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Abstract

This is a supplementary note to the manuscript ‘Deciphering causal genomic
templates of complex molecular phenotypes’. We describe the concepts and algo-
rithms introduced in the main manuscript. We give our definition of phenotype
sequence alignment (PSA) in Section 1. We define our Neural Alignment of CMPs
and Reference genome (NACR) algorithm, used to identify PSAs, in Section 2. In
Section 3, we explain the causal phenotype sequence alignment procedure (CPSA),
which finds a locations within a PSA corresponding to phenotypic edits, and we
define the experimental conditions for a PSA to be considered a template.

1 Phenotype Sequence Alignments

A PSA is a copy (in a precise sense) of a complex molecular phenotype in the genome. We
formalize our notion of complex molecular phenotype (CMP) in Section 1.1. We formulate
the genome as a metric space in Section 1.2. Finally, we define PSAs in Section 1.3.

1.1 Complex molecular phenotypes

We define a complex molecular phenotype (CMP) to be a measured metric space:

Definition 1 A complex molecular phenotype (CMP) is a triple (X, d, p), where X is a
set, d is a metric on X, and p is a probability measure on X.

For background on measured metric spaces relevant to our application, see (Mémoli,
2017). We consider two examples of CMPs:

1. X = R#genes, d is the Euclidean metric, and p is the distribution of (log) gene
expression measurements for single-cells in a biological experiment.

2. X = R#cell-types, d is the Euclidean metric, and p is the distribution of (log) cell
type counts for patches of cells extracted from a tissue via an imaging experiment.

In practice, we will work with empirical distributions p with finite support within X.
Note that the support is a subset of X, not X itself. We refer to the pair (X, d) as the
phenotype space of the CMP and this empirical distribution p as the points of the CMP.

1.2 The genome as a metric space

We formulate the genome in a way that enables searching for copies of CMPs within it.
For this, we introduce the notion of k-mer functional. A k-mer s is a nucleotide string
of length k; i.e., an element of the set Sk := {A, T,C,G}k. For example, the nucleotide
string AAG ∈ S3 is a 3-mer.

Definition 2 A k-mer functional λ : Sk → R assigns a real value to each element of Sk.
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Remark 3 k-mer functionals provide a natural way to restrict the complexity of real
valued functions evaluated at each position in the genome, and will enable computationally
finding PSAs, as discussed in the following sections.

The support of a k-mer functional is the set of k-mers at which the functional takes
non-zero value. The k-mer functionals are direct generalizations of k-mers: a k-mer s ∈ Sk
corresponds to the functional that takes value 1 at s, and is 0 at all other k-mers.

We now represent a genome as a metric space of k-mer functionals.

Definition 4 Let G be a genome sequence. The metric space of k-mer functionals of G,
denoted Mk(G), is the vector space of k-mer functionals supported on k-mers in G, with
distance between k-mer functionals λ and µ equal to

d(λ, µ) =

(
1

N

∑
s

(λ(s)− µ(s))2

) 1
2

, (1)

where s runs over all k-mers in G and N is the number of k-mers in G.

Remark 5 The distance in (1) equals

d(λ, µ) =

(
1

N

∑
s

ns(λ(s)− µ(s))2

) 1
2

,

where s sums over the unique k-mers in G and ns is the number of times s occurs in G.

In the manuscript, where it is unambiguous, we refertoMk(G) as ‘the genome’. Note
that a single genome is a metric space of k-mer functionals, not an individual k-mer
functional.

1.3 Phenotype sequence alignments

Now that we have represented both CMPs and the genome as metric spaces, we can define
phenotype sequence alignments. Let supp(p) denote the support of a distribution p.

Definition 6 Let P = (X, d, p) be a complex phenotype and G be a genome sequence. A
phenotype sequence alignment (PSA)of P with G is a function T : X → Mk(G) such
that

sup
x,y∈supp(p)

(d(T (x), T (y))− d(x, y)) = 0. (2)

We make some remarks on Definition 6:

• With no restriction on the map T , PSAs for a CMP with finitely supported prob-
ability measure exist with any genome with sufficiently many unique k-mers. The
empirical results of the main manuscript explore relevant restrictions on T for iden-
tification of biologically meaningful PSAs.

• Given restrictions on the complexity of T , we do not expect there to always exist
exact PSAs; the term PSA is used in the main manuscript to refer to local minimizers
of the magnitude of the quantity on the left hand side of (2).
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• The notion of distance in (1) is the∞-Gromov-Wasserstein distance (Mémoli et al.,
2017). It can be relaxed to q-Gromov-Wasserstein distances by replacing (2) by∫

|d(T (x), T (y))− d(x, y)|q dp(x)dp(y) = 0.

Exploration of such relaxations is outside the scope of this work.

2 Neural Alignment of CMPs with a Reference genome

In the following, let (X, d, p) be a CMP and let G be a genome sequence. Our compu-
tational strategy to find approximate PSAs is called “Neural Alignment of CMPs with a
Reference genome” (NACR). It is defined as follows:

1. Define a map Tθ : X →Mk(G) by:

Tθ(x)(s) = 〈Fθ(x), Gθ(s)〉,

where Fθ : X → Rm and Gθ : {A, T,C,G}k → Rm are neural networks parameter-
ized by θ. The map Fθ is called the phenotype-embedding network. Its input is a
point x ∈ X in phenotype space and its output is a point in Rm. The map Gθ is
called the sequence-embedding network. Its input is a k-mer s ∈ {A, T,C,G}k and
its output is a point in Rm. The space Rm is a latent inner product space.

2. Fix a batch B of samples from the phenotype distribution and a set S of k-mers
from G. An overall loss function is computed from the following three loss functions:

• An isometry deviation loss:

Lisom = max
(x,y)∈B×B

∣∣∣∣∣ 1

|S|
∑
s∈S
|Tθ(x)(s)− Tθ(y)(s)|2 − d(x, y)2

∣∣∣∣∣
≈ max

(x,y)∈B×B

∣∣d(Tθ(x), Tθ(y))− d(x, y)2
∣∣ .

The quantity on the second line is a Monte Carlo estimate, since S is a sample
of k-mers from G.

• A sparsity regularization loss:

Lsp =
∑
x∈B

∑
s∈S
|Tθ(x)(s)|.

This encourages the model to be nonzero on a small number of genomic regions
(which can be subsequently interpreted).

• A complexity regularization loss Lc. This is the usual `2 loss on neural network
weights and is included to limit the complexity of the functionals in the trained
model.

3. The overall loss Lisom + αLsp + βLc is minimized by stochastic gradient descent,
sampling sequence batches S and data batches B.

A null alignment, used for statistical hypothesis testing, is obtained by randomly
initializing but not training the neural networks of NACR.
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3 Causal phenotype sequence alignment

We defined PSAs in Section 1, and NACR, a computational strategy to identify approx-
imate PSAs, in Section 2. We now describe our procedure for generating predictions
whose verification establishes whether a PSA is a template. This procedure is termed
“causal phenotype sequence alignment” (CPSA), because it generates predictions about
which genomic loci are causally sufficient to achieve an edit to a CMP.

We define the discrepancy functional for a phenotypic edit in Section 3.1. The genomic
loci where the discrepancy functional for an edit is high are those loci in the PSA predicted
to achieve the edit. We discuss how to compute the discrepancy functional in Section 3.2.

3.1 The discrepancy functional

We define edits to a CMP in Section 3.1.1 , before defining the discrepancy functional in
Section 3.1.2 and the CPSA procedure in Section 3.1.3.

3.1.1 Edits to a CMP

In the manuscript, we pictured edits as moving around the points of a CMP (see Figure
1B.2 in the main manuscript). We make this mathematically precise:

Definition 7 Let P = (X, d, p) be a CMP. An edit to P is a probability distribution
π(x, y) on X ×X that marginalizes over the second argument to p:

p(x) =

∫
X

π(x, y)dy.

The edited CMP is (X, d, q) where q(x) =
∫
X
π(x, y)dx.

This definition of edit corresponds to moving points of the CMP in a probabilistic way, as
follows. Suppose we have a CMP (X, d, p) where p is a probability distribution given by
uniformly weighting points in the set A := {x1, . . . , xn} ⊂ X. Then moving around
the points of the CMP corresponds to selecting a function m : A → X, which de-
fines the probability distribution on X × X that assigns a uniform weight to points
in {(x1,m(x1)), . . . , ((xn,m(xn)))} ⊂ X × X. Thus, given an edit π(x, y) of p, π(y|x)
represents the probability that a point x ∈ X is sent by the edit to y.

3.1.2 The discrepancy functional

We now define a k-mer functional corresponding to a given edit to a CMP.

Definition 8 Let P = (X, d, p) be a CMP, G be a genome sequence, T : X → Mk(G).
The discrepancy functional dTπ(s) of T for an edit π at the k-mer s is:

dTπ(s) =

∫
X×X

π(x, y)(T (x)(s)− T (y)(s))2dxdy.

If the edit corresponds to shifting a single cluster mean from x ∈ X to y ∈ X, the k-mers
that have a high discrepancy are those where T (x) differs highly from T (y).
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We provide intuition for this definition of the discrepancy functional. Intuitively, the
cost of an edit π to a CMP can be expressed in terms of how far each point moves, i.e.,

|π| :=
∫
X×X

d(x, y)2dπ(x, y)

If T is a PSA, for all edits π of P, we have

|π| =
∫
X×X

d(x, y)2dπ(x, y)

≈
∫
X×X

1

N

∑
k−mers s in G

(T (x)(s)− T (y)(s))
2
dπ(x, y)

=
1

N

∑
k−mers s in G

dTπ(s),

where the ≈ is based on the assumption that T approximately preserves distances. There-
fore, the value of the discrepancy functional at a k-mer can be interpreted as how much
that k-mer contributes to the cost of the edit.

3.1.3 Selecting the edits

We want CPSA to make predictions whose experimental validation can be regarded as
confirming that a given PSA is a template. We model an experiment as observing an
original CMP P = (X, d, p), making some perturbation to the genome, and subsequently
observing a new CMP Q = (X, d, q). Therefore CPSA takes as input a “target” CMP
Q = (X, d, q) and predicts genomic loci whose manipulation is predicted to achieve a
change from the original CMP to the target CMP.

Given two distributions p and q on X, there are multiple distributions on X × X
that marginalize to p and q in each factor respectively. Therefore, CPSA has to make an
additional assumption on which edit to choose.

Definition 9 Causal phenotype sequence alignment (CPSA) is the procedure with input:

• An observed CMP P = (X, d, p) in an organism with genome G,

• A PSA T : X →Mk(G), and

• A target CMP Q = (X, d, q).

The output is the functional dTπ∗ , where π∗ is the optimal transport coupling between p
and q; i.e. the distribution on X ×X that minimizes the cost

|π| :=
∫
X×X

d(x, y)2dπ(x, y)

subject to ∫
X

π(x, y)dy = p, and

∫
X

π(x, y)dx = q

For background on optimal transport, see (Peyré and Cuturi, 2019).
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3.2 CPSA in practice

We now discuss the practical considerations for computationally implementing CPSA.
We discuss the implementation in Section 3.2.1 and its limitations in Section 3.2.2.

3.2.1 Implementation of CPSA

When editing CMPs in the manuscript, distributions considered are represented as the
mean and frequency of different non-overlapping subsets of the data (i.e., clusters of cells
in Figure 3, or the set of image patches from a patient sample in Figure 4J). Specifically,
the CMP is an empirical distribution on phenotype space (p1, x1), . . . (pm, xm) where
pi denotes the weight assigned to xi and the target CMP is an empirical distribution
(q1, y1), . . . (qn, yn).

The output of CPSA is the discrepancy functional, as defined above. The general
procedure is:

• Compute the optimal transport coupling between p and q

π∗ = arg min |π|

using an empirical optimal transport solver (Flamary et al.).

• For each k-mer s, compute

dT (π∗)(s) =
∑
i,j

π∗i,j |T (xi)(s)− T (yi)(s)|2.

This expression can be computed using the trained genotype-embedding and phenotype-
embedding networks of NACR, defined in Section 2.

The discrepancy functional for a phenotypic change is subsequently aggregated over an-
notated genomic regions (genes, promoters, codons) for biological interpretation.

3.2.2 Limitations of the implementation

We conclude this supplementary note with some remarks on the limitations of CPSA.

• Working with empirical distributions corresponding to cluster means and frequencies
ignores the covariance structure of the distribution for each cluster.

• In the special case that the phenotypic change shifts one cluster mean x to mean
x + δx, without changing the frequencies of clusters), we assume that the optimal
transport coupling is given by translation π : x 7→ x + δx. Thus, the discrepancy
functional is assumed to be:

dTπ(s) = (T (x)(s)− T (x+ δx)(s))2.

• The use of optimal transport couplings as defined here does not incorporate local
sources and sinks for the measures in question (in the same way that searching
for exact matchings between sequences does not allow for insertions or deletions).
Other notions of coupling may provide a more effective and biologically relevant
discrepancy computation.
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