Single-cell RNA sequencing identifies regulators of differentiation and nutritional cues in *Drosophila* female germ cells

Zhipeng Sun¹², Todd G. Nystul³, Guohua Zhong¹²

¹ Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs; South China Agricultural University, Guangzhou 510642, China; szp617488580@outlook.com (Z.S.);

² Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.

³ UCSF, Department of Anatomy, 513 Parnassus Ave, San Francisco, CA 94143, USA.

* Corresponding author: todd.nystul@ucsf.edu; guohuazhong@scau.edu.cn (G. Zhong); Tel.: +86-20-85280308.
ABSTRACT:

Key words: single cell RNA sequencing; germline stem cell; *eggpl*; gene expression pattern; GSC regulatory network

Drosophila ovarian germline stem cells (GSCs) are powerful model for stem cell research. However, due to the scarcity of GSCs in ovarian tissue, it is difficult to obtain the transcriptional profile of GSCs and identify novel GSC markers. In this study, we took advantage of single cell RNA sequencing (scRNA-seq) to profile the germline cells and somatic cells in wild type *Drosophila* ovary. We then performed an *in vivo* RNAi screen and network analysis to identify genes that are involved in the early stages of germ cell differentiation. We identified 33 genes with limited expression during early germ cell development and identified 19 genes that potentially regulate germ cell differentiation. Among these, an uncharacterized gene, which we named *eggplant (eggpl)*, is highly expressed in GSC and downregulated in early daughter cells. Upon RNAi knockdown of *eggpl*, we observed an increase in germ cell proliferation, an accumulation of cysts in the early mitotic (2- and 4-cell) stages and an increase in overall ovary size compared to control when flies were maintained on a standard diet. In flies fed a rich yeast diet, the expression of *eggpl* was significantly lower and the effects of *eggpl* RNAi were suppressed, suggesting that downregulation of *eggpl* may link nutritional status to germ cell proliferation and differentiation. We also found that the matrix metalloproteases, *Mmp1* and *Mmp2* as well as the tissue inhibitor of metalloproteases (*Timp*) are additional regulators of *eggpl*. Collectively, this study provides new insight into the signaling networks that regulate early germ cell development and identifies *eggpl* as a key player in this process.

1. Introduction

The female reproductive system of *Drosophila melanogaster* has been well studied to understand the complex regulation of germline development (1, 2). Structurally, *Drosophila* ovary is made of 16-20 ovarioles, and 2-3 germline stem cells (GSC) reside in the anterior-most region of each ovariole (3). The GSCs reside in a specialized niche microenvironment and divide asymmetrically to produce one daughter cell which maintains the stem cell identity and another daughter cell that is displaced away from the niche and initiates differentiation as a cystoblast (CB). The CBs undergo four rounds of synchronous mitosis with incomplete cytokinesis, which eventually give rise to 15 nurse cells and 1 oocyte. Within the stem cell niche, several short-range extrinsic signals and intrinsic stemness-promoting factors are crucial to maintain the GSCs self-renewal and differentiation. The action of these signals is patterned by the somatic niche cells, which comprises terminal filament cells (TFs), cap cells (CpCs) and escort stem cells (ESCs) (4-6). *Decapentaplegic (dpp)* is one of the necessary and sufficient niche-derived factors for GSC maintenance. A high level of dpp signaling activity activates the bone morphogenetic proteins (BMP) signaling pathway to transcriptionally silence the expression of differentiation promoting factor bag-of-marbles (bam), and sustains GSC identity. In contrast, CB positioned outside the niche experiences a weaker Dpp signal and triggers bam expression for differentiation (7). The escort cells (ECs) also express Epidermal Growth Factor (EGF) to promote a differentiation program in CB by repress the transcription of *division abnormally delayed (dally)* (8). In addition, both nuclear organization and chromatin modification are also play a key role in the regulation of GSC homeostasis. For example, it was reported that a linker histone H1 is intrinsically required for GSC maintenance, since the depletion of H1 in the germline cells would lead to premature expression of Bam and the loss of GSCs (9). Similar to *scrawny (scny)*, an H2B ubiquitin protease, it is highly expressed in GSCs to suppress methylation at lysine residues and functionally repress target genes. Loss of *scny* results in early expression of Bam (10). It has also been shown that *dSETDB1* or *eggless (egg)*, a histone methyltransferase, was responsible for GSC fate. Depletion of egg...
in GSC impairs self-renewal, while the egg-deficient GSCs could differentiate normally (11). In addition, stonewall (Stwl), a chromatin-associated protein which acts as a dominant Suppressor of variegation, is enriched in GSCs (12). Mei-P26 suppresses transcripts that promote differentiation in CBs by antagonizing miRNA pathway. However, zpg is essential to activate the differentiation of GSC progeny (13). Therefore, the proper balance of intrinsic and extrinsic gene expression is imperative for GSC self-renewal and differentiation.

An additional layer of regulation of the GSC niche comes from signals that communicate the availability of a rich diet. On high protein diet, GSCs and their descendent exhibit an increased rate of division and differentiation, and this response to diet is regulated by the evolutionarily conserved insulin signaling pathway. Neurosecretory cells in the brain produce the insulin-like peptides (DILPs), which directly regulate the G2 phase of GSC division and stimulate cyst growth (14-15). In flies fed a yeast-rich diet, the ovary size and egg production are significantly increased. (16). This is due to the action of insulin on the GSC niche cells, which facilitates GSC proliferation and maintenance, in part by promoting the extension of escort cell membranes to wrap around GSC and cysts (17). The membrane extensions are regulated by a membrane protein, Failed axon connections (Fax), which is induced by S6K activation downstream of the insulin receptor. Insulin also acts on cap cells to promote Notch Signaling and stimulate the physical adhesion between cap cells and GSCs through E-cadherin (18). However, the downstream response in germ cells to these nutrient-activated cues is not well understood.

In this study, we identified 33 genes that are differentially expressed during early germ cell development and that 19 of these are required for germ cell function. These genes were identified by scRNA-seq analysis of adult wildtype ovaries followed by validation of expression patterns in vivo and an RNAi screen for GSC decrease/increase, GSC loss and tumor formation. In addition, network analysis of the differentially expressed genes in undifferentiated germ cell-1 and -2 clusters revealed several common nodes. Among the genes we identified CG32814, is an uncharacterized gene which we have renamed eggplant (eggpl). We found that eggpl is specifically expressed in GSC at transcriptional level, but Eggpl protein is detectable in germ cells throughout Region 1. We find that eggpl is also expressed in larval male and female gonads and in adult testes as well. We also found that cell cycle in germ cell cysts was accelerated and the ovaries were larger in flies in which eggpl was depleted, either by RNAi or in a CRISPR knockout. In contrast, in flies fed a rich yeast diet, eggpl expression was reduced and the difference in germ cell proliferation rates and ovary size between the control and eggpl knockdown genotypes was reduced. Notably, we found that the MMP-dependent Timp pathway is an additional regulator of eggpl in germ cells. Taken together, these findings reveal the regulators that controls early germ cell differentiation and coordinate the rate of germline stem cell division with nutrient availability.

2. Materials and Methods

2.1. Fly stocks and fly husbandry

The gene names, genetic symbols, and detailed information about fly strains applied in this study are presented in the text and in FlyBase. All fly stocks were maintained at 25°C and reared on standard cornmeal agar food. For RNAi experiments, crosses were set up at 18°C and adults were transferred to 29°C upon eclosion for 7-9 days. The following flies were used in this study: y w1118, nos-Gal4/CyO; tub-Gal80*/TB, vasa-EGFP, nos-Gal4, UAS-Timp, UAS-Timp-RNAI, UAS-Mmp1-RNAI, UAS-Mmp1 f22225A, UAS-Mmp1 fDN10.Px, and UAS-Mmp2-AGPI (gifts from Suning Liu, South China Normal University, China), bam-GFP (a gift from Yu. Cai, Temasek Life Sciences Laboratory, Singapore).

The RNAi fly lines were obtain from Bloomington Stock center or Tsinghua Fly center and a full list of genotypes is provided as Supplementary Information (Supplementary Table 2).
2.2. Ovarian cell suspension for scRNA-seq

Newly emerged virgin female flies were fed for 1 week to encourage ovarian growth, then 150 flies were dissected in a petri dish containing 1 mL of S-FBS (Serum-free Schneider’s insect medium (Sigma-Aldrich, cat. no. S0146) supplemented with 10% (v/v) fetal bovine serum (FBS), heat inactivated (Sigma-Aldrich, cat. no. F4135)) under the microscope (Leica, SAPO, Germany). After dissection, we discarded S-FBS and added 1 mL of PBS to rinse ovaries in a 1.5-mL centrifuge tube, and allowed samples to settle for 5 min, and then rinsed them twice with PBS. Dissociation was carried out at room temperature in 700 μl of dissociation medium by adding 70 μl of 5% (w/v) trypsin (Invitrogen, cat. no. 27250-018) and 70 μl of 2.5% (w/v) collagenase (Invitrogen, cat. no. 17018029) to 560 μl of PBS, and incubated for 15 min with continuous shaking. After incubation, the ovarian cell suspension was pipette into a 40-μm mesh cell strainer, and filtered suspension into a 1.5-mL centrifuge tube containing 500 μl of S-FBS. Then, the empty tube and cell strainer were washed by 100 μl of S-FBS respectively to collect the remaining cells. The cell suspension was collected by centrifuging 5 min at 425 × g, 4°C, and discarded the S-FBS and resuspended the pellets in each tube with 200 μl of serum-free Schneider’s insect medium, after that we combined the suspensions into one tube. Following, the cell viability was examined by using 0.4% trypan blue (Solarbio, cat. no. T8070) in the proportion of 1:1, and counted by a hemocytometer. The concentration of cell suspension was 1.37×10^6 cells/ml, and the viability was 90% at least, according to 10× Genomics recommendations.

2.3. Single-cell RNA sequencing

Single-cell libraries were constructed using Chromium single-cell 3’ Library (v2) kit via End Repair, A-tailing, Adaptor Ligation, and PCR according to the manufacturer’s protocol. In brief, the cells of each group were mixed into one sample and adjusted to 1000 cell/μl. Then, the indexed sequencing libraries which contained the P5 and P7 primers were prepared using Chromium single-cell 3’ Reagent kit, and the barcoded sequencing libraries were quantified using a standard curve-based qPCR assay (KAPA Biosystems, USA) and Agilent Bioanalyzer 2100 (Agilent, Loveland, CO, USA). Subsequently, the library sequencing was performed by Illumina HiSeq 4000 with a custom paired-end sequencing mode 26 bp (read 1) × 98 bp (read 2).

2.4. 10×Genomics initial quality control

The scRNA-seq data were processed with the Cell Ranger Single Cell Software Suite (v6.1) (http://software.10xgenomics.com/single-cell/overview/welcome) for quality control, sample demultiplexing, barcode processing, and single-cell 3’ gene counting. First, the raw data were demultiplexed by using an 8 bp index read at the end of Read 1 and Read 2 paired-end reads, to generate FASTQ files, and then quality control was performed using FastQC, and these data were aligned against the Nucleotide Sequence Database (https://www.ncbi.nlm.nih.gov/genbank/) using the NCBI Basic Local Alignment Search Tool (BLAST). Second, the reads were aligned to the Drosophila reference genome (dm6) (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001215.4#/st) by STAR RNA-Seq aligner. Once aligned, barcodes associated with these reads-UMIs were subjected to filtering and correction. For UMI tag counting, the 10× Genomics pipeline Cell Ranger was used to generate single-cell gene counts for each library. The confidently mapped, non-PCR duplicates with valid barcodes and UMIs were eventually used to generate the gene-barcode matrix. For the higher-depth libraries, the samples were normalized to the sample sequencing depth. CellRanger version 2.0.0 and Seurat (v4.0.4) (19). R package were used to filter out the low-quality cells, and the following criteria were used to filter cells: (1) gene counts >3000 per cell; (2) UMI counts >12 000 per cell; and (3) percentage of mitochondrial genes >30%. In this
study, the estimated cell number was derived by plotting the UMI counts against the barcodes and revealed 21755 cells
used for downstream analysis. Based on the transcriptomes of 21755 cells, a total of 0.39 billion clean reads achieving an
average read of 18202 per cell and the ratio of high-quality reads to qualify scores at Q30 was more than 90.6% were
obtained. The total number of read pairs that were assigned to this library in demultiplexing is 395,988,785, and the valid
Barcodes (Fraction of reads with barcodes that match the whitelist after barcode correction) and valid UMIs (unique
molecular identifier) are 97.8% and 100% respectively. The number of estimated cells is 21,755 with 18,202 mean reads
per cell, and the number of median genes per cell was 638. The rough sequencing data were filtered according to the
criterion that any cell containing more than 25,000 UMIs counts and more than 30% mitochondrial UMIs was filtered out.
We finally obtained 8497 out of 21,755 cells with 3,993 median UMIs per cell and 868 median genes per cell
(Supplementary Table. 1) for scRNA-seq analysis.

2.5. Clustering analysis

For the clustering, we used principal component analysis (PCA) to normalize and filter the gene-barcode matrix and
to reduce feature dimensions. The top 5 major components were selected to obtain the visualized 2D clustering image using
T-distributed stochastic neighbor embedding (tSNE). The graph-based clustering method was applied to group cells with
similar expression patterns of marker genes. The ovarian cell clusters were grouped into 24 unsupervised categories using
the different resolution parameters (R=0.5 or default values). The pairwise Pearson correlation was calculated between
each cluster for hierarchical clustering. Based on the differentially expressed gene results, a visualized heat map was created
using Seurat (v4.0.4) R package. The tSNE plot was generated for a graphical representation of specific gene expression
by Loupe Cell Browser software and Seurat (v4.0.4) R package. Notably, in order to improve the accuracy of trajectory
based on our clustering results, we removed the cells which expressed somatic cell marker ij, and non-$vasa$ (vas) expressing
cells in germline clusters.

2.6. Marker gene analysis and Monocle pseudotime analysis

The candidate marker genes which enriched in a specific cluster were selected according to the expression profile of
top genes among 24 clusters, and the putative biological identity of each cluster was assigned based on the expression
patterns of highly expressed genes and experimentally validated markers. Single-cell pseudotime analysis were carried out
by using matrices of cells and gene expression by Monocle (v2.20.0) which provided the visualized trajectory with tips
and branches in the reduced dimensional space.

2.7. Differential gene expression analysis

The likelihood-ratio test (20) was used to seek differential expression profiles in each cluster, and the following
criterion were allowed to identify the differentially expressed genes: (1) P-value \leq 0.01. (2) Log2(fold change [FC]) \geq
0.360674. (3) The percentage of cells where the gene is detected in a specific cluster $>25\%$. Then, Gene Ontology (GO)
enrichment analysis was performed to filter the differentially expressed genes that correspond to biological functions. The
peak-related genes were mapped to GO terms in the GO database (http://www.geneontology.org/), and the significantly
enriched GO terms were defined by a hypergeometric test. To further understand the biological functions of these genes,
we used Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.jp/) pathway enrichment analysis to
identify the enriched metabolic pathways and signal transduction pathways.

CC-BY-NC-ND 4.0 International license made available under a (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
2.8. Gene regulatory network analysis

The transcription factor network inference was conducted by SCENIC R package. The log-normalized expression was generated by using Seurat, and the pipeline was implanted step by step. Preliminarily, the gene co-expression was identified via GENIE3, which may include some false positives and indirect targets. Then, we identified putative direct-binding targets by pruning each co-expression module via Rcis Target. Precisely, networks (regulons) were retained if the TF-binding motif was enriched among its targets, while target genes without direct TF-binding motifs were removed. Last, we scored the activity of each regulon for each single cell via the AUC scores using AUCell R package.

The Cytoscape v.3.9.1 software was applied for the construction of gene regulatory network according to its online user manual.

2.9. RNA in situ hybridization

Probe synthesis. Using the genomic DNA as a template, and amplifying the exon regions of targeted genes by using the primers with SP6 sequence (ATTTAGGTGACACTATAGAAGNG) according to the product description of KAPA HiFi PCR Kit (Roche Diagnostics, cat. no. 07958927001). Sense and antisense digoxigenin (DIG)-labeled probes were synthesized from the purified PCR product using DIG RNA Labeling Kit (Roche, cat. no.11175025910). All primer sequences were listed in Supplementary Information (Supplementary Table 3).

The procedures for RNA in situ hybridization were as follows. Briefly, the samples were dissected in PBS and immediately fixed in 4% PFA with 0.1 M Hepes at 4°C overnight. On the next day, the samples were washed 3 × 10 min with PBST (0.1% Tween 20 in PBS) and dehydrated with sequential washes with 50% and 100% methanol in PBST for 5 min each time. Then, the samples were stored in the -20°C refrigerator for 40 min, and washed with PBST 3 × 10 min before proteinase K (Sigma-Aldrich, cat. no. 39450016) treatment for 5 min at room temperature. Samples were washed with PBS for 5 min and fixed with 4% PFA for 20 min, then washed with PBST 3 × 10 min and incubated in hybridization buffer (50% formamide, 5x SSC, 0.1% Tween-20, 50 µg/µl heparin, and 100 µg/ml salmon sperm DNA) with probe in hybridization oven (Jingxin industrial development co. ltd, LF-I) at 60°C for 24 h at least. After hybridization, the samples were washed 4 × 30 min at 60°C, once with 2x SSCT (2x SSC, 0.1% Tween-20) for 15 min and twice with 0.2x SSCT (0.2x SSC, 0.1% Tween-20) for 30 min each at 60°C. Next, samples were washed with MABT (0.1 M maleic acid; 0.15M NaCl PH 7.4 and 0.1% Tween-20) 2 × 10 min at room temperature and blocked for at least 30 min, and then added anti-dig-POD (1:200; Roche, cat. no.11207733910) in 5% blocking solution (Roche, cat. no.11096176001) at room temperature overnight. Finally, the fluorescence reaction was carried out by using TSA fluorescein system (Perkin Elmer, cat. no. TS-000100) for 1.5 h in dark and subsequently used Hoechst 33258 (Sigma-Aldrich, cat. no. 23491454) to label the nucleus.

2.10. Construction of the transgenic fly lines

We first designed guide RNA targets with: 1. Chopchop (https://chopchop.cbu.uib.no/) (21), 2. CCTop (https://cctop.cos.uni-heidelberg.de/) (22). Genomic DNA was isolated from the injection stock. PCR was performed using primers flanking the targets. The amplified products were sent for Sanger sequencing. If SNPs were found on the targets, gRNA sequence would be modified to be consistent with the target sequence of the stock.

The first base of gRNA sequence was changed to G for the T7 transcription. Following the protocol (23), template for in vitro transcription by T7 polymerase was generated by annealing of two DNA oligonucleotides and PCR amplification. In vitro transcription was performed with the T7 RiboMAX™ Kit (Promega, cat. no. P1320). Transcripts were purified by phenol-chloroform extraction and isopropanol precipitation.

Plasmid MLM3613 (Addgene plasmid, cat. no. 42251) was linearized with Pme I (New England Biolabs) and purified
by ethanol precipitation. Cas9 mRNA was transcribed with mMESSAGE mMACHINE® T7 Transcription Kit (Ambion, cat. no. C013843), polyadenylated with the E.coli Poly (A) polymerase Kit (NEB, cat. no. M0276L), and purified with the RNeasy Mini Kit (QIAGEN, cat. no. 74106).

To knock in the 6 × HA of GFP in the N-terminal of eggpl, the pBluescript SK vector (pBS) was used as the backbone. Using genomic DNA of the injection stock, the homology 5′ arm and 3′ arm was amplified and linked to the pBS backbone with Gibson Assembly Kit (NEB, cat. no.E2611L) as ‘pBS-CG32814-arm’. Then the pBS-eggpl-arm was linearized by PCR and linked to the GFP-6HA cassette with Gibson Assembly Kit (Thermo Fisher, cat. no. A46624), and that produced the final donor construct ‘pBS-CG32814-GFP-6HA’ (supplementary Fig.3 A).

To generate a mutant allele of eggpl, we used Cas9/CRISPR to introduce mutations downstream of the ATG in the eggpl open reading frame. We identified an allele, eggpl^{m1} in which the 5 base pairs immediately downstream from the ATG (AGTAG) were deleted and a 28 base pair region that is 50 base pairs downstream from the ATG (TTAAAAACGACACCATCGCGGAAGAAA) contained multiple deletions and substitutions. In eggpl^{m1}, this 28 base pair region was instead an 18 base pair region with the f

The DNA sequence of this mutated region in the eggpl^{m1} allele, starting at the ATG of the open reading frame, is ATG----CGGAATCATTTTCAGACAGAATCCAGATGGATCTTTTTCACCTTCT----C-ttCACCAtttC------AcC. Dashes indicate the location of deletions and lowercase letters indicate substitutions, relative to the wildtype sequence. The gRNA sequences is list below,

<table>
<thead>
<tr>
<th>gRNA Sequences</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG32814-sg1: GTTAGAATCAAATAGTAG</td>
<td>15ug of Cas9 mRNA and 7.5ug sgRNA were mixed with DEPC water in a 30ul volume. And the RNA mix injection was performed by Qidong Fungene Biotechnology (http://www.fungene.tech). 300 embryos were injected.</td>
</tr>
<tr>
<td>CG32814-sg2: GCTTTAAAACGGACACCAT</td>
<td></td>
</tr>
<tr>
<td>The primers for validation was GGAATCTCCAGCAATTACTGTAT and CCCTGATTGAATGAGTAG.</td>
<td></td>
</tr>
<tr>
<td>The genomic DNA of the P0 and F1 flies were balanced with Fm7a. The genomic DNA of the P0 and F1 flies were balanced with Fm7a.</td>
<td></td>
</tr>
<tr>
<td>15ug of Cas9 mRNA and 7.5ug sgRNA were mixed with DEPC water in a 30ul volume. And the RNA mix injection was performed by Qidong Fungene Biotechnology (http://www.fungene.tech). 300 embryos were injected.</td>
<td></td>
</tr>
</tbody>
</table>

Transgenic fly lines w*; P[UAS-eggpl-GFP]attP2/TM6B was generated by integrating UAS-eggpl-GFP into the attP2 site. Briefly, the NotI/XbaI PCR fragment of eggpl-CDS (GFP tag) was cloned into the NotI/XbaI sites of pJFRC28-10 × UAS-IVS-GFP-p10 vector (Addgene Plasmid, cat. no. 36431). The primer pairs used for PCR validation were as following:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>eggpl-3F: ACAAACAGCCATATGAG</td>
<td></td>
</tr>
<tr>
<td>p10-R: GCCACTAGCTGGCTATAACT</td>
<td></td>
</tr>
</tbody>
</table>

2.11. Whole-mount immunofluorescence staining and confocal imaging

Ovaries were dissected in PBS and fixed in 4% PFA, 0.1 M Hepes, PH 7.4 for 30 min at room temperature with gentle rotation, then washed the ovaries 3 × 15 min with 500 μL 0.1% PBT (0.1% Triton X-100 in PBS). The samples were blocked in 5% NGS buffer (5% normal goat serum in 0.1% PBT) for 1 h before incubation with primary antibody at room temperature overnight. The following day, diluted primary antibody was collected for reuse, and the samples were washed 3 × 15 min with 500 μL PBT and incubated with diluted secondary antibody for 3h with rotation. The Hoechst labeling
was performed after washing with PBT 3 × 15 min. Finally, the samples were mounted on slides in Vectashield mounting medium and stored at 4°C. Note that, 50% normal goat serum in 0.1% PBT and higher concentration of diluted primary antibody were recommended to apply for the continuous antibody staining procedure after RNA in situ hybridization. For pMad staining, the samples were suggested to fix in 4% PFA for 50 min, and washed the ovaries with 0.1% PBT three times for 3 h at least.

The following primary antibodies were applied in this study: mouse anti-α-Spectrin (3A9, 1:100; Developmental Studies Hybridoma Band (DSHB)), rabbit anti-pMad (1:800; Cell Signaling), chicken anti-GFP (1:5,000; Abcam), rat anti-Vasa (1:100, DSHB). Alexa Fluor 488, 555, or 633 conjugated goat secondary antibodies (gifts from Yu. Cai, Temasek Life Sciences Laboratory, Singapore) against mouse (1:500), rabbit (1:1,000), chicken (1:500) and rat (1:1,000) were used to detect the primary antibodies. Polyclonal anti-TFIIA-S and anti-eggpl were generated via immunization of rabbits (Custom made for chickens by GeneCreate Biotech Co., Wuhan, China, 1:1,000). The DNA dyes Hoechst 33258 (1:5,000; Cell Signaling Technology) was used to label the nucleus.

Images were captured by using the Nikon A1 plus confocal microscope (Nikon, Japan) with APO 60×/1.40 oil objective lens at room temperature, and all images were processed with NIS-Elements software for image acquisition and analysis. The mean of fluorescence intensity was examined by using ImageJ v1.8.0 software according to the manual instruction (supplementary Fig.3 C) or Imaris (Fig. 5L-M). For image analysis in Imaris, surfaces were generated in the green (GFP) channel and manually split or merged to generate a single surface for each cyst in Region 1. Then, the mean pixel intensity in the green channel within each surface was calculated.

2.12. BrdU incorporation

5-Bromo-2′-deoxyuridine (BrdU), an analog of the nucleoside thymidine, was used in examining the frequency of the S-phase during cellular cycle in this study. The BrdU (Sigma-Aldrich, cat. no. B5002) saturated solution was freshly diluted with 200 μL PBS (10 mM) and 800 μL dehydrated alcohol. The female flies were dissected in petri dish containing 1 mL Schneider’s insect medium at room temperature, then the ovaries were carefully transferred into a 12-well plate with the mixture of BrdU solution and Schneider’s insect medium (1:100) for further incubation at 25°C. After 45 min, the ovaries were rinsed with Schneider’s insect medium for 2 times and washed with PBS 1 × 5 min respectively, and fixed in 4% PFA for 50 min. The samples were washed 2 × 10 min with 0.3% PBT (0.3% Triton X-100 in PBS), sequentially, washed with 0.6% PBT (0.6% Triton X-100 in PBS) for 45 min. Acid-treating the ovaries with 1 mL 0.6% PBT and 1mL 3.2 mol/L HCL for 30 min, and then the ovaries were washed with 0.3% PBT 3 × 10 min and 0.1% PBT for 30 min. The ovaries were blocked by 10% NGS (10% normal goat serum in 0.1% PBT) for 1 h and incubated with 1: 50 mouse anti-BrdU monoclonal antibody (Becton Dickinson cat. no. 7580) at 4°C, overnight. The next step was followed by common immunofluorescence staining procedure.

2.13. Protein overexpression of eggpl in Sf9 cell line in vitro

Briefly, the ORF of eggpl was inserted into vector piztv5-His (Novagen) in our laboratory to overexpress eggpl, and cell co-transfection was carried out using FuGENE HD Transfection Reagent (Promega). Then, Sf9 cell line was maintained at 28 °C in 25 cm² culture flasks (Nest, China) in Grace’s insect cell culture medium containing 10% fetal bovine serum (Gibco, USA).

2.14. Statistical analysis
All data were analyzed by one-way ANOVA with Duncan’s multiple range test (DMRT) using a SAS statistical windows 8.1 package program (Microsoft, USA). p<0.05 was considered to be statistically significant.

3. Results

3.1. Overview of single cell RNA transcriptional atlas of Drosophila ovary

To characterize the transcriptional profile of ovarian cell types, we performed scRNA-seq on 7-day-old adult Drosophila ovaries by using 10× Genomics Chromium system to complete the complementary DNA (cDNA) synthesis and amplification, library preparation, and sequencing process (Fig. 1A). We then used t-Stochastic-Neighbor Embedding (t-SNE) in Seurat (24) to reduce the dimensionality and visualize the unsupervised cell distribution and 12 cell clusters (Supplementary Fig. 1A) was first classified based on their unique transcriptional profiles with the default resolution.

We further assigned cell types using canonical marker genes and further adjusted the Seurat resolution as needed, resulting in 24 distinct clusters in total (Fig. 1 C and D). The two clusters (cluster6 and cluster8) that expressed the germ cell marker vasa (25) were combined together as one germ cell cluster (Supplementary Figure 1A). We further divided the combined cluster into four subclusters (undifferentiated germ cell, oocyte, early nurse cell and later nurse cells) based on distinctions between the transcriptional profiles revealed by unsupervised clustering and identification of stage-specific markers (Supplementary Fig. 1D) (Fig. 2A). Both nanos which is maternally loaded into pole plasm and translated after fertilization (26) and osk which is highly enriched in germ plasm and accumulated in pole cells (27-28) were used to identify 3 subtypes of pole cell clusters at 0.5 resolution value (R=0.5). The stalk cell cluster was enriched in the expression of zfh-1 (29), stl and CG46339, as expected (30). The cluster with upregulation of Wnt4 and GstS1 was considered as escort cell cluster according to the previous report (30). The polar cell cluster was identified by a known marker upd1 (31) at default resolution value (R=1). Three subpopulations of stretch cells were distinguished by several marker genes, including peb (32), sosie (33), br (34), past1, Glu4EF and Vha16-1 (35) at 0.5 resolution value (R=0.5), and the terminal follicle cell cluster was identified by the expression of past1. The expression of SPARC and Jupiter was used to identify the 1-4 stage of main body follicle cell (1-4 MBFC) (30). Four subclusters such as MBFC (stg. 9-10A) 1, MBFC (stg. 9-10A) 2, MBFC (stg. 10B) and cent/post MB 8 were identified by psd, Vml, ttk, dec-1, bond and Fcp3C (35) at 0.5 resolution value (R =0.5). The MBFC (stg. 12) and MBFC (stg. 14) were easily identified by maker genes such as Femcoat, Ilp8 and yellow-g at 0.5 resolution value (R=0.5). The well-recognized marker genes Hlm and su(r) were used to identify hemocyte and plasmatocyte respectively (35, 36).

3.2. Identification of GSC cluster and 2 distinct undifferentiated germ cell subpopulations

To refine our previous clustering results, the GSC differentiation-related markers, such as bam, bgen, blanks and cycE (30, 37), were used to identify undifferentiated germ cells, while egg, put and cona, which were known to be required in GSC maintenance and oogenesis (38-41), were used to identify the later stages. The enrichment of c(3)G, Iswi and mael was observed in the undifferentiated germ cell, early nurse cell and oocyte clusters, additionally, CG15628 was observed specifically in the oocyte (Fig. 2C).

To characterize the spatial and temporal changes in transcription that occur during the initial stages of germ cell differentiation, we used Monocle3 to construct the developmental trajectory of the 4 germ cell clusters (Supplementary Fig. 1C). This analysis produces a graph-based trajectory called pseudotime that predicts the transcriptomic changes along the putative timing of developmental process (42). In this case, 4 germline clusters were arranged into a linear trajectory consisting of 3 branches, which is consistent with the continuous progression of germline development. We identified a
subset of bam cells at one end of the trajectory that we concluded were GSCs (Fig. 2B-B’), and we assigned the remaining non-bam expressing cells and bam-positive cells to two distinct undifferentiated germ cell subclusters, namely undifferentiated germ cell-1 and undifferentiated germ cell-2. To further investigate the hypothesis and examine the putative GSC cluster, we plotted the GSC-related gene expression in pseudotime. Similar expression profiles of functional GSC differentiation genes (bam, bcn, out, twin and Set1) (43-46) and GSC maintenance genes (aret, Mei-P26, egg, Myc and Hrb98D/E) (47-51) were showed in trajectory (Fig. 2D). Consistent with our expectations, we observed low expression of genes associated with differentiation and high expression of genes associated with self-renewal, while their expression patterns along the trajectory were gradually changed over time. The expression patterns of top 5 expressed genes in three germline subclusters suggested that the developmental states of cells in GSC cluster and undifferentiated germ cell-1 cluster were similar to each other but different from that of the undifferentiated germ cell-2 cluster (Fig. 2C).

3.3. Construction of gene regulatory network in GSC

Although a large number of genes are expressed in all germ cells, some genes that are differentially expressed during early germ cell development may play more important role for GSC fate. To identify these types of genes, we conducted a comparative analysis on the transcriptional profile of 6 germ cell subclusters. We identified subsets of genes in the germline-1 and -2 clusters, early nurse cell cluster, oocyte cluster and later nurse cell cluster, that are differentially expressed compared to the GSC cluster (Fig. 3A). In addition, we performed an RNAi screen of 33 differentially upregulated genes in GSCs vs undifferentiated germline-1 and GSCs vs undifferentiated germline-2 clusters by using nos-Gal4/CyO; tub-Gal80/TB, a temperature-sensitive fly line, to individually trigger the available UAS-RNAi lines at adult stage. We found that RNAi knockdown of 19 upregulated genes induced disruption of GSCs/CBs homeostasis. Of these, 12 genes were classified as “changes to the number of GSC/CB”, 6 genes as “empty germarium” and 4 genes exhibited “differentiation defects” (Fig. 3B-C). Lastly, we scored the differentially expressed genes (score > 980) and constructed an interaction network (Fig. 3D). This analysis revealed a dense network of interactions between the differentially expressed genes, with genes that regulate translation (eIF2gamma, Ns1, and Prp19) forming major nodes. In addition, we found that RNAi knockdown of 21 out of 39 most highly expressed genes also caused a significant increase or decrease in the number of GSC/CB per gerarium. (Supplementary Fig. 2A-B).

To identify the transcription factor-based gene regulatory network in different kinds of germ cells, we applied SCENIC analysis to our single-cell RNA sequencing data with 6 known germ cell types. The analysis revealed that the Dref, mal-f, Hsf, and REPTOR-BP regulons were enriched in GSC cluster, suggesting that they may play an important role in the regulation of early GSC development (Fig. 3E). GO and KEGG enrichment analysis provided additional information about the biological processes that are enriched during germ cell development. Specifically, we found that the enriched GO terms were closely related to the basic physiology of Drosophila such as cellular metabolic process, protein catabolic process, cytoskeleton organization and cell cycle. Notably, a proportion of functional GO terms in GSC cluster was particularly enriched in ubiquitin-dependent protein catabolic process and cellular catabolic process, which was in relation to cancer and disorder research (52-53) (Supplementary Fig. 2C). The top 10 pathways in the KEGG enrichment analysis revealed that the differentially expressed genes in GSC, undifferentiated germ cell-1 and -2 were significantly enriched for DNA replication and disease related pathways, while early nurse cell, oocyte and later nurse cell specifically enriched in the pathway of ribosome, Hippo signaling pathway and MAPK signaling pathway (Supplementary Fig. 2D).

3.4. Validation of candidate markers genes in germ cell
To identify new markers of distinct stages of germ cell differentiation, we selected 10 candidate genes that are predicted to be expressed in GSCs by pseudotime analysis and assayed their expression patterns by *in situ hybridization*. These included 9 GSC specific markers and 1 germ line cysts marker (Fig. 4A). We identified seven genes that were specifically expressed in the anterior tip of the germarium, where the GSCs are located, including one gene, CG32814, which we named *eggplant* (*eggpl*) because knockdown causes an enlarged ovary with many retained eggs, as described below (Fig. 4B). To validate these expression patterns at the protein level, we generated antibodies against two genes, the basal transcription factor TfiIA-S (54) and Eggpl. Indeed, we found that the immunofluorescence signals of both antibodies were highly enriched in GSC and early germ cells, consistent with our in situ hybridization results (Fig. 4C, E). TfiIA-S was localized to the nucleus, as expected for a transcription factor, whereas the Eggpl was enriched in the cytoplasm, which we confirmed *in vitro* using the S9 cell line (Fig. 4F). In addition to these genes with highly specific expression patterns, we also found that *hang*, a conserved regulator of ethanol tolerance (55), is expressed in germ cells throughout the germarium, and that CG7255 is expressed in germ cell cysts and nurse cells but not in GSCs. These expression patterns also align with the order of expression of *eggpl*, *hang* and CG7255 predicted by pseudotime analysis (Fig. 4D).

3.5. The unique expression patterns of *eggpl* in germline

To further characterize the cells that express *eggpl*, we co-labeled for *eggpl* mRNA and either α-Spectrin protein, which localizes to a cytoplasmic structure that is spherical in GSCs (called “spectrosomes”) and elongates to “fusomes” in cystoblasts (56), or the germ cell-specific protein, Vasa (Fig. 5A-B). We found that *eggpl* mRNA was specifically enriched in GSCs. To confirm this observation, we probed for *eggpl* in a *bam*-GFP line. Indeed, we found that *eggpl* transcript was enriched in the Bam-GFP cells at the anterior tip of the germarium, consistent with GSC-specific expression (Fig. 5D).

To assess the pattern of Eggpl protein expression, we constructed and *eggpl*::GFP line in which GFP was knocked into the endogenous locus (Supplementary Fig. 3 A). We co-stained for GFP and α-Spectrin, pMad (Fig. 5E) or anti-Bam (Fig. 5F) and found that, in contrast to the *eggpl* mRNA expression pattern, Eggpl::GFP was detectable in germ cells throughout Region 1 (Fig. 5E). Interestingly, Eggpl::GFP protein levels varied by stage, with the highest level of expression in the cells just downstream from the GSC niche (Fig. 5L-M). Thus, the range of protein expression was broader than the range of mRNA expression and protein levels and was actually highest in cells that have no detectable *eggpl* transcript. In addition, we constructed a *UAS-eggpl*-GFP line and examined the overexpression pattern of *eggpl* by using mRNA *in situ hybridization* (Fig. 5G and 5I). The result showed broad expression of *eggpl* in Region 1 of the overexpression line. Together, these results suggest that there are distinct layers of regulation of *eggpl* gene expression at the mRNA and protein levels.

3.6. Ectopic Expression of *eggpl* affects the differentiation of Germline Stem Cells and Cystblasts

To determine whether *eggpl* is involved in the regulation of GSC fate, we expressed *UAS-eggpl*-RNAi and *UAS-eggpl*-GFP lines with nos-Gal4;tub-Gal80° line when the adult flies emerged from pupae, and stained for pMad and α-Spectrin to identify GSC and early germ cells (Fig. 5H). With this combination of markers, GSCs were identified as cells at the tip of the germarium that have high levels of pMad and spherical α-Spectrin spectrosomes whereas the differentiating germline cysts (2-, 4-, 8- and 16-cell) have low levels of pMad and α-Spectrin interconnecting branched fusomes (56). We did not observe a significant difference in GSC or CB number upon knockdown of *eggpl* (Fig. 5I) but found an increase in branched cysts (2-cell and 4-cell stages) upon knockdown of *eggpl* (Fig. 5K). To further study *eggpl* function, we generated an *eggpl* allele, *eggpl*Δ1, using CRISPR. Eggpl protein was undetectable in *eggpl*Δ1 germaria (Fig. 5N), indicating...
that the allele disrupts protein expression. Consistent with our RNAi results, both the number of GSC and the number of CB were not affected (Fig. 6E-F) in eggpl[1], while the number of germine cysts in the 2-cell to 8-cell stages was significantly increased (Fig. 5O-P). Taken together, these results indicate that eggpl is required for GSC differentiation in Drosophila ovary.

3.7. The expression of eggpl in GSCs and primordial germ cells (PGCs) in both ovary and testis at different developmental states.

Many genes regulate germ cell differentiation in both males and females, and, indeed, we found that eggpl is also expressed in male GSCs and early spermatagonia (Fig. 6C). Since the Drosophila GSCs are derived from a small population of primordial germ cells (PGCs) with undifferentiated states, the profiles of gene expression in PGCs may vary from that of the adult. To detect whether the expression of eggpl may be more widely exhibited in germline lineage from larvae to adult, we dissected the gonads from male and female larvae in eggpl knock-in lines, and stained with anti-α-Spectrin and anti-Vasa to label the PGCs and germ cells. We found that eggpl is expressed in both male and female larvae PGCs and early undifferentiated germ cells (Fig. 6B and 6D), suggesting that eggpl may function at these early stages as well. In the testes of wild type male flies, GSC were present next to the apical tip of testes and gradually differentiated into spermatogonial cells with germline specific branched organelle fusomes. While we found that the distance of branched fusomes from the hub cells in eggpl knock-out testes is significantly (p<0.01) less as compared to those in control (Fig. 6E-F). This finding suggested an early onset of premature differentiation of GSCs in the testes when eggpl was lost.

3.8. Depression of eggpl increases egg production and regulates germ cell proliferation

Since the disruption of eggpl led to an increase in the frequency of germ cell cysts, we examined the oviposition on eggpl-RNAi and eggpl[1] lines, and found a significant increase in the number of eggs laid by flies with RNAi knockdown of eggpl in germ cells compared to sibling controls. (Fig. 7B). In addition, we noticed that the size of the whole ovary and the number of mature eggs per ovary were substantially increased upon RNAi and knock out of eggpl in germ cells at 2-, 7-, and 14-day-old flies but returned to a size that is comparable to wildtype by 21-days (Supplementary Fig. 3 B). Based on this phenotype, we named the gene eggplant. Furthermore, we surmised that eggpl could be involved in the regulation of proliferation. To test this possibility, we assayed for proliferation in germ cells using a BrdU incorporation assay, which identifies cells in S-phase (Fig. 7A). Compared with wild type fed on standard diet, the average number of BrdU+ cysts was significantly increased in germ cell cysts in wild type fed on rich yeast diet, eggpl-RNAi (on standard or Rich diet), and eggpl[1] (on standard or Rich diet) lines respectively (Fig. 7C).

The increase in ovary size and GSC proliferation that we observed upon knockdown of eggpl phenocopies the response of ovaries to a rich protein diet, (i.e. daily feeding of wet yeast paste). This suggests that the wet yeast diet may be promoting oogenesis in part by repressing eggpl expression. To test this hypothesis, we compared the ovaries from control and eggpl[1] that were maintained on standard food or standard food plus wet yeast paste. The ovary size of the control flies was substantially increased by the addition of wet yeast paste, consistent with previous reports (16). Interestingly, we found that the ovary size and number of eggs in eggpl knockout lines maintained on either standard food alone or on standard food with wet yeast were comparable to the controls that were maintained with wet yeast paste (Fig. 7F-G). In addition, we found that the intensity of eggpl signal was significantly decreased in flies that were maintained with wet yeast paste (Fig. 7D-E). Wet yeast paste in the diet is known to promote increased egg production by signaling to the GSC niche through the insulin pathway. Therefore, taken together, these observations suggest a model in which a high
yeast diet promotes GSC proliferation and increased egg production by inhibiting the expression of eggpl in GSCs and early germ cells, perhaps downstream of insulin signaling.

3.9. The eggpl mediates GSC differentiation via the MMP-dependent Timp regulation.

The extracellular matrix (ECM) is an important remodeling component of ovarian niche, which is responsible for the cellular organization, cell-matrix adhesion and tissue stiffness (57). It is composed of Laminins, Perlecan, Collagen IV, Glutatin and mucin-type O-glycoproteins (58-59), and the ECM composition is regulated by a family of proteolytic enzymes, matrix metalloproteinases (MMPs) (60). Tissue inhibitors of metalloproteinases (TIMPs) mediate the inhibition of MMP activity, which is accomplished by blocking the MMPs catalytic domain with the amino and carbonyl groups of the TIMP N-terminal cysteine residue (61). We hypothesized that it may be regulated by MMP-dependent Timp signaling in the early GSC lineage. To test this hypothesis, we assayed for changes in Eggpl protein levels upon overexpression and RNAi knockdown of MMP-Timp related genes. We found that the fluorescence intensity of Eggpl protein levels were decreased upon Timp knockdown, and increased when Timp was overexpressed. In addition, overexpression of either Mmp1 or Mmp2 decreased the fluorescence intensity of Eggpl protein level. Conversely, Eggpl protein levels were slightly increased upon Mmp1 RNAi (Fig. 8A). Interestingly, RNAi knockdown of Timp and Mmp1/2 overexpression caused an enlarged ovari phenotype, similar to the phenotype we observed upon RNAi knockdown of eggpl, while Timp overexpression and RNAi knockdown of Mmp1 did not affect ovari size (Fig. 8B-C). Collectively, these results support a model in which eggpl mediates the GSC differentiation process via MMP-dependent Timp regulation pathway (Fig. 8D).

4. Discussion

Decades of research have established the Drosophila female germline stem cell as a favorable system to understand germ cell and stem cell biology. The GSCs are required in germarium to support continuous production of differentiating germ cells throughout most of adulthood. The GSCs are typically identified by their localization at the anterior tip of the germarium (62), and the presence of spectrosomes or high pMad-signal (63), and many other useful marker genes have also been described. For example, the expression of Lamin C, a typical marker, is strongly expressed in TF cells, displays the weak expression in cap cells, and is not detectable in escort cells. Conversely, traffic jam (tj) is highly expressed in escort cell and cap cells, but not detectable in TF cells (64). These markers facilitate many tissue- and cell type-specific genetic manipulations in vivo, which can be used to understand the gene functions and signaling pathways that regulate germ cell differentiation. Therefore, discovery of specific marker genes in GSCs will have many applications in the study of germ cell and stem cell biology. However, it has been difficult to identify new markers of GSCs, in part because they are rare in wildtype tissue, and thus not amenable to bulk sequencing approaches. In our study, we performed 10×-single cell transcriptomes sequencing on whole ovari, and identified 24 distinct cell populations by using known marker genes (Fig. 1C-D). Taking into account the variation of the sample, we compared our data with 4 public Drosophila ovari scRNA-seq datasets (30, 65). The plotting results showed that our dataset is well integrated with others (Supplementary Fig. 1 B). Here, we analyzed the 175 cells in the GSC cluster to identify individual genes and gene regulatory networks that may be important for GSC function. This approach produced a list of genes that is highly enriched for genes that produce a phenotype when knocked down in germ cells by RNAi or that have a specific expression pattern in the early GSC lineage. This validates the approach and provides a new resource for the community.

The evolutionarily conserved insulin-like growth factor (IGF) pathway has multiple roles in the modulation of GSC proliferation and maintenance. A protein-rich diet induces the production of insulin-like peptides (DILPs) in the brain,
which regulate GSC division and cyst growth on a protein-rich diet (14). Several intracellular signals have been identified that function downstream of insulin signaling in germ cells. These include phosphoinositide-3 kinase (PI3K), dFOXO, and cell cycle factors, such as CycA, CycB, CycE and E2F1 (66, 67). However, little is known about the gene targets of this pathway that modulate the rate of differentiation. Our findings that a rich yeast diet causes a decrease in eggpl expression and that knockdown or knockout of eggpl mimics the effects of a rich yeast diet on the ovary raises the interesting possibility that eggpl may be a key link between nutritional cues and the regulation of oogenesis (Fig. 7C-G). It is interesting that knockdown or knockout of eggpl is sufficient to induce such a substantial increase in egg laying on standard food without yeast supplementation. This suggests that protein in the diet is not the limiting factor under these conditions.

As the endogenous inhibitors of MMPs activities, TIMPs have been reported to regulate a series of cellular processes including neurite differentiation, apoptosis and cell division (68-70). Increasing evidence indicates that Timp-mediated inhibition of MMP activity in the extracellular matrix could reduce hepatocyte proliferation in a murine regeneration model (71). In Drosophila, the regulation of MMPs (Mmp1 and Mmp2) activity by inhibitory TIMP plays a key role in tissue stiffness and ovarian niche organization. For instance, timp regulates the distribution of Mmp1 and Mmp2, which could maintain GSC niche homeostasis and interfollicular stalk formation. The loss of timp causes the defects on organization of germline cysts (57). Recently, it has been shown that mRNA expression of timp strongly enriched in the place where GSCs reside, and the Mmp1 and Mmp2 protein accumulated in the most anterior of germarium (57, 72). Our results suggest that Eggpl in early germ cell may be mediated by MMP-dependent Timp pathway (Fig. 8A). Further investigation will be needed to explore how TIMP dependent inhibition of MMP regulates GSC division and whether TIMP functions independent of MMP inhibition in germ cells.

Taken together, our research aimed to unveil the developmental features of GSCs. The bioinformatics analysis allowed us to obtain the transcriptomes of 175 GSCs, and provided a transcriptional perspective of two distinct undifferentiated germ cell clusters. The novel GSCs marker genes validated in this study were beneficial to better understand the signature of stem cell lineage. We further introduced a GSC specific functional gene, eggpl, and explored its gene function in GSC differentiation progress. On the other hand, the combination of differentially expression gene analysis and RNAi screen allowed us to gain a better understanding of the potential genetic interactions between genes involved in GSC maintenance and differentiation.

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 31572335). T.G.N is supported by a grant from the National Institutes of Health (GM136348). We gratefully thank Guangzhou Genedenovo Biotechnology Co., Ltd for the assistance in sequencing and bioinformatics analysis. Specially thank for the generous help and professional guidance provided by Suning Liu (South China Normal University, China).

Conflicts of Interest

The authors declare no conflict of interest.
References

(7) Drummond-Barbosa D . Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster[J]. Genetics, 2019, 213.

Mohammed FF, Pennington CJ, Kassiri Z, Rubin JS, Soloway PD, Ruther U, Edwards DR, Khokha R.

Figure legends

Fig. 1. 10x Genomics single-cell RNA sequencing on adult *Drosophila* ovary.

(A) Schematic of experimental workflow for cell capture and single cell data analysis. (B) Illustration of a *Drosophila* ovariole, describing asymmetric divisions of GSCs and CB, which divide four times to produce developing germline cysts. By region 2b, 16-cell cyst was completely formed and surrounded by follicle cells. As the cyst moves down to region 3, the egg chamber containing 1 oocyte and 15 nurse cells is formed and ready to bud off. The vasa-EGFP line was used to visualize all germ cells along germline. Anti-pMad (red) was used to label GSCs (asterisk), while anti-α-Spectrin (blue) was used to stain spectrosomes (round dot) and branched fusomes. (C) The t-SNE plot of 24 distinct cell clusters marked with different colors. (D) The dot plot of scaled expression of selected typical marker genes in each cell type.

Fig. 2. The identification of GSCs and germ cell subclusters.

(A) tSNE plot revealing 4 germ cell subclusters, undifferentiated germ cells (red), early nurse cells (green), oocytes (blue) and later nurse cells (purple). (B-B’) The monocle analysis reveals the developmental linear trajectory of germ cells, and the putative GSCs population was distinguished in non-bam expressing germ cells which located in the beginning of trajectory. Arrows indicate the direction of differentiation. (C) To assign identities to these germ cell subclusters, the violin plots were used to visualize the distribution of normalized typical marker genes expression levels. (D) The expression of GSC maintenance genes (aret, Mei-P26, egg, Myc and Hrb98DE) and differentiation genes (bam, bgcn, out, twin and Set1) along the primary branch (dotted circle line) in pseudotime. (E) The dot plot presents the respective top 5 genes in the GSCs, undifferentiated germ cell-1, undifferentiated germ cell-2, early nurse cells, oocytes and later nurse cells. The dot diameter represents the percentage of cell expressing top genes.

Fig. 3. The construction of gene regulatory network in GSCs.

(A) The Venn diagram of the number of differentially expressed gene. (B) The statistical analysis of the average number of GSC and CB in RNAi lines of screened differentially expressed gene. Error bars show SEM, ns indicates no significant difference. *P*<0.05, **P*<0.01, ***P*<0.001. (C) The typical phenotypes of germaria in selected RNAi lines stained with anti-α-Spectrin (green) and anti-pMad (red). (D) The construction of gene interaction network by using Cytoscape 3.9.1 software. (E) The heat map of SCENIC analysis on GSC, undifferentiated germ cell-1, undifferentiated germ cell-2, early nurse cell, oocyte and later nurse cell subclusters.

Fig. 4. The validation of GSC marker genes.

(A) The dot plot showing the expression of selected specific marker genes in each subclusters. The color intensity from dark to light represents the average normalized gene expression level. (B) The expression patterns of candidate marker genes was validated by using *in situ* hybridization. (C-C’) Immunofluorescence staining with anti-TfbIA-S on wild type and nos-Gal4>*UAS-TfIIA-S-RNAi* (negative control). (D) The expression profiles of eggpl, CG7255 and hang along the trajectory branches in pseudotime. (E-E’) Immunofluorescence staining with anti-eggpl on wild type and nos-Gal4>*UAS-eggpl-RNAi* (negative control) ovary. (F) The overexpression of GFP (green) and eggpl in Sf9 cell line *in vitro*. The anti-eggpl (red) was used to detect the eggpl protein, and Hoechst (blue) was used to label the nucleus.

Fig. 5. The characteristics of *eggpl* expression in ovarian germline.

(A-A’) The mRNA *in situ* hybridization of eggpl (green) on wild type and nos-Gal4>*UAS-eggpl-RNAi* (negative control) line. (B-C) Immunofluorescence staining with anti-α-Spectrin (red) and anti-Vasa (red) on *eggpl-in situ* (green) labeled...
tissues respectively. (D) The mRNA in situ hybridization of eggpl (green) on bam-GFP line stained with GFP (red). (E) Immunofluorescence staining with anti-α-Spectrin (blue), anti-pMad (red) and GFP (green) on the eggpl::GFP knock-in line. (F) The anti-GFP, anti-α-Spectrin (red) and anti-Bam (blue) were used to stain on eggpl::GFP knock-in line. (G and I) The mRNA in situ hybridization of eggpl (green) on nos-Gal4> (negative control) and nos-Gal4>UAS-eggpl-GFP lines. (H) The phenotypes of wild type, nos-Gal4>UAS-eggpl-RNAi line and nos-Gal4>UAS-eggpl::GFP line staining with anti-α-Spectrin (green), anti-pMad (red). (J) The average number of GSC and CB in nos-Gal4 line, nos-Gal4>UAS-eggpl-RNAi line and nos-Gal4>UAS-eggpl::GFP line on 2 day, 7 day, 14 day and 21 day. (K) The average number of differentiating germline cysts in three types of fly lines. (L) Quantification of the GFP intensity mean in eggpl::GFP knock-in line, n=11. (M) Image illustrating the image segmentation used to quantify the expression pattern of eggpl. (N) Immunofluorescence staining of an eggpl[1] germinarium with anti-eggpl antibody showing a lack of signal. (O) The typical phenotype of eggpl[1] germinarium staining with anti-α-Spectrin (green), anti-pMad (red). (P) The statistical analysis of the average number of GSC and CB and Cysts in eggpl[1] line. Error bars show SEM, ns indicates no significant difference, ***P<0.001.

Fig. 6. The dynamical expression of eggpl in testis and ovary.

(A) Immunofluorescence staining with anti-α-Spectrin (red), anti-Vasa (blue) and anti-GFP (green) on adult ovary. (B) Immunofluorescence staining on PGCs of larvae ovary. (C) Immunofluorescence staining on GSCs and early spermatogonia in adult testis. (D) Immunofluorescence staining on PGCs of larvae testis tissue. (E) Immunofluorescence staining with anti-α-Spectrin (red) and anti-Vasa (green) on testis from wild type or eggpl[1] flies. (F) The measurement of distance between hub cells and early germ cyst. n=4, error bars show SEM, **P<0.01.

Fig. 7. The function of eggpl might be involved in regulating cell cycle of germline cysts.

(A) Immunofluorescence staining with anti-BrdU (red). (B) The oviposition of wild type, Nos-Gal4>UAS-eggpl-RNAi and eggpl[1] line over 21 days. (C) The number of BrdU+ germ cell cysts. Error bars show SEM, ns indicates no significant difference, **P<0.01, ***P<0.001. (D) Immunofluorescence staining with anti-GFP on germaria from eggpl::GFP knock-in flies with or without feeding fresh yeast paste on day 2-, 7-, 14- and 21. The dotted line indicates the examined area. (E) Quantification of the GFP intensity mean in the eggpl::GFP knock-in line, n=10, ***P<0.001. (F-G) Images of ovaries (F) or ovarioles (G) from flies of the indicated genotypes, feeding conditions, and days post-eclosion showing comparisons of the overall ovary sizes (F) and the numbers of retained matured eggs (G).

Fig. 8. The eggpl maintains GSCs differentiation via MMP-dependent Timp regulation.

(A) Quantification of the GFP signal in germaria from eggpl::GFP knock-in flies of the indicated genotypes. n=10, *P<0.05, **P<0.01, ***P<0.001. (B-C) Images of ovaries (B) and quantification of ovary size (C) from flies of the indicated genotypes. Error bars show SEM, ns indicates no significant difference, ***P<0.001. (D) Model depicting the regulation of eggpl expression and its role in GSCs and differentiating cysts.

Supplementary Fig. 1. The preliminary analysis on scRNA-seq data

(A) The original tSNE plot showing the distribution of distinct clusters in our dataset. (B) UMAP plots showing a comparison of four published datasets with the dataset produced in this study. Dataset-1, dataset-2 and dataset-3 are from Rust, et al. 2020, Dataset-4 is from Jevitt, et al. 2020. (C) The trajectory of undifferentiated germ cell, non-bam expressing...
cell, young nurse cell, oocyte and older nurse cell clusters in pseudotime, which contained *tg*-expressing cells and non-
vasa-expressing cells. (D) The heat map showing the expression of known typical marker genes in each cluster.

Supplementary Fig. 2. The RNAi screen on top expressed genes and enrichment analysis on GSCs

(A) The average number of GSCs and CBs in RNAi lines of screened top genes. Error bars show SEM, ns indicates no
significant difference, *P*<0.05, **P*<0.01, ***P*<0.001. (B) The typical phenotypes of germaria in selected RNAi lines
stained with anti-α-Spectrin (green) and anti-pMad (red). (C) Dot plot showing the enrichment of GO terms associated
with the differentially expressed genes in the 6 germ cell subclusters. (D) Dot plot showing the KEGG enrichment results.

**Supplementary Fig. 3. The schematic diagram of eggpl knock-in and knock-out lines construction and the ovary
phenotype of Nos-Gal4> and Nos-Gal4>UAS-eggpl-RNAi Line.**

(A) The tag with GFP and 6HA was inserted on N terminal in fly genome. The CDS indicates coding DNA sequence of
eggpl. (B) The construct of eggpl line was conducted by shifting the CDS frame. (C) The flow of immunofluorescence
intensity analysis. The intensity values were analyzed with these command: 1. Image > Type > RGB Stack. 2. Freehand
selections > Cut. 3. Adjust > Threshold. 4. Analyze > Set Measurements > Area & Min & max gray value & Limit to
threshold > Measure. (D-E) The phenotypes of Nos-Gal4 and Nos-Gal4>UAS-eggpl-RNAi ovary size and retained eggs
on 2-, 7-, 14- and 21-day.