC120046 Origene
Nkx2.5 SC122678 Origene
pcDNA3.1 Invitrogen

Antibody Reference RRID Supplier
anti-GFP TA150041 AB_2622256 Origene
anti-Myc Tag 05-724 AB_309938 Merck Millipore
anti-IRX5 sc-81102 AB_1124818 Santa Cruz
anti-IRX3 sc-166877 AB_10609525 Santa Cruz
anti-GATA4 sc-25310 AB_627667 Santa Cruz
anti-Tbx5 sc-515536 Santa Cruz
anti-Nkx2.5 sc-8697 AB_650280 Santa Cruz
anti-Troponin I sc-15368 AB_793465 Santa Cruz
Mouse IgG Isotype Control 02-6502 AB_2532951 Thermo Fisher Scientific

606 Luciferase assay

607 Cells were lysed according to the manufacturer recommendations and luciferase 

608 activity was measured using Dual Luciferase reporter assay system (Promega, E1910) with 

609 Varioskan™ LUX microplate reader (Thermofisher). Mann-Whitney statistical tests were 

610 performed with Prism software (v8.0.1).

611 Immunofluorescence

612 Cells were fixed with 4% paraformaldehyde for 15min at room temperature (RT) in 

613 Matrigel®-coated µ-Slide 8 Well (IBIDI) prior permeabilization with 0.1% PBS-BSA 1% Saponin 

614 (RT, 15min) and blocking with 3% PBS-BSA (RT, 30min). Cells were then incubated with primary 

615 antibodies (dilution 1/250) in PBS 0.1% BSA 0.1% Saponin solution (4°C, overnight). Finally, 

616 cells were washed and incubated with secondary antibodies and DAPI (RT, 1h) and stored in 

617 0.5% paraformaldehyde (4°C). Images were acquired using an inverted epifluorescence 

618 microscope (Zeiss Axiovert 200 M).

619 TF and cardiac phenotypes association

620 The association between cardiac phenotypes and transcription factors was performed 

621 using the DisGeNET (v7.0; (58)) and NHGRI-EBI GWAS Catalog (59) databases, filtering on 

622 cardiovascular traits, which were then manually validated.
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819 Supplemental information titles and legends

820 Fig S1 – Transcriptomic signatures of cell types generated by hiPSC cardiac differentiation. 

821 Heatmap displaying expression levels of the top 5 markers of each cell population found in Fig 

822 1D. Markers were identified using the FindAllMarkers function from the R package Seurat.

823

824 Fig S2 – Expression profile and functional annotation of the top 3 000 differentially 

825 expressed genes during murine cardiac development, and comparison with hiPSC cardiac 

826 differentiation gene expression dataset. 

827 For each cluster, average gene expression level during murine cardiac development (left panel 

828 for each cluster) and their human orthologs during hiPSC cardiac differentiation (right panel 

829 for each cluster) are shown. Replicates of gene expression levels were averaged for murine 

830 data (n=3 to n=6 per timepoint, depending on the stage) and hiPSC cardiac differentiation (n=3 

831 per hiPSC line and per timepoint). The 15 most significantly related GO terms are displayed on 

832 the middle panel for each cluster.

833

834 Fig S3 – Original western blots related to Fig 6.
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