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Figure S1: Diagram of proposed mathematical model reflecting the biological wiring of a bacterial
cell. The model includes the C reporter (Y) and constitutive reporter (H). Intrinsic noise in the protein
production rates, metabolism and the growth rate is modeled as independent Ornstein-Uhlenbeck noise
sources. An additional shared noise source (here called 𝑁𝑠) acts on both 𝜋𝐶 and 𝜋𝑌 . 𝑁𝑠 represents
noise in the sensory mechanism (for example fluctuations of the CRP-concentration). The transfer from
Metabolism (𝑀) to protein production is the sum of general transfer (𝑇𝑀𝜋) and regulatory transfer (𝑇𝑅),
which only acts on the C-sector and its reporter, Y.

1 Mathematical analysis of the noise model

Note on notation: Where the main text talks about the C-sector reporter (CRPr) and the
not-CRP-regulated constitutive reporter (nCRPr), this document uses the notation ‘Y’ for the
C-sector reporter and ‘H’ for the constitutive reporter.

1.1 Model definition and parameter interpretation

Similar to Kiviet et al. [1] a linear noise propagation model can be constructed using the diagram
of Fig. S1. The model captures the interplay between the production rate (𝜋) of certain proteins,
the concentrations (𝜙) of these proteins, metabolism (𝑀) and the growth rate (𝜆).

We model the total C-sector in a coarse-grained manner as a single protein, C, whose fluc-
tuations directly influence (the rate of) metabolism. Additionally, we model the two fluorescent
reporters, for ease of notation here called Y and H, that are not metabolically active and hence
do not control metabolism.
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We assume that the variables fluctuate around a particular average state {𝜆0, 𝑀0, ®𝜋0, ®𝜙0}; the
model describes the dynamics of small, relative deviations of each variable from its respective
average, 𝛿𝑋 (𝑡)

𝑋0
:= 𝑋 (𝑡)−𝑋0

𝑋0
. (Below, the explicit time dependence will often be omitted.) These

deviations, referred to as “noise”, propagate through the system according to the arrows in
Fig. S1. For example, fluctuations in the production rate 𝜋𝐶 affect 𝜙𝐶 , whose fluctuations affect
𝑀. Via 𝑀 the noise then further transfers to the production rates and to the growth rate. Noise
in the growth rate in turn affects the dilution of all proteins (dashed line). The logarithmic
gains/transfer coefficients 𝑇AB describe the strength of noise propagation from 𝐴 to 𝐵.

The role of metabolism is crucial in our model because many noise routes pass through
metabolism, but also because the cAMP-CRP regulatory network reacts to metabolic fluctua-
tions. The interpretation of 𝑀 is therefore not straightforward. 𝑀 could be interpret as the rate
of metabolism. However, we assume that with a higher rate of metabolism, the concentrations of
certain internal metabolites (in particular keto-acids such as OAA) also increase. The metabolite
OAA is known to inhibit the production of cAMP in wild type cells [2] (see Fig. 1A of the main
text), therewith triggering the cAMP-CRP regulatory feedback when 𝑀 increases (represented
by the regulatory parameter 𝑇𝑅 in the model, Fig. S1). Although we model metabolism with
a single variable 𝑀, it thus represents both the rate of metabolism and the saturation level of
metabolic precursors such as OAA.

Certain variables are directly influenced by phenomenological, independent colored noise
sources, notated as 𝑁𝑖: Ornstein–Uhlenbeck Noise sources that each have a specific timescale.
These noise sources offer a way to model the combined effect of many stochastic processes that
together influence the dynamics of certain variables. For example, 𝑁𝜋𝑌 summarizes the stochastic
component of processes that intrinsically influence the production rate of the 𝑌 reporter, such as
transcription and translation. 𝑁𝑀 , the noise source acting on metabolism, is primarily the result
of fluctuations in the concentration of individual protein species that are part of the C-sector. The
fluctuations of all these proteins together are expected to cause the metabolic flux to fluctuate,
even if the total size of the C-sector is roughly constant. Fluctuations in the concentrations
of individual proteins are diluted via cytoplasm growth, so that the 𝑁𝑀 noise source has a
timescale close to 𝜆0. 𝑁𝜆 has a similar interpretation. The noise source 𝑁𝑠 equally affects the
production of the C-sector and the C-sector reporter Y. Therewith, the noise source 𝑁𝑠 is mainly
interpreted as fluctuations in the production of CRP-regulated proteins caused by fluctuations
in the concentration of CRP itself. Even when the cAMP concentration is experimentally kept
fixed in the mutant strain, fluctuations in the CRP concentration are expected to influence
the cAMP-CRP concentration and therewith the production rate of both the C-sector and its
reporter Y.
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Based on the considerations above, we arrive at the following set of equations:

𝛿𝜆

𝜆0
= 𝑁𝜆 + 𝑇M𝜆

𝛿𝑀

𝑀0
, (1)

𝛿𝑀

𝑀0
= 𝑁M + 𝑇CM

𝛿𝜙𝐶

𝜙𝐶,0
, (2)

𝛿𝜋𝐶

𝜋0,𝐶
= 𝑁𝜋C

+ 𝑁𝑠 + (𝑇M𝜋 + 𝑇𝑅)
𝛿𝑀

𝑀0
, (3)

𝛿𝜋𝑌

𝜋0,𝑌
= 𝑁𝜋Y

+ 𝑁𝑠 + (𝑇M𝜋 + 𝑇𝑅)
𝛿𝑀

𝑀0
, (4)

𝛿𝜋𝐻

𝜋0,𝐻
= 𝑁𝜋H

+ 𝑇M𝜋

𝛿𝑀

𝑀0
, (5)

¤(
𝛿𝜙𝐶

𝜆0𝜙0,𝐶

)
=
𝛿𝜋𝐶

𝜋0,𝐶
− 𝛿𝜙𝐶

𝜙0,𝐶
− 𝛿𝜆

𝜆0
, (6)

¤(
𝛿𝜙𝑌

𝜆0𝜙0,𝑌

)
=
𝛿𝜋𝑌

𝜋0,𝑌
− 𝛿𝜙𝑌

𝜙0,𝑌
− 𝛿𝜆

𝜆0
, (7)

¤(
𝛿𝜙𝐻

𝜆0𝜙0,𝐻

)
=
𝛿𝜋𝐻

𝜋0,𝐻
− 𝛿𝜙𝐻

𝜙0,𝐻
− 𝛿𝜆

𝜆0
. (8)

The last three equations are liberalizations of the time derivative of the protein concentrations
( ¤𝜙𝑖 = 𝜋𝑖 − 𝜆𝜙𝑖), see also [1]. The dynamics of each noise source 𝑁𝑥 is given by its stochastic
differential equation,

d𝑁𝑥 = −𝛽𝑥𝑁𝑥dt + 𝜃𝑥dWt, (9)

where 𝛽𝑥 is the noise source’s timescale, 𝜃𝑥 its amplitude, and 𝑊 (𝑡) a Wiener Process.

1.2 Metabolic timescale, solution in Fourier space

The system of equations 1-8 above can be solved in Fourier space. For each variable 𝐴(𝑡) we
denote the Fourier Transform of 𝛿𝐴(𝑡) as 𝐴(𝜔). Next, we introduce a metabolic rate 𝜆𝐸 , that
scales with the mean growth rate. This rate is related to the time it takes before the protein
concentration equilibrates with its protein production rate (note that producing proteins takes
time, such that a higher production rate now, only results in a higher concentration some time
later). During exponential growth, proteins are generally produced at a (mean) rate propor-
tional to 𝜆0, such that production and dilution are balanced. In effect, fluctuations in protein
concentrations generally decay on a timescale of 𝜆0. However, in the case of C-sector proteins,
synthesized proteins directly influence the rate of metabolism (if 𝑇𝐶𝑀 ≠ 0), and (depending on
the parameters 𝑇𝑅, 𝑇𝑀𝜋 and 𝑇𝑀𝜆) metabolism in turn influences the production rate and protein
concentration. This changes the timescale of C-sector fluctuations from 1/𝜆0 to 1/𝜆𝐸 , where 𝜆𝐸
is defined as: 𝜆𝐸 = 𝜆0 (1 − 𝑇𝐶𝑀𝑇𝑀𝐶 ), with 𝑇𝑀𝐶 := 𝑇𝑅 + 𝑇𝑀𝜋 − 𝑇𝑀𝜆.

Using this notation, we solve the linear system on the previous page in Fourier Space and
arrive at:

𝛿𝜆
𝜆0

= 𝑁𝜆 + 𝑇𝑀𝜆𝑁𝑀 + 𝜆0

𝜆𝐸+𝑖𝜔 (𝑇𝐶𝑀𝑇𝑀𝜆)
[
𝑁𝜋𝐶 + 𝑁𝑠 + 𝑇𝑀𝐶𝑁𝑀 − 𝑁𝜆

]
,

�𝛿𝜙𝐶

𝜙𝐶0
=

𝜆0

𝜆𝐸+𝑖𝜔

[
𝑁𝜋𝐶 + 𝑁𝑠 + 𝑇𝑀𝐶𝑁𝑀 − 𝑁𝜆

]
,

�𝛿𝜋𝐶
𝜋𝐶0

= 𝑁𝜋𝐶 + 𝑁𝑠 + (𝑇𝑅 + 𝑇𝑀𝜋)𝑁𝑀 + 𝜆0

𝜆𝐸+𝑖𝜔𝑇𝐶𝑀 (𝑇𝑅 + 𝑇𝑀𝜋)
[
𝑁𝜋𝐶 + 𝑁𝑠 + 𝑇𝑀𝐶𝑁𝑀 − 𝑁𝜆

]
.

(10)
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
�𝛿𝜙𝑌
𝜙𝑦,0

=
𝜆0

𝜆0+𝑖𝜔

[
𝑁𝜋𝑌 + 𝑁𝑠 + 𝑇𝑀𝐶𝑁𝑀 − 𝑁𝜆

]
+ 𝜆2

0𝑇𝐶𝑀𝑇𝑀𝐶

(𝜆𝐸+𝑖𝜔) (𝜆0+𝑖𝜔)

[
𝑁𝜋𝐶 + 𝑁𝑠 + 𝑇𝑀𝐶𝑁𝑀 − 𝑁𝜆

]
,

�𝛿𝜋𝑌
𝜋𝑦,0

= 𝑁𝜋𝑌 + 𝑁𝑠 + (𝑇𝑅 + 𝑇𝑀𝜋)𝑁𝑀 + 𝜆0

𝜆𝐸+𝑖𝜔𝑇𝐶𝑀 (𝑇𝑅 + 𝑇𝑀𝜋)
[
𝑁𝜋𝐶 + 𝑁𝑠 + 𝑇𝑀𝐶𝑁𝑀 − 𝑁𝜆

]
.

(11)


�𝛿𝜙𝐻

𝜙𝐻,0
=

𝜆0

𝜆0+𝑖𝜔

[
𝑁𝜋𝐻 + (𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑁𝑀 − 𝑁𝜆

]
+ 𝜆2

0𝑇𝐶𝑀 (𝑇𝑀𝜋−𝑇𝑀𝜆)
(𝜆𝐸+𝑖𝜔) (𝜆0+𝑖𝜔)

[
𝑁𝜋𝐶 + 𝑁𝑠 + 𝑇𝑀𝐶𝑁𝑀 − 𝑁𝜆

]
,

�𝛿𝜋𝐻
𝜋𝐻,0

= 𝑁𝜋𝐻 + 𝑇𝑀𝜋𝑁𝑀 + 𝜆0

𝜆𝐸+𝑖𝜔𝑇𝐶𝑀𝑇𝑀𝜋

[
𝑁𝜋𝐶 + 𝑁𝑠 + 𝑇𝑀𝐶𝑁𝑀 − 𝑁𝜆

]
.

(12)

1.3 Calculated variances and cross-covariances

1.3.1 Calculation of cross-covariance

The solution in Fourier Space (Eqs. 10 - 12) can be used to calculate variances and cross-
covariances of the variables. Using the convolution theorem, cross-covariance of variables 𝐴 and
𝐵, with time-averages 𝐴0 and 𝐵0, can be calculated as:

X(𝐴,𝐵) (𝜏) =
1

2𝜋
F −1

(
𝐴(𝑡 − 𝜏)

∗

𝐴0

𝐵(𝑡)
𝐵0

)
, (13)

where F −1 (.) denotes the Inverse Fourier Transform (* here denotes complex conjugation). In the

product 𝐴∗

𝐴0

𝐵
𝐵0

we can safely ignore terms of 𝑁𝑖𝑁
∗
𝑗
when 𝑖 ≠ 𝑗 , for they will not contribute to the

cross-correlation due to independence of the noise sources. Consequently, the expansion of the
product is always linear in the absolute values of the noise sources |𝑁𝑖 |2. This feature is important,
because it assures that the cross-covariance can be written as 𝜒(𝐴,𝐵) (𝜏) = 1

2𝜋F
−1 (∑

𝑖 𝑓𝑖 (𝜔) |𝑁𝑖 |2
)
,

where 𝑓𝑖 (𝜔) are complex functions to be determined and the summation runs over all noise
sources. Because the Inverse Fourier Transform is a linear operator, we only need to calculate
the Inverse Fourier Transform of each term, 𝑓𝑖 (𝜔) |𝑁𝑖 |2, separately. The Inverse Fourier Transform
of each term is given in section 1.3.4.

1.3.2 Analytical expressions for the coefficients of variation

From the above equations (10 - 13) one can also derive the coefficient of variation of all variables.
Concretely, the coefficient of variation of variable 𝐴 is related to its auto-covariance at zero delay:

𝜂2𝐴 := 𝜎2
𝐴/𝐴

2
0 = X(𝐴,𝐴) (0). (14)

For example, the coefficients of variation for 𝜙𝐶 and 𝜆 can be calculated using the Inverse
Fourier transform as follows:

𝜂2𝜙𝐶
:= F −1

(𝜏=0)

[
𝛿𝜙𝐶

∗

𝜙0,𝐶

𝛿𝜙𝐶

𝜙0,𝐶

]
= F −1

(0)

[
𝜆20

𝜆2
𝐸
+ 𝜔2

(
|𝑁𝜋𝐶 |2 + |𝑁𝑠 |2 + 𝑇2

𝑀𝐶 |𝑁𝑀 |2 + |𝑁𝜆 |2
) ]
. (15)

𝜂2𝜆 = F −1
(𝜏=0)

[
|𝑁𝜆 |2 + 𝑇2

𝑀𝜆 |𝑁𝑀 |2 + 2𝜆0𝜆𝐸

𝜆2
𝐸
+ 𝜔2

𝑇𝐶𝑀𝑇𝑀𝜆

(
𝑇𝑀𝜆𝑇𝑀𝐶 |𝑁𝑀 |2 − |𝑁𝜆 |2

) ]
(16)

+ (𝑇𝐶𝑀𝑇𝑀𝜆)2𝜂2𝜙𝐶
. (17)
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(Here we have used the identity 𝜆0

𝜆𝐸+𝑖𝜔 + 𝜆0

𝜆𝐸−𝑖𝜔 =
2𝜆0𝜆𝐸

𝜆2
𝐸
+𝜔2 .) To calculate these (Inverse) Fourier

Transforms we use a set of identities that can be found later in this document (Section 1.3.4,

Eqs. 28-38). Here we present the results (using the notation 𝛽
𝑗

𝑋
:= 𝛽𝑋 + 𝜆 𝑗 , with 𝑗 ∈ {0, 𝐸}):

𝜂2
𝜙𝐶

=
𝜆2
0

2𝜆𝐸

(
𝜃2
𝜋𝐶

𝛽𝜋𝐶
𝛽𝐸
𝜋𝐶

+ 𝜃2
𝑠

𝛽𝑠𝛽
𝐸
𝑠
+ 𝑇2

𝑀𝐶

𝜃2
𝑀

𝛽𝑀𝛽𝐸
𝑀

+ 𝜃2
𝜆

𝛽𝜆𝛽
𝐸
𝜆

)
,

𝜂2
𝜆

=
𝜃2
𝜆

2𝛽𝜆

(
1 − 2𝜆0

𝛽𝐸
𝜆

𝑇𝐶𝑀𝑇𝑀𝜆

)
+ 𝜃2

𝑀

2𝛽𝑀
𝑇2
𝑀𝜆

(
1 + 2𝜆0

𝛽𝐸
𝑀

𝑇𝐶𝑀𝑇𝑀𝐶

)
+ (𝑇𝐶𝑀𝑇𝑀𝜆)2𝜂2𝜙𝐶

,

𝜂2𝜋𝐶 =
𝜃2
𝜋𝐶

2𝛽𝜋𝐶

(
1 + 2𝜆0

𝛽𝐸
𝜋𝐶

𝑇𝐶𝑀 (𝑇𝑅 + 𝑇𝑀𝜋)
)
+ 𝜃2

𝑠

2𝛽𝑠

(
1 + 2𝜆0

𝛽𝐸
𝑠
𝑇𝐶𝑀 (𝑇𝑅 + 𝑇𝑀𝜋)

)
+ 𝜃2

𝑀

2𝛽𝑀
(𝑇𝑅 + 𝑇𝑀𝜋)2

(
1 + 2𝜆0

𝛽𝐸
𝑀

𝑇𝑀𝐶𝑇𝐶𝑀

)
+ 𝑇2

𝐶𝑀
(𝑇𝑅 + 𝑇𝑀𝜋)2𝜂2𝜙𝐶

.

(18)



𝜂2
𝜙𝑌

=
𝜃2𝜋𝑌𝜆0

2𝛽𝜋𝑌 𝛽
0
𝜋𝑌

+ 𝜃2
𝑠 𝜆0

2𝛽𝑠𝛽
0
𝑠

(
1 + 𝑇𝐶𝑀𝑇𝑀𝐶

𝜆0 (𝛽𝑠+𝜆0+𝜆𝐸 )
𝜆𝐸𝛽𝐸

𝑠

)
+ 𝜃2

𝑀
𝜆0

2𝛽𝑀𝛽0
𝑀

𝑇2
𝑀𝐶

(
1 + 𝑇𝐶𝑀𝑇𝑀𝐶

𝜆0 (𝛽𝑀+𝜆0+𝜆𝐸 )
𝜆𝐸𝛽𝐸

𝑀

)
+ 𝜃2

𝜆
𝜆0

2𝛽𝜆𝛽
0
𝜆

(
1 + 𝑇𝐶𝑀𝑇𝑀𝐶

𝜆0 (𝛽𝜆+𝜆0+𝜆𝐸 )
𝜆𝐸𝛽𝐸

𝜆

)
+

𝜃2
𝜋𝐶

𝜆2
0

2𝛽𝜋𝐶
𝛽0
𝜋𝐶

𝑇2
𝐶𝑀

𝑇2
𝑀𝐶

𝜆0 (𝛽𝜋𝐶
+𝜆0+𝜆𝐸 )

𝛽𝐸
𝜋𝐶

𝜆𝐸 (𝜆0+𝜆𝐸 )
,

𝜂2𝜋𝑌 =
𝜃2
𝜋𝑌

2𝛽𝜋𝑌

+ 𝜃2
𝑠

2𝛽𝑠

(
1 + 2 𝜆0

𝛽𝐸
𝑠
𝑇𝐶𝑀 (𝑇𝑅 + 𝑇𝑀𝜋)

)
+ 𝜃2

𝑀

2𝛽𝑀
(𝑇𝑅 + 𝑇𝑀𝜋)2

(
1 + 2 𝜆0

𝛽𝐸
𝑀

𝑇𝐶𝑀𝑇𝑀𝐶

)
+𝑇2

𝐶𝑀
(𝑇𝑅 + 𝑇𝑀𝜋)2𝜂2𝜙𝐶

.

(19)



𝜂2
𝜙𝐻

=
𝜃2
𝜋𝐻

𝜆0

2𝛽𝜋𝐻
𝛽0
𝜋𝐻

+ 𝜆3
0𝑇

2
𝐶𝑀

(𝑇𝑀𝜋−𝑇𝑀𝜆)2
2𝜆𝐸 (𝜆0+𝜆𝐸 )

(
𝜃2
𝜋𝐶

(𝛽𝜋𝑐+𝜆0+𝜆𝐸 )
𝛽𝜋𝑐 𝛽

0
𝜋𝑐 𝛽

𝐸
𝜋𝑐

+ 𝜃2
𝑠 (𝛽𝑠+𝜆0+𝜆𝐸 )
𝛽𝑠𝛽

0
𝑠 𝛽

𝐸
𝑠

)
+ 𝜃2

𝑀
𝜆0 (𝑇𝑀𝜋−𝑇𝑀𝜆)2

2𝛽𝑀𝛽0
𝑀

(
1 + 𝑇𝐶𝑀𝑇𝑀𝐶

𝜆0 (𝛽𝑀+𝜆0+𝜆𝐸 )
𝜆𝐸𝛽𝐸

𝑀

)
+ 𝜃2

𝜆
𝜆0

2𝛽𝜆𝛽
0
𝜆

(
1 + 𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆) 𝜆0 (𝛽𝜆+𝜆0+𝜆𝐸 )

𝛽𝐸
𝜆
(𝜆0+𝜆𝐸 )

(
𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆) 𝜆0

𝜆𝐸
+ 2

))
𝜂2𝜋𝐻 =

𝜃2
𝜋𝐻

2𝛽𝜋𝐻

+ 𝜃2
𝑀

2𝛽𝑀
𝑇2
𝑀𝜋

(
1 + 2 𝜆0

𝛽𝐸
𝑀

𝑇𝐶𝑀𝑇𝑀𝐶

)
+ 𝑇2

𝐶𝑀
𝑇2
𝑀𝜋

𝜂2
𝜙𝐶
.

(20)

1.3.3 Analytical expressions for the cross-covariances

The cross-covariances (Eq. 13) are best expressed in terms of the functions 𝐴
𝑗
𝑥 , 𝐵𝑥 , 𝑆𝑥 , and 𝐷

[𝑘 ]
𝑥

(where 𝑥 indicates the noise source, 𝑗 ∈ {0, 𝐸} and 𝑘 ∈ {1, 2, 3}). The definition of these functions

and some intuitive explanation for 𝐷 [𝑘 ]
𝑥 is given in SI, sections 1.3.4 and 2.5. Here, we however

already use the relation 𝐴𝑥 (𝑡) + 𝐴𝑥 (−𝑡) = 2𝜆𝐸

𝜆0
𝑆𝑥 (𝑡)).

𝜒(𝜙𝐶 ,𝜆) (𝑡) = 𝑇𝐶𝑀𝑇𝑀𝜆

[
𝑆𝜋𝐶 (𝑡) + 𝑆𝑠 (𝑡) + 𝑇2

𝑀𝐶𝑆𝑀 (𝑡) + 𝑆𝜆 (𝑡)
]
+ 𝑇𝑀𝐶𝑇𝑀𝜆𝐴𝑀 (𝑡) − 𝐴𝜆 (𝑡). (21)

𝜒(𝜋𝐶 ,𝜆) (𝑡) = 𝑇2
𝐶𝑀𝑇𝑀𝜆(𝑇𝑅 + 𝑇𝑀𝜋)

[
𝑆𝜋𝑐 (𝑡) + 𝑆𝑠 (𝑡) + 𝑇2

𝑀𝐶𝑆𝑀 (𝑡) + 𝑆𝜆 (𝑡)
]
+ (𝑇𝑅 + 𝑇𝑀𝜋)𝑇𝑀𝜆𝐵𝑀 (𝑡)

+ 𝑇𝐶𝑀𝑇𝑀𝜆

[
𝐴𝜋𝐶 (−𝑡) + 𝐴𝑠 (−𝑡)

]
+ 2𝜆𝐸
𝜆0

𝑇𝐶𝑀𝑇𝑀𝜆𝑇𝑀𝐶 (𝑇𝑅 + 𝑇𝑀𝜋)𝑆𝑀 (𝑡)

− 𝑇𝐶𝑀 (𝑇𝑅 + 𝑇𝑀𝜋)𝐴𝜆 (𝑡). (22)
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𝜒(𝜙𝑌 ,𝜆) (𝑡) = 𝑇𝑀𝐶𝑇𝑀𝜆𝐴
0
𝑀 (𝑡) − 𝐴0

𝜆 (𝑡)

+ 𝑇𝐶𝑀𝑇𝑀𝜆

[
𝐷

[1]
𝑠 (𝑡) + 𝑇2

𝑀𝐶𝐷
[1]
𝑀

(𝑡) + 𝐷 [1]
𝜆

(𝑡)
]
+ 𝑇𝐶𝑀𝑇𝑀𝐶

[
𝑇𝑀𝐶𝑇𝑀𝜆𝐷

[2]
𝑀

(𝑡) − 𝐷 [2]
𝜆

(𝑡)
]

+ 𝑇2
𝐶𝑀𝑇𝑀𝐶𝑇𝑀𝜆

[
𝐷

[3]
𝜋𝐶 (𝑡) + 𝐷

[3]
𝑠 (𝑡) + 𝑇2

𝑀𝐶𝐷
[3]
𝑀

(𝑡) + 𝐷 [3]
𝜆

(𝑡)
]
. (23)

𝜒(𝜋𝑌 ,𝜆) (𝑡) = 𝑇𝑀𝜆(𝑇𝑅 + 𝑇𝑀𝜋)𝐵𝑀 (𝑡) + 2𝜆𝐸
𝜆0

𝑇𝐶𝑀𝑇𝑀𝐶𝑇𝑀𝜆 (𝑇𝑅 + 𝑇𝑀𝜋)𝑆𝑀 (𝑡)

+ 𝑇𝐶𝑀

[
𝑇𝑀𝜆𝐴

𝐸
𝑠 (−𝑡) − (𝑇𝑅 + 𝑇𝑀𝜋)𝐴𝐸

𝜆 (𝑡)
]

+ 𝑇2
𝐶𝑀 (𝑇𝑅 + 𝑇𝑀𝜋)𝑇𝑀𝜆

[
𝑆𝜋𝐶 (𝑡) + 𝑆𝑠 (𝑡) + 𝑇2

𝑀𝐶𝑆𝑀 (𝑡) + 𝑆𝜆 (𝑡)
]
. (24)

𝜒(𝜙𝐻 ,𝜆) = (𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑇𝑀𝜆𝐴
0
𝑀 (𝑡) − 𝐴0

𝜆 (𝑡) + 𝑇𝐶𝑀𝑇𝑀𝜆

[
(𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑇𝑀𝐶𝐷

[1]
𝑀

(𝑡) + 𝐷 [1]
𝜆

(𝑡)
]

+ 𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆)
[
𝑇𝑀𝐶𝑇𝑀𝜆𝐷

[2]
𝑀

(𝑡) − 𝐷 [2]
𝜆

(𝑡)
]

+ 𝑇2
𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑇𝑀𝜆

[
𝐷

[3]
𝜋𝐶 (𝑡) + 𝐷

[3]
𝑠 (𝑡) + 𝑇2

𝑀𝐶𝐷
[3]
𝑀

(𝑡) + 𝐷 [3]
𝜆

(𝑡)
]
. (25)

𝜒(𝜋𝐻 ,𝜆) = 𝑇𝑀𝜋𝑇𝑀𝜆𝐵𝑀 (𝑡) + 2𝜆𝐸
𝜆0

𝑇𝑀𝜋 (𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝜆)𝑆𝑀 (𝑡) − 𝑇𝐶𝑀𝑇𝑀𝜋𝐴𝜆 (−𝑡)

+ 𝑇2
𝐶𝑀𝑇𝑀𝜋𝑇𝑀𝜆

[
𝑆𝜋𝐶 (𝑡) + 𝑆𝑠 (𝑡) + 𝑇2

𝑀𝐶𝑆𝑀 (𝑡) + 𝑆𝜆
]
. (26)

The variances and cross-covariances presented here can be further studied and checked with
the Mathematica notebook/supplementary file ‘VarianceChecker.nb’ (Mathematica 13), which is
available online: https://github.com/Jintram/DynamicalRegulationBacterialCells.

1.3.4 Functional forms of the building blocks

In the above equations, 𝐴
𝑗
𝑥 , 𝐵𝑥 , 𝑆𝑥 and 𝐷

[𝑘 ]
𝑥 ( 𝑗 ∈ {0, 𝐸} and 𝑘 ∈ {1, 2, 3}) are functional forms

that describe the shape of the contribution of a noise source 𝑁𝑥 to the cross-covariance. This
contribution depends on the noise source, but also on the route via which noise is transferred
through the system (Fig. S1). These functions therefore depend on 𝜃𝑥 and 𝛽𝑥 , the amplitude and
timescale of 𝑁𝑥 (for clarity of reading we have omitted all the 𝑥-subscripts below). Additionally,
the functions depend on the specific route via which is transferred through the system (Figs. S1
and S2). The functional forms are found by complex integration using Cauchy’s Residue Theorem
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and are given by:

𝐴 𝑗 (𝑡) =
∫

𝑒𝑖𝜔𝑡

2𝜋

𝜆0

𝜆 𝑗 − 𝑖𝜔
𝜃2

𝛽2 + 𝜔2
𝑑𝜔, for 𝑗 ∈ {0, 𝐸}, but superscript “E” is implicit (27)

=
𝜃2𝜆0

2𝛽


2𝛽𝑒𝜆 𝑗 𝑡

𝛽2 − 𝜆2
𝑗

− 𝑒𝛽𝑡

𝛽 − 𝜆 𝑗

, for 𝑡 < 0,

𝑒−𝛽𝑡

𝛽𝑥 + 𝜆 𝑗

, for 𝑡 ≥ 0.

(28)

𝑆(𝑡) =
∫

𝑒𝑖𝜔𝑡

2𝜋

𝜆20

𝜆2
𝐸
+ 𝜔2

𝜃2

𝛽2 + 𝜔2
𝑑𝜔 (29)

=
𝜃2𝜆20

2(𝛽2 − 𝜆2
𝐸
)

(
𝑒−𝜆𝐸 |𝑡 |

𝜆𝐸
− 𝑒−𝛽 |𝑡 |

𝛽

)
(30)

𝐷 [1] (𝑡) =
∫

𝑒𝑖𝜔𝑡

2𝜋

𝜆20

(𝜆𝐸 + 𝑖𝜔) (𝜆0 − 𝑖𝜔)
𝜃2

𝛽2 + 𝜔2
𝑑𝜔 (31)

= 𝜃2𝜆20


𝑒𝜆0𝑡

(𝛽2 − 𝜆20) (𝜆0 + 𝜆𝐸)
− 𝑒𝛽𝑡

2𝛽𝛽𝐸𝑥 (𝛽 − 𝜆0)
, for 𝑡 < 0,

𝑒−𝜆𝐸 𝑡

(𝛽2 − 𝜆2
𝐸
) (𝜆0 + 𝜆𝐸)

− 𝑒−𝛽𝑡

2𝛽𝛽0 (𝛽 − 𝜆𝐸)
, for 𝑡 ≥ 0

(32)

𝐷 [2] (𝑡) =
∫

𝑒𝑖𝜔𝑡

2𝜋

𝜆20

(𝜆𝐸 − 𝑖𝜔) (𝜆0 − 𝑖𝜔)
𝜃2

𝛽2 + 𝜔2
𝑑𝜔 (33)

= 𝜃2𝜆20


𝑒𝛽𝑡

2𝛽(𝛽 − 𝜆0) (𝛽 − 𝜆𝐸)
+ 1

𝜆0 − 𝜆𝐸

(
𝑒𝜆𝐸 𝑡

𝛽2 − 𝜆2
𝐸

− 𝑒𝜆0𝑡

𝛽2 − 𝜆20

)
, for 𝑡 < 0,

𝑒−𝛽𝑡

2𝛽𝛽𝐸𝛽0
, for 𝑡 ≥ 0

(34)

𝐷 [3] (𝑡) =
∫

𝑒𝑖𝜔𝑡

2𝜋

𝜆30

(𝜆2
𝐸
+ 𝜔2) (𝜆0 − 𝑖𝜔)

𝜃2

𝛽2 + 𝜔2
𝑑𝜔 (35)

=
𝜃2𝜆30

2


(

𝑒𝛽𝑡

𝛽(𝛽 − 𝜆0) (𝛽2 − 𝜆2𝐸)
− 2𝑒𝜆0𝑡

(𝛽2 − 𝜆20) (𝜆20 − 𝜆2𝐸)
+ 𝑒𝜆𝐸 𝑡

𝜆𝐸 (𝛽2 − 𝜆2𝐸) (𝜆0 − 𝜆𝐸)

)
, for 𝑡 < 0,

𝑒−𝜆𝐸 𝑡

𝜆𝐸 (𝜆0 + 𝜆𝐸) (𝛽2 − 𝜆2𝐸)
− 𝑒−𝛽𝑡

𝛽𝛽0 (𝛽2 − 𝜆2
𝐸
)
, for 𝑡 ≥ 0

(36)

𝐵(𝑡) =
∫

𝑒𝑖𝜔𝑡

2𝜋

𝜃2

𝛽2 + 𝜔2
𝑑𝜔 (37)

=
𝜃2

2𝛽
𝑒−𝛽 |𝑡 | . (38)

In section 2.5 we will further discuss the interpretation of the these functions.
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2 Analyzing the expressions for the cross-covariance func-
tions

The cross-covariance between two signals 𝐴 and 𝐵 contains temporal information about the
dynamical interplay of the two signals. For example, if noise first reaches signal 𝐴 and only later
arrives at 𝐵, their cross-covariance peaks at a positive delay time. Generally, the complicated
expressions for the cross-covariance between 𝐴 and 𝐵 indeed consists of several terms that each
correspond to a different (biophysical) mechanism by which noise can propagate from some noise
source to 𝐴 and 𝐵. Insight is gained by splitting the mathematical description of the cross-
covariance into different ‘modes’ that can each be interpreted as a different ways in which noise
can propagate through the cell. However, such a decomposition is not unique and hence subject
to convention. Therefore, we first discuss a decomposition from Kiviet et al. [1] using the 𝜙𝐶 -𝜆
cross-covariance, 𝜒𝜙𝐶 ,𝜆 as an example. Next, we propose a new decomposition that is better
suited to the system investigated in this work.

2.1 The 𝜙𝐶-𝜆 cross-covariance: Old Decomposition

First, we split up the 𝜙𝐶 -𝜆 cross-covariance (see Eq. 21) in the same way as in Kiviet et al., using
three modes:

• Catabolism mode. This mode contains the contributions of all paths that transfer via
catabolism (i.e. from 𝜙𝐶 to 𝑀 and from 𝑀 to 𝜆), where one route ends at the growth rate,
and the other at protein concentration:

𝑇𝐶𝑀𝑇𝑀𝜆

(
𝑆𝜋𝐶 + 𝑆𝑠 + 𝑇2

𝑀𝐶𝑆𝑀 + (−1)2𝑆𝜆
)
.

• Common mode. This mode originates from a phenomenological noise source that directly
influences both the growth rate and the production rates (which in turn influences the
concentrations):

𝑇𝑀𝐶𝑇𝑀𝜆𝐴𝑀 .

• Dilution mode. This mode represents direct transfer from growth to protein concentra-
tion:

−𝐴𝜆.

2.2 The 𝐶-𝜆 cross-covariance: New decomposition

In the current work, we argue to define the modes slightly different. The major difference is
in the interpretation of the common mode, which is now not defined as contributions to the
cross-correlations originating from a particular noise source, but rather as all contributions that
are sensed commonly by all proteins in the cell. Specifically, noise in the production of particular
proteins can contribute to fluctuations of 𝑀, from where it transfers to all proteins commonly.
In other words, noise that originates in a particular part of the cell can propagate through the
cell and partly become common noise, transferring further to all proteins equally. Additionally
we introduce the regulation mode, which contains all contributions to the cross-correlations that
rely on the regulation and hence scale linearly with 𝑇𝑅.

To indicate paths through the cell along which noise transfers, and to therewith know via
which biophysical mechanism the noise transfers, we have added red parentheses to the expres-
sion of 𝜒(𝜙𝐶 ,𝜆) . These red parentheses divide the transfer parameters into groups of transfer
parameters that together describe a particular path through the cell (see also Figs. S1 and S2).
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From every noise source one can indeed follow two paths, one to each of the variables for which
the cross-correlation is calculated. (Here we used that the transfer parameter from growth to
protein concentrations is −1.) With these conventions, the decomposition of the cross-correlation
between 𝜙𝐶 and 𝜆 becomes as follows:

• 𝜒(𝜙𝐶 ,𝜆) :

1. Catabolism: (𝑇𝐶𝑀𝑇𝑀𝜆)
(
𝑆𝜋𝐶 + 𝑆𝑠

)
.

2. Dilution: (−1) 𝐴𝜆.
3. Common: (𝑇𝑀𝜋) (𝑇𝑀𝜆) 𝐴𝑀+(−𝑇𝑀𝜆) (𝑇𝑀𝜆) 𝐴𝑀+(𝑇𝑀𝐶 ) (𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝜆) 𝑆𝑀+(−1) (−𝑇𝐶𝑀𝑇𝑀𝜆) 𝑆𝜆.
4. Regulation: (𝑇𝑅) (𝑇𝑀𝜆) 𝐴𝑀 .

• 𝜒(𝜋𝐶 ,𝜆) :

1. Catabolism: 𝑇𝐶𝑀𝑇𝑀𝜆

(
𝐴𝜋𝐶 (−𝑡) + 𝐴𝑠 (−𝑡)

)
.

2. Dilution: 0.

3. Common:𝑇𝑀𝜋𝑇𝑀𝜆𝐵𝑀 + 𝑇𝐶𝑀𝑇𝑀𝜋𝑇𝐶𝑀𝑇𝑀𝜆

[
(𝑆𝜋𝐶 + 𝑆𝑠 + 𝑇2

𝑀𝐶
𝑆𝑀 + (−1)2𝑆𝜆

]
+ 2𝜆𝐸

𝜆0
𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝜋𝑇𝑀𝜆𝑆𝑀 − 𝑇𝐶𝑀𝑇𝑀𝜋𝐴𝜆.

4. Regulation: 𝑇𝑅𝑇𝑀𝜆𝐵𝑀 + 𝑇𝐶𝑀𝑇𝑅𝑇𝐶𝑀𝑇𝑀𝜆

[
𝑆𝜋𝐶 + 𝑆𝑠 + 𝑇2

𝑀𝐶
𝑆𝑀 + 𝑆𝜆

]
+ 2𝜆𝐸

𝜆0
𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑅𝑇𝑀𝜆𝑆𝑀 − 𝑇𝐶𝑀𝑇𝑅𝐴𝜆.

The above equations for 𝜒(𝜙𝐶 ,𝜆) and 𝜒(𝜋𝐶 ,𝜆) apply to both wild type E. coli cells and the
cAMP-fixed cyaA cpdA null mutant studied in the main text. This allows us to pinpoint the role
of regulation in shaping the cross-correlation. The parameter 𝑇𝑅 that represents the cAMP-CRP
regulation feedback is expected to be negative in the wild type (𝑇𝑅 < 0 due to cAMP-CRP
regulation). In the cAMP-fixed strain however, the negative feedback is abolished and 𝑇𝑅 = 0.
Such a parametric switch will qualitatively change the cross-correlations 𝑅(𝜙𝐶 ,𝜆) and 𝑅(𝜋𝐶 ,𝜆) .
For example, a negative contribution with functional form of 𝐴𝑀 (asymmetrically, left-skewed
function with timescale 𝜆0) is effectively removed from 𝑅(𝜙𝐶 ,𝜆) .

Note that 𝑇𝑅 however not only influences the presence and absence of modes. Additionally,
𝑇𝑅 also influences the coefficients of variation (Eqs. 18 - 20), and amplitudes and timescales of
the other modes via 𝜆𝐸 := 𝜆0 (1− (𝑇𝑅 +𝑇𝑀𝜋 −𝑇𝑀𝜆)). Most modes are therefore expected to show
slight, quantitative differences between wild type and cAMP-fixed cells, but only the regulation
mode will show a strong qualitative difference: it is completely absent in cAMP-fixed cells.

2.3 Summary of the new decomposition for the reporters

2.3.1 𝜒(𝜙𝑌 , 𝜆)

1. Catabolism: 𝑇𝐶𝑀𝑇𝑀𝜆𝐷
[1]
𝑠 .

2. Dilution: −𝐴0
𝜆
.

3. Common: (𝑇𝑀𝜋−𝑇𝑀𝜆)𝑇𝑀𝜆𝐴
0
𝑀
+𝑇𝐶𝑀𝑇𝑀𝐶

(
𝑇𝑀𝐶𝑇𝑀𝜆𝐷

[2]
𝑀

− 𝐷 [2]
𝜆

)
+𝑇𝐶𝑀 (𝑇𝑀𝜋−𝑇𝑀𝜆)𝑇𝐶𝑀𝑇𝑀𝜆

[
𝐷

[3]
𝜋𝐶+

𝐷
[3]
𝑠 + 𝑇2

𝑀𝐶
𝐷

[3]
𝑀

+ 𝐷 [3]
𝜆

]
+ 𝑇𝑀𝐶𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑇𝑀𝜆𝐷

[1]
𝑀

+ 𝑇𝐶𝑀𝑇𝑀𝜆𝐷
[1]
𝜆

.

4. Regulation: 𝑇𝑅𝑇𝑀𝜆𝐴
0
𝑀
+𝑇𝐶𝑀𝑇𝑅𝑇𝐶𝑀𝑇𝑀𝜆

[
𝐷

[3]
𝜋𝐶+𝐷

[3]
𝑠 +𝑇2

𝑀𝐶
𝐷

[3]
𝑀

+𝐷 [3]
𝜆

]
+𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑅𝑇𝑀𝜆𝐷

[1]
𝑀

.
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2.3.2 𝜒(𝜋𝑌 , 𝜆)

1. Catabolism: 𝑇𝐶𝑀𝑇𝑀𝜆𝐴𝑠 (−𝑡).

2. Dilution: 0.

3. Common: 𝑇𝑀𝜋𝑇𝑀𝜆𝐵𝑀 + 𝑇𝐶𝑀𝑇𝑀𝜋𝑇𝐶𝑀𝑇𝑀𝜆

[
𝑆𝜋𝐶 + 𝑆𝑠 + 𝑇2

𝑀𝐶
𝑆𝑀 + 𝑆𝜆

]
+ 2𝜆𝐸

𝜆0
𝑇𝑀𝜋𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝜆𝑆𝑀 − 𝑇𝐶𝑀𝑇𝑀𝜋𝐴𝜆.

4. Regulation: 𝑇𝑅𝑇𝑀𝜆𝐵𝑀 + 𝑇𝐶𝑀𝑇𝑅𝑇𝐶𝑀𝑇𝑀𝜆

[
𝑆𝜋𝐶 + 𝑆𝑠 + 𝑇2

𝑀𝐶
𝑆𝑀 + 𝑆𝜆

]
+ 2𝜆𝐸

𝜆0
𝑇𝑅𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝜆𝑆𝑀 − 𝑇𝐶𝑀𝑇𝑅𝐴𝜆.

2.3.3 𝜒(𝜙𝐻 , 𝜆)

1. Catabolism: 0.

2. Dilution: −𝐴0
𝜆
.

3. Common: (𝑇𝑀𝜋−𝑇𝑀𝜆)𝑇𝑀𝜆𝐴
0
𝑀
+𝑇𝐶𝑀𝑇𝑀𝐶

(
𝑇𝑀𝐶𝑇𝑀𝜆𝐷

[2]
𝑀

− 𝐷 [2]
𝜆

)
+𝑇𝐶𝑀 (𝑇𝑀𝜋−𝑇𝑀𝜆)𝑇𝐶𝑀𝑇𝑀𝜆

[
𝐷

[3]
𝜋𝐶+

𝐷
[3]
𝑠 + 𝑇2

𝑀𝐶
𝐷

[3]
𝑀

+ 𝐷 [3]
𝜆

]
+ 𝑇𝑀𝐶𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑇𝑀𝜆𝐷

[1]
𝑀

+ 𝑇𝐶𝑀𝑇𝑀𝜆𝐷
[1]
𝜆

.

4. Regulation: 0.

2.3.4 𝜒(𝜋𝐻 , 𝜆)

1. Catabolism: 0.

2. Dilution: 0.

3. Common: 𝑇𝑀𝜋𝑇𝑀𝜆𝐵𝑀+𝑇𝐶𝑀𝑇𝑀𝜋𝑇𝐶𝑀𝑇𝑀𝜆

[
𝑆𝜋𝐶+𝑆𝑠+𝑇2

𝑀𝐶
𝑆𝑀+𝑆𝜆

]
+2𝜆𝐸

𝜆0
𝑇𝑀𝜋𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝜆𝑆𝑀−

𝑇𝐶𝑀𝑇𝑀𝜋𝐴𝜆.

4. Regulation: 0.

2.4 Example: interpretation of the decomposition of the 𝜙𝑌 – 𝜆 cross-
covariance

To clarify the interpretation of the expressions above, we now discuss the decomposition of the
𝑌–𝜆 cross-correlation function in detail.

1. Catabolism mode. This mode is a consequence of fluctuations in the expression level
of the catabolic sector (C-sector) that directly influence the rate of metabolism and the
growth rate. Even though the reporter 𝑌 is itself not metabolically active, it does share
a noise source (𝑁𝑠) with the C-sector. As a result, the (cross-)correlation 𝑅(𝜙𝑌 ,𝜆) also
contains the catabolism mode, reflecting that 𝜙𝑌 correlates with 𝜙𝐶 (due to the shared
noise source 𝑁𝑠), and 𝜙𝐶 with 𝜆 (due to the effect that fluctuations in 𝜙𝐶 have on the
growth rate).

𝑇𝐶𝑀𝑇𝑀𝜆𝐷
[1]
𝑠 .
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Note that indeed only the shared noise source 𝑁𝑠 transfers directly to growth from 𝜋𝑌 ,
instead of reverberating through metabolism (and thus becoming ‘common’ noise). The

function 𝐷 [1]
𝑠 appears (instead of the function 𝑆 as found in [1]) because noise transferring

from metabolism, via production to the reporters (𝑌 or 𝐻) has a delay timescale of 𝜆0,
whereas noise transferring to 𝜙𝐶 has timescale 𝜆𝐸 .

2. Dilution mode. This represents direct transfer from growth to protein concentration.

−𝐴0
𝜆.

3. Common mode.

(𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑇𝑀𝜆𝐴
0
𝑀 + 𝑇𝐶𝑀𝑇𝑀𝐶

(
𝑇𝑀𝐶𝑇𝑀𝜆𝐷

[2]
𝑀

− 𝐷 [2]
𝜆

)
+ 𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑇𝐶𝑀𝑇𝑀𝜆

[
𝐷

[3]
𝜋𝐶

+ 𝐷 [3]
𝑠 + 𝑇2

𝑀𝐶𝐷
[3]
𝑀

+ 𝐷 [3]
𝜆

]
+ 𝑇𝑀𝐶𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆)𝑇𝑀𝜆𝐷

[1]
𝑀

+ 𝑇𝐶𝑀𝑇𝑀𝜆𝐷
[1]
𝜆
.

Common noise includes noise in the 𝐶-sector and its effect on the reporters after it reverber-

ated through the cell. Here, one can for example examine the term (−𝑇𝐶𝑀𝑇𝑀𝜆) (−𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆)) 𝐷 [3]
𝜆

,
where both the path that ends up in 𝜆, (−𝑇𝐶𝑀𝑇𝑀𝜆), and the path that ends up in 𝜙𝑌 ,
(−𝑇𝐶𝑀 (𝑇𝑀𝜋 − 𝑇𝑀𝜆)), cross 𝜙𝐶 , picking up a timescale of 𝜆𝐸 , and after that one route
transfers to 𝜙𝑌 , picking up a timescale 𝜆0. Another interesting example is the second term,

−𝑇𝐶𝑀 (𝑇𝑀𝜋−𝑇𝑀𝜆)𝐷 [2]
𝜆

: this is growth noise that diluted 𝜙𝐶 , which has affected metabolism,
but from there transfers equally to all other proteins (with coefficient 𝑇𝑀𝜋 − 𝑇𝑀𝜆). There-
fore, this term is also regarded as common noise.

4. Regulation

𝑇𝑅𝑇𝑀𝜆𝐴
0
𝑀 + 𝑇𝐶𝑀𝑇𝑅𝑇𝐶𝑀𝑇𝑀𝜆

[
𝐷

[3]
𝜋𝐶 + 𝐷 [3]

𝑠 + 𝑇2
𝑀𝐶𝐷

[3]
𝑀

+ 𝐷 [3]
𝜆

]
+ 𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑅𝑇𝑀𝜆𝐷

[1]
𝑀
.

In the decompositions the term 𝑇𝑀𝜋 − 𝑇𝑀𝜆 appears often. This represents the net transfer
from 𝑀 to 𝜙 via 𝜋 and from 𝑀 to 𝜙 via 𝜆.

2.5 Noise routes, timescales and modes

We make a clear distinction between noise routes, i.e., possible paths through which noise can
transfer according to the diagram in Fig. S1, and noise modes, which are a classification of noise
routes in terms of a biophysical noise propagation mechanism (such as dilution or regulatory
control). In that sense, a noise mode is a collection of noise routes that each have a similar
biological or biophysical interpretation.

The functional forms 𝐴(0,𝐸)
𝑥 , 𝑆𝑥 , 𝐵𝑥 and 𝐷

[1,2,3]
𝑥 result from particular noise routes starting

at some noise source 𝑁𝑥 . Here and in Fig. S2, we give some more intuition on how particular

noise routes result in the functional forms 𝐷 [1]
𝑥 , 𝐷 [2]

𝑥 and 𝐷
[3]
𝑥 . First, 𝐷 [1]

𝑥 reflects noise that
transfers once via 𝜙𝐶 and once directly to 𝜙𝑌 , obtaining timescales 1/𝜆𝐸 and 1/𝜆0, respectively.
An example would be noise source 𝑁𝑠 which acts on 𝜋𝑌 and therewith directly to 𝜙𝑌 , but also

affects 𝜙𝐶 , transferring to 𝑀 and further to 𝜆. As a result 𝐷 [1]
𝑥 is very similar to 𝑆 [1], which

reflect noise routes for which both paths obtain a timescale 1/𝜆𝐸 . Second, 𝐷 [2]
𝑥 represents a

noise source from which one noise route is instantaneous, but the other makes a “double” loop,
affecting first 𝜙𝐶 and picking up timescale 1/𝜆𝐸 and then transferring to 𝜙𝑌 , picking up timescale

12



Figure S2: Example analysis of two different noise routes from noise source 𝑁𝑀 to 𝜙𝑌 and 𝜆 (shown here
is a only part of model). Thick gray arrows indicate the direction of a noise route and gray arrows with
circles indicate the start of a route. (A) One path goes directly to 𝜙𝐶 and one path goes, via 𝜙𝐶 back
to 𝑀 and then transfers to 𝜆. Transfer coefficients can be split up to represent the paths to 𝜙𝐶 and to 𝜆
separately as: (𝑇𝑀𝐶 ) (𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝜆). (B) Another example of a 𝑀-noise route: (𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝐶 ) (𝑇𝑀𝜆).

1/𝜆0. An example would be noise source 𝑁𝑀 which instantaneously affects 𝜆, but also transfers

to 𝜙𝐶 , back to 𝑀 and then to 𝜙𝑌 . Third, 𝐷 [3]
𝑥 appears when one route has timescale 1/𝜆𝐸 and

the other route is “double”, picking up both 1/𝜆𝐸 and 1/𝜆0 timescales. An example of this is
another route originating at the noise source 𝑁𝑠, where noise first transfers to 𝜙𝐶 , propagates to
𝑀, and from there to 𝜆, but also back to 𝜙𝑌 .

See Fig. S2 for an example, where we compare two routes that originate at noise source
𝑁𝑀 in the second line of Eq. 21. A route, mathematically displayed as a product of transfer
parameters, is a path through the cell via which noise transfers from the source, in this case
𝑁𝑀 , to the observables (for example 𝜙𝑌 and 𝜆, as in Fig. S2). One possible route consists of a
path directly from 𝑀, via 𝜋𝑌 , to 𝜙𝑌 (with transfer parameter (𝑇𝑀𝐶 )), and a path from 𝑀 to 𝜙𝐶 ,
back to 𝑀 and onward to 𝜆 (with transfer parameter (𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝜆), Fig. S2A). This route will

contribute a function 𝐷 [1]
𝑀

, as one path picks up a timescale of 1/𝜆0 and one 1/𝜆𝐸
Another possible route consists of a path from 𝑀 directly to 𝜆 (transfer parameter (𝑇𝑀𝜆)),

and one route to 𝜙𝐶 , back to 𝑀, and then to 𝜙𝑌 (with transfer parameters (𝑇𝑀𝐶𝑇𝐶𝑀𝑇𝑀𝐶 )). This
route will yield a function 𝐷 [2]

𝑀
, as one path is instantaneous (𝑀 to 𝜆) and one first picks up a

timescale of 1/𝜆𝐸 and then one of 1/𝜆0.

3 Parameter reduction

In this section, we show that two parameters can be effectively scaled away from the system,
resulting in fewer parameters to be fitted. First of all, since cross-correlations are dimensionless
measures and the equations are linear, we can set one (non-zero) noise amplitude to 1. We pick
𝜃𝑠, since this noise source has to be present to find any difference between the two reporters in
cAMP-fixed cells. Second, note that we do not measure 𝑀, so that the scale of 𝑀 is arbitrary
and we can scale away 𝑇𝐶𝑀 and consider fluctuations in 𝛿𝑀/(𝑇𝐶𝑀𝑀0) with scaled noise source
𝑁

′
𝑀

= 𝑁𝑀/𝑇CM.
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Now, to do the parameter reductions formally, we start with the original system (Eqs. 1-8):

𝛿𝜆

𝜆0
= 𝑁𝜆 + 𝑇M𝜆

𝛿𝑀

𝑀0
, (39)

𝛿𝑀

𝑀0
= 𝑁M + 𝑇CM

𝛿𝜙𝐶

𝜙𝐶,0
= 𝑇CM

(
𝑁𝑀

𝑇CM
+ 𝛿𝜙𝐶

𝜙𝐶,0

)
, (40)

𝛿𝜋𝐶

𝜋0,𝐶
= 𝑁𝜋C

+ 𝑁𝑠 + (𝑇M𝜋 + 𝑇𝑅)
𝛿𝑀

𝑀0
, (41)

𝛿𝜋𝑦

𝜋0,𝑦
= 𝑁𝜋Y

+ 𝑁𝑠 + (𝑇M𝜋 + 𝑇𝑅)
𝛿𝑀

𝑀0
, (42)

𝛿𝜋𝐻

𝜋0,𝐻
= 𝑁𝜋H

+ 𝑇M𝜋

𝛿𝑀

𝑀0
. (43)

Defining ˆ𝛿𝑀 = 𝛿𝑀
𝑇CM𝑀0

, 𝑁𝑀 = 𝑁𝑀/𝑇CM, 𝑇M𝜆 = 𝑇CM𝑇M𝜆, 𝑇M𝜋 = 𝑇CM𝑇M𝜋 and 𝑇𝑅 = 𝑇CM𝑇𝑅, this
system can then be transformed to:

𝛿𝜆

𝜆0
= 𝑁𝜆 + 𝑇M𝜆

(
𝑇CM

ˆ𝛿𝑀
)
= 𝑁𝜆 + 𝑇M𝜆

ˆ𝛿𝑀, (44)

ˆ𝛿𝑀 = 𝑁M + 𝛿𝜙𝐶

𝜙𝐶,0
(45)

𝛿𝜋𝐶

𝜋0,𝐶
= 𝑁𝜋C

+ 𝑁𝑠 + (𝑇M𝜋 + 𝑇𝑅)
(
𝑇CM

ˆ𝛿𝑀
)
= 𝑁𝜋C

+ 𝑁𝑠 + (𝑇M𝜋 + 𝑇𝑅) ˆ𝛿𝑀, (46)

𝛿𝜋𝑦

𝜋0,𝑦
= 𝑁𝜋Y

+ 𝑁𝑠 + (𝑇M𝜋 + 𝑇𝑅)
(
𝑇CM

ˆ𝛿𝑀
)
= 𝑁𝜋Y

+ 𝑁𝑠 + (𝑇M𝜋 + 𝑇𝑅) ˆ𝛿𝑀, (47)

𝛿𝜋𝐻

𝜋0,𝐻
= 𝑁𝜋H

+ 𝑇M𝜋

(
𝑇CM

ˆ𝛿𝑀
)
= 𝑁𝜋H

+ 𝑇M𝜋
ˆ𝛿𝑀. (48)

Next, we note that all (cross-co)variances are linear in 𝜃2𝑥 ; hence, if we scale all noise sources by
𝜃𝑠, the resulting cross-correlations (cross-covariances divided by variances) do not change. How
the parameter reduction, and the scaling by 𝜃𝑠, affects the functional form of the cross-correlation
between signals 𝐴 and 𝐵 is shown below, where we split the cross-covariance and the variances
in contributions of each noise source. Let the entire contribution (written in hat-parameters) of
each noise source 𝑥 to the cross-covariance between signals 𝐴 and 𝐵 be written as 𝜃2𝑥 𝑓𝑥 (time
dependence is omitted for readability), and write 𝜃2𝑥𝑔𝐴,𝑥 , and 𝜃2𝑥ℎ𝐵,𝑥 , for the contribution of
noise source 𝑁𝑥 to the variance of 𝐴 and 𝐵 respectively. Then:

𝑅(𝐴,𝐵) (𝜏) =

(
𝜃𝑀
𝑇CM

)2
𝑓𝑀̂ + ∑

𝑖≠𝑀 𝜃2
𝑖
𝑓𝑖√︂(

𝜃𝑀
𝑇CM

)2
𝑔𝐴,𝑀̂ + ∑

𝑖≠𝑀 𝜃2
𝑖
𝑔𝐴,𝑖

√︂(
𝜃𝑀
𝑇CM

)2
ℎ𝐵,𝑀̂ + ∑

𝑖≠𝑀 𝜃2
𝑖
ℎ𝐵,𝑖

(49)

=

(
𝜃𝑀/𝜃𝑠
𝑇CM

)2
𝑓𝑀̂ + 𝑓𝑠 +

∑
𝑖≠𝑠,𝑀 (𝜃𝑖/𝜃𝑠)2 𝑓𝑖√︂(

𝜃𝑀/𝜃𝑠
𝑇CM

)2
𝑔𝐴,𝑀̂ + 𝑔𝐴,𝑠 +

∑
𝑖≠𝑠,𝑀 (𝜃𝑖/𝜃𝑠)2𝑔𝐴,𝑖

√︂(
𝜃𝑀/𝜃𝑠
𝑇CM

)2
ℎ𝐵,𝑀̂ + ℎ𝐵,𝑠 +

∑
𝑖≠𝑠,𝑀 (𝜃𝑖/𝜃𝑠)2ℎ𝐵,𝑖

(50)

=

(
ˆ̂
𝜃𝑀

)2
𝑓𝑀̂ + 𝑓𝑠 +

∑
𝑖≠𝑠,𝑀 𝜃2

𝑖
𝑓𝑖√︂(

ˆ̂
𝜃𝑀

)2
𝑔𝐴,𝑀̂ + 𝑔𝐴,𝑠 +

∑
𝑖≠𝑠,𝑀 𝜃2

𝑖
𝑔𝐴,𝑖

√︂(
ˆ̂
𝜃𝑀

)2
ℎ𝐵,𝑀̂ + ℎ𝐵,𝑠 +

∑
𝑖≠𝑠,𝑀 𝜃2

𝑖
ℎ𝐵,𝑖

. (51)
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Here, 𝜃𝑥 = 𝜃𝑥/𝜃𝑠, and ˆ̂
𝜃𝑀 =

𝜃𝑀/𝜃𝑠
𝑇CM

. By considering only .̂ - parameters, we effectively removed
two parameters from the model.

4 Data analysis

4.1 Calculating cross-correlations from data

Segmentation was done using the software Schnitzcells, developed by the Elowitz lab [3], with
custom scripts written by Daan Kiviet, Philippe Nghe and Noreen Walker [1, 4]. Tracking was
done in line with Kiviet et al [1]. Cell length is determined by fitting a 3rd (or, in some cases
5th) order polynomial through the cell area. Cross-covariance 𝜒 and cross-correlation 𝑅 between
two signals in discrete time is then defined as:

𝜒 𝑓 ,𝑔 (𝜏) =
1

𝑁 − 1

𝑁−|𝜏 |−1∑︁
𝑛=0

𝑓 (𝑛)𝑔(𝑛 + 𝜏). (52)

𝑅 𝑓 ,𝑔 (𝜏) =
𝑆 𝑓 ,𝑔 (𝜏)√︁

𝑆 𝑓 , 𝑓 (0)𝑆𝑔,𝑔 (0)
. (53)

Here, hats indicate mean-subtracted signals.
Cells that are born earlier in the experiments appear in more lineages. When calculating

cross-correlations along lineages, we must thus be careful to not count such cells repeatedly.
Therefore, we introduce for each data point a weight, representing in how many branches the
point occurs. The resulting cross-correlation is a composite cross-correlation with contributions
of points from multiple branches 𝑖. Lastly, we also introduce time-average-subtracted variable,
since averages can change slightly during experiments. We therefore define a composite cross-
covariance and cross-correlation:

S 𝑓 ,𝑔 (𝜏) :=
1

𝑊total,𝜏

∑︁
𝑖

1

𝑁𝑖 − |𝜏 |

𝑁𝑖−|𝜏 |∑︁
𝑛=0

𝑤𝑛,𝑖,𝜏 𝑓̂𝑖 (𝑛)𝑔𝑖 (𝑛 + 𝜏), (54)

R 𝑓 ,𝑔 (𝜏) =
S 𝑓 ,𝑔 (𝜏)√︁

S 𝑓 , 𝑓 (0)S𝑔,𝑔 (0)
, (55)

𝑓̂𝑖 (𝑛) = 𝑓𝑖 (𝑛) − ⟨ 𝑓𝑖⟩𝑛 (56)

𝑤𝑛,𝑖,𝜏 = 1/𝐾𝑛,𝑖,𝜏 , (57)

𝑊total,𝜏 =
∑︁
𝑛,𝑖

𝑤𝑛,𝑖,𝜏 . (58)

Here, the summations run are over all branches 𝑖 and time points 𝑛. Weights are indicated
with 𝑤, where 𝐾𝑛,𝑖,𝜏 is the frequency with which a specific point pair 𝑓𝑖 (𝑛)𝑔𝑖 (𝑛 + 𝜏) was used.
Throughout the manuscript we refer to the composite cross-correlation R as the cross-correlation
𝑅. The mean-subtracted signal 𝑓̂𝑖 (𝑛) is now recalculated in each branch, for each time point to
compensate for a changing overall average during the experiment.

4.2 Averaging multiple experiments and estimating error bars

To create Figs. 2 and 3 of the main text, the cross-correlations calculated per microcolony
were averaged. Here, we explain how we averaged the multiple (independent) experiments (each
microcolony being an experiment) and how we calculated error bars.
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We use a Mixed Model Estimate, assuming that each individual measurement 𝑦𝑖, 𝑗 from exper-
iment 𝑖 is determined by the average of interest, 𝜇, plus two noise sources: within experimental
noise 𝜉 𝑗 (𝑖), and between-experiments noise 𝜉𝑖:

𝑦𝑖, 𝑗 = 𝜇 + 𝜉𝑖 + 𝜉 𝑗 (𝑖).

Here, 𝜉𝑖 is the noise that determines the off-set of the mean from experiment 𝑖, and 𝜉 𝑗 (𝑖) the noise
on individual measurement 𝑗 in group 𝑖. We assume that E [𝜉𝑖] = E

[
𝜉 𝑗

]
= 0. Furthermore, let

Var
(
𝜉 𝑗

)
= 𝑠2

𝑖
, the variance within experiment 𝑖 (this variance might differ between experiments),

and Var (𝜉𝑖) = 𝑠2𝜇, the variance between the means of each experiment. The within experiment
variance is estimated by dividing each microcolony into four lineages (from the moment there
were four cells in the microcolony, we followed each of their lineages separately) and calculating
and comparing statistics along each lineage. With these notions for 𝜉𝑖 and 𝜉 𝑗 (𝑖), we write 𝑛 for
the number of experiments and 𝑛𝑖 = 4 for the number of subgroups within experiment 𝑖. Then:

E
[
𝑦𝑖, 𝑗

]
= 𝜇 (59)

Var
(
E

[
𝑦𝑖, 𝑗

] )
=

Var
(∑

𝑖

∑
𝑗 𝜇 + 𝜉𝑖 + 𝜉 𝑗 (𝑖)

)
(∑𝑖 𝑛𝑖)2)

(60)

=
1

(∑𝑖 𝑛𝑖)2
Var

(∑︁
𝑖

𝑛𝑖𝜉𝑖 +
∑︁
𝑖

∑︁
𝑗

𝜉 𝑗

)
(61)

=
1

(∑𝑖 𝑛𝑖)2

(∑︁
𝑖

𝑛2𝑖Var (𝜉𝑖) +
∑︁
𝑖

𝑛𝑖Var
(
𝜉 𝑗

))
(62)

=
𝑠2𝜇

∑
𝑖 𝑛

2
𝑖
+ ∑

𝑖 𝑛𝑖𝑠
2
𝑖

(∑𝑖 𝑛𝑖)2
(63)

To estimate 𝜇, we again use knowledge of within-experiment variances to calculate a weight
factor for each microcolony: let 𝑦𝑖 (𝑡) be the measured mean value of an observable in experiment
𝑖 at time 𝑡, with within-experiments error 𝑠𝑖 (𝑡). Then we estimate 𝜇 as:

⟨𝑦(𝑡)⟩ =
∑𝑛

𝑖 𝑠
−2
𝑖
(𝑡)𝑦𝑖 (𝑡)∑𝑛

𝑗 𝑠
−2
𝑗
(𝑡)

=:

∑
𝑖 𝑤𝑖 (𝑡)𝑦𝑖 (𝑡)
𝑊 (𝑡) .

Here, 𝑤𝑖 (𝑡) = 1
𝑠2
𝑖
(𝑡) and 𝑊 (𝑡) =

∑𝑛
𝑗=1 𝑤𝑖 (𝑡). That is, more precise measurements (that is, those

with smaller within-experiment error 𝑠𝑖) obtain a higher weight.

4.3 Null-expectation for the cross-correlations

To confirm that the measured cross-correlations correspond to real, biological, signals inside
the cells, we performed a permutation analysis on the time-series data. We kept the temporal
information of the data, but randomized at each time point the growth rate and expression data
for all the cells in the colony. Any biological correlations between variables should therewith be
removed. Repeating this randomization 50 times, and each time re-calculating cross-correlations,
indeed gives a band of cross-correlations around zero, allowing us to infer what kind of signals
could still be explained purely by technical noise (See for example Fig. S9). Any part of the
originally measured cross-correlations that fall outside this band can then be concluded to stem
from a real biological signal.
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5 Fitting procedure

5.1 Parameter values for WT and cAMP-fixed* cells

The full mathematical model, with the reduced number of parameters, was fitted to the cross-
correlations with their error bars using a weighted least-square fitting procure in Mathematica
13. We fitted 𝑅(𝜙,𝜆) and 𝑅(𝜋,𝜆) for both reporters and for wild type and cAMP-fixed* cells
simultaneously.

In all fits, we set 𝜃𝜋𝐶 = 0, for three reasons. First, the variable 𝜙𝐶 represents the entire
C-sector, so that random, intrinsic fluctuations in the total size of this sector are expected to be
small. Second, any noise source that directly influences the total size of the C-sector should also
affect the CRP-reporter Y, because C and Y are regulated and expressed similarly. Such noise
sources are therefore also captured by the phenomenological noise source 𝑁𝑠 that summarizes
shared noise sources between the C-sector and Y. Third, fluctuations in the concentrations of
each of the individual proteins of the C-sector likely transfer differently to metabolism than joined
fluctuations of the entire C-sector. The effect of the intrinsic fluctuations of individual C-sector
protein species on the metabolic flux is instead captured by the noise source 𝑁𝑀 . Fluctuation
in any individual C-sector protein could indeed potentially influence the flux catalyzed by the
entire C-sector, causing fluctuations in metabolism.

For cAMP-fixed* cells we predefined that 𝑇𝑅 = 0, and for wild type cells 𝑇𝑅 < 0. All other
parameters were not allowed to differ between WT and cAMP-fixed* cells. We thus fitted 9 free

parameters: {𝑇𝑅 (only for WT cells), 𝑇M𝜆, 𝑇M𝜋 , 𝜃𝜋𝑌 , 𝜃𝜋ℎ ,
ˆ̂
𝜃𝑀 , 𝜃𝜆,

𝛽𝜋

𝜆0
,
𝛽𝜇

𝜆0
}. (The hat-parameters are

defined in the section‘Parameter Reduction’, section 3; 𝑇CM and 𝜃𝑠, are set to unity and removed
from the model by scaling.) The timescale 1/𝛽𝜋 is the time-scale of the production noise rates,
and 1/𝛽𝜇 is the timescale of growth/dilution-related noise sources (𝜃𝑠, 𝜃𝑀 , 𝜃𝜆). Their value given
is relative to the mean growth rate, 𝜆0.

In table S1 we present best-fit parameters, with their 95% confidence interval. The 95%
confidence ranges of the parameters were estimated by changing that parameter until the in-
crease in (weighted) sum of squared residuals was statistically significant (as determined using
𝐹-statistics).

Although the model is able to reproduce the experimentally observed cross-correlations, we
are hesitant to over-interpret the exact numerical values of the fitted parameters. For example,
the wild type and optimal mutant’s best-fit-parameter for the transfer from 𝑀 to 𝜋, 𝑇M𝜋 , is
small, but negative (Table S1). Such a negative parameter is counter-intuitive, for it results in a
negative common mode (upward fluctuations in metabolism increase the growth rate, but lower
the production rates). Presence of this negative common mode is only reflected in the mutant’s
negative 𝜋𝐻 -𝜆 cross-correlation, and, importantly, it is also this negative cross-correlation that
causes the best-fit parameter to become negative (not including 𝑅(𝜋𝐻 ,𝜆) causes the best-fit value

for 𝑇M𝜋 to be slightly positive, data not shown). Extensions of the model with alternative
mechanistic explanations that could explain the negative correlation between 𝜋𝐻 and 𝜆 (such as
competition between mRNA molecules for ribosomal binding sites at the single-cell level, or a
negative effect of the reporters on the growth rate [5]) did also not fit the negative cross-correlation
well (data not shown, Mathematica notebooks available upon request with the authors). Possibly,
this specific negative cross-correlation could be caused by an experimental artifact that heavily
influences the fitted parameters. Indeed, similar constitutive reporters measured in earlier work
[1, 6] show a positive correlation between 𝜋𝐻 and 𝜆.
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Parameter Confined to Best Fit 95% Confidence Interval
𝜃𝜋𝐶 0 - -
𝜃𝑠 1 - -
𝑇CM 1 - -
𝑇𝑅 [−2, 2] (WT ); 0 (MUT ) -1.67 (WT) [-2.28,-1.25]

𝑇M𝜆 [−1, 1] 0.05 [0.045, 0.54]

𝑇M𝜋 [−1, 1] -0.179 [-0.22, -0.14]

𝜃𝜋𝑌 [0, 5] 0.0 [0,0.74]

𝜃𝜋ℎ [0, 5] 1.14 [1.06,1.24]
ˆ̂
𝜃𝑀 [0, 10] 0.90 [0.83,0.97]

𝜃𝜆 [0, 5] 0.13 [0.125,0.143]
𝛽𝜋 > 2 2 [1.8, 2.16]
𝛽𝜇 > 0.5 0.78 [0.75,0.82]

Table S1: Best fit parameters of the wild type and optimal mutant, including predefined parameter
constraints and best-fit confidence ranges based on statistical analysis. Parameter 𝑇𝑅 was set to 0 for
cAMP-fixed* (MUT ) cells. All other parameters were fitted using a minimization of the squared distance
of 8 analytical curves (cross-correlations 𝜙 − 𝜆 and 𝜋 − 𝜆 for both reporters. and for WT and cAMP-
fixed* cells) to the cross-correlation data (Fig. 2B from the main text). For the precise interpretation of
.̂-parameters, see section ‘Parameter Reduction’.

5.2 Low and High cAMP

From the best-fit parameters for the cAMP-fixed* cells (Table S1), we qualitatively reproduced
the Low cAMP cross-correlations by increasing transfer to, and from, metabolism. Intuitively,
when cAMP concentration is low and C-sector expression is sub-optimal, one would expect
strong transfer from 𝜙𝐶 to 𝑀 (i.e. an increase in the parameter 𝑇𝐶𝑀). Additionally, 𝑀 -itself
being limited by 𝜙𝐶 - is in turn expected to be limiting for growth and protein production; as
soon as metabolism becomes better, the cell can grow and create protein faster (corresponding
to an increase in parameters 𝑇𝑀𝜋 and 𝑇𝑀𝜆). Therefore, we first scaled 𝑇𝐶𝑀 by a factor of
1.1. Note that scaling 𝑇𝐶𝑀 also affects some of the scaled (hat) parameters; 𝑇M𝜆, 𝑇M𝜋 , and
ˆ̂
𝜃𝑀 . We assumed ˆ̂

𝜃𝑀 to follow the scaling (i.e. the ˆ̂
𝜃𝑀 becomes a factor of 1.1 smaller). The

parameters 𝑇M𝜆 and 𝑇M𝜋 , whose values are expected to increase also independently of 𝑇𝐶𝑀 ,
were instead both increased with a constant, 0.3. This resulted in, for Low cAMP-fixed cells in:

{𝑇M𝜆 = 0.35, 𝑇M𝜋 = 0.121, ˆ̂𝜃𝑀 = 0.82}. The timescales of each noise source relative to the growth
rate (which is lower under this condition than under optimal cAMP levels) were kept constant.

The resulting cross-correlations reproduce many qualitative features of the measurements.
That said, the mathematical model slightly over-estimates the overall amplitude of the cross-
correlation (Fig. S6A). Possibly, this is due to changing average expression, or possibly caused
by experimental error: Independent measurement noise in any two variables reduces their cor-
relation. In the model, this can be mimicked by increasing the noise levels of 𝜃𝜋𝑌 and 𝜃𝜋𝐻 to
{5, 2.14} respectively. An increase in those noise parameters does not affect the shape of the
cross-correlation, but only decreases the overall amplitude of the cross-correlation (decorrela-
tion).

For the cAMP-fixedhigh cells, we assumed that 𝜙𝐶 now negatively influences (hinders) metabolism,
but that a better or faster metabolism still results in faster growth and protein expression. There-
fore, we scaled 𝑇𝐶𝑀 by −0.3, in line with its hypothesized slightly negative burden to metabolism
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and growth. Parameters 𝑇M𝜆 and 𝑇M𝜋 therewith picked up a minus sign, but we kept their ampli-
tudes as for the cAMP-fixedlow cells, since metabolism is still far from optimal, so that noise from
metabolism is expected to strongly transfer to growth and protein production. Thus, parameters

for the cAMP − fixedhigh cells were: {𝑇M𝜆 = −0.35, 𝑇M𝜋 = −0.121, | ˆ̂𝜃𝑀 | = 3}.
These parameters indeed qualitatively explained many featured of the measured cross-correlations

(Fig. S6B). However, the high-cAMP cross-correlations are, as in the low cAMP condition, over-
estimated by the model. Another clear mismatch is that, for these parameters, the model predicts
a strong common mode (which can be seen most clearly in the 𝜋𝐻 -𝜆 cross-correlation) that does
not seem to be present in the data (although one microcolony did show a clear positive 𝜋𝐻 -𝜆
cross-correlation, see bottom right panel in Fig. S7). Interestingly, just as in the wild type,
the cross-correlations of both reporters look similar in cAMP-fixed cells under the high-cAMP
condition.

A semi-quantitative fit can made (see also Fig. 3E of the main text) by further tuning the
reporter’s noise amplitudes to: {𝜃𝜋𝑌 = 2, 𝜃𝜋𝐻 = 3.144}.

6 Toy model of the means of the two reporters

From the observation that the sum of the concentration of both reporters is, on average (Fig. S10A),
approximately constant, we were inspired to also write equations for the population-level average
behavior. We here derive a phenomenological toy model that describes how the average concen-
trations, production rates and growth rates of cAMP-fixed cells change under changing external
cAMP concentration.

Generally, we can write for the (average) total concentration of the catabolic sector 𝜙𝐶 and
for the constitutive reporter 𝐻:

𝜕𝜙𝐶

𝜕𝑡
= 𝜋𝐶 − 𝜙𝐶𝜆 = ( 𝑓𝐶 (𝑥) − 𝜙𝐶 )𝜆, (64)

𝜕𝜙𝐻

𝜕𝑡
= 𝜋𝐻 − 𝜙𝐻𝜆 = ( 𝑓𝐻 − 𝜙𝐻 )𝜆. (65)

Here 𝑓𝐶 (𝑥) is a regulation function that determines the fraction of all metabolic flux allocated
towards production of 𝜙𝐶 as a function of some internal metabolite (in this case, 𝑥 reflect the
internal cAMP concentration). However, 𝑓𝐻 is also not necessarily a constant and can depend
on resource allocation. We will show below that 𝑓𝐻 is indeed not constant.

From the experiments we observe 𝜙𝑌 + 𝜙𝐻 is approximately a constant. Assuming that 𝑌 is
a good reporter of the 𝐶 sector, this is equivalent to:

𝜙𝐶 + 𝜙𝐻 = 𝑇

(Note that this ignores proteomic shifts that result from a changing the ribosomal sector, or
any other sector that is not modeled here.) In the steady state, 𝜙𝐻 = 𝑓𝐻 , and therefore also
𝜋𝐻 = 𝜙𝐻𝜆 = (𝑇 − 𝑓𝐶 (𝑥))𝜆 = 𝑓𝐻𝜆. We can thus rewrite the differential equation for 𝐻 as:

𝜕𝜙𝐻

𝜕𝑡
= (𝑇 − 𝑓𝐶 (𝑥))𝜆 − 𝜙𝐻𝜆.

In steady state, this suggest that the production rates (as directly quantified from the experi-
ments), divided by the growth rates should be equal to the concentration for both the reporters
(Fig. S10A).
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In the mutant, the growth rate declines when either over, or under-expressing 𝜙𝐶 , and the
mean growth rates fit a 2nd order polynomial nicely.

𝜆(𝜙𝐶 ) := 𝑔𝜆 (𝜙𝑌 ) = 𝑎𝜙2𝑌 + 𝑏𝜙𝑌 + 𝑐

For best-fit parameters {𝑎 = −3.94 · 10−5, 𝑏 = 2.12 · 10−2, 𝑐 = −2.02}. Here we consider 𝜙𝐶 , the
metabolic sector, well-reported by the metabolic reporter 𝜙𝑌 .

Using this polynomial, the relationships between mean protein production rates/mean protein
concentrations, and the mean growth rate can be related (Figs. S3 and S10):

{𝜙𝑌 , 𝜆} = {𝜙𝑌 , 𝑔𝜆 (𝜙𝑌 )} , (66)

{𝜋𝑌 , 𝜆} = {𝜙𝑌𝑔𝜆 (𝜙𝑌 ), 𝑔𝜆 (𝜙𝑌 )} , (67)

{𝜙𝐻 , 𝜆} = {𝜙𝐻 , 𝑔𝜆 (𝑇 − 𝜙𝐻 )} , (68)

{𝜋𝐻 , 𝜆} = {𝜙𝐻𝑔𝜆 (𝑇 − 𝜙𝐻 ), 𝑔𝜆 (1 − 𝜙𝐻 )} , (69)

{𝜋𝑌 , 𝜋𝐻 } = {𝜙𝑌𝑔𝜆 (𝑇 − 𝜙𝐻 ), 𝜙𝐻𝑔𝜆 (𝑇 − 𝜙𝐻 )} . (70)

These relationships fit strikingly well (Fig. S10).
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7 Supplementary Figures

Figure S3: Growth rates in minimal medium supplemented with lactose and various cAMP concen-
trations. Measured exponential phase growth rates of the cyaA cpdA null mutant (cAMP-fixed cells)
at different concentrations of cAMP as measured in a plate reader. Black triangles refer to the low,
optimal and high cAMP concentrations respectively. The growth rate was determined as an exponential
fit over a manually selected part of the bacterial density curve. Additionally, this figure shows data from
a similar experiment performed by Towbin et al. [7]

Figure S4: Coefficients of variation of the growth rate (left panel) and the concentrations of the C-sector
reporter (middle panel) and the constitutive reporter (right panel) for the different conditions. Shown in
the figure are only the experiments performed with a similar microscope such that their absolute values
were comparable.
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Figure S5: Average experimental values measured in different colonies. (A) Regression slope between
𝜙 and 𝜆 for the wild type and cAMP-fixed* cells (MUT in the figure). Slopes for the 𝑌 reporter differ
significantly between wild type and mutant cAMP-fixed* cells (𝑝 = 0.0031, two-sample 𝑡-test), but not
for the H reporter (𝑝 = 0.93, Welch’s 𝑡-test). Note that to calculate these regression slopes only relative
fluctuations are relevant, so that only relative fluorescence signals are relevant. (B) Average growth
rate per colony, showing a large variance in growth-rate measurements. Difference between the mean
growth rates of WT and cAMP-fixed* cells is not significant (𝑝 = 0.063, Welch’s 𝑡-test). (C) Average
fluorescence per colony. Filled circles are values measured with a standardized microscope setting (and
thus only those absolute values can be compared). Y: C-sector reporter, H: constitutive reporter.
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Figures with data Condition # colonies # cells # data points
1C, 1E WT 1 1671 5979
1D, 1F Fixed-800 1 1580 4339
2B (left panels) WT 6 113,63,110,953,729,1667 573,346,513,2420,1834,5979
2B (right panels) Fixed-800 4 1568, 1626,1500,837 4339, 5202,4697,2664
3A,B,D Fixed-80 2 1165, 623 4141,1985
3A,B Fixed-800† 3 1568, 1626,1500 4339, 5202,4697
3A,B,E Fixed-5000 2 1437,837 4229, 2086

Table S2: Number of cells (as determined by the Schnitzcells software (see Methods), number of colonies,
and number of data points from all single cell experiments. (†Only a subset of data was used, as for
those data sets microscopy conditions were equal, such that the values can be compared directly.)

Figure S6: Qualitative model prediction for the cross-correlations as measured in the cAMP-fixed cells
using low-cAMP (80 μM, panel A) and high-cAMP (5000 μM, panel B) conditions, together with the
measured cross-correlations. (A) The transfer parameters from 𝑀 to 𝜆 (𝑇M𝜆) and from 𝑀 to 𝜋 (𝑇M𝜋)
have been increased by 0.3, and 𝑇𝐶𝑀 is slightly increased as well (scaled by 1.1; affecting affects 𝜃𝑀),
compared to the best-fit values from the cAMP-fixed* condition. (B) Same values as in (A) for 𝑇M𝜆 and
𝑇M𝜋 , but now 𝑇𝐶𝑀 is slightly negative (multiplied by −0.3).
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Figure S7: All measured cross-correlations (thin blue lines) in independent replicates (independent
colonies), together with their weighted averages (thick black lines), for all conditions. Y: C-sector
reporter, H: constitutive reporter.

Identifier Manuscript
shorthand

Description

ASC838 Wild type MG1655, also known as strain bBT12 and CGSC num-
ber 8003. Known mutations: 𝜆−, Δfnr-267, rph-1. (No resistance
modules.)

ASC839 cyaA, cpda null mutant. Also known as strain bBT80. Based on
ASC838. (No resistance modules.)

ASC990 wild type
(WT)

Wild type strain, except for Δ(galk)::nCRPr-mCerulean-kanR and
Δ(intc)::CRPr-mVenus-cmR. (Kanamycin and chloramphenicol resis-
tant.)

ASC1004 cAMP-fixed Strain based on ASC839 (ΔcyaA Δcpda), introduced Δ(galk)::s70-
mCerulean-kanR and Δ(intc)::rcrp-Venus-cmR. (Kanamycin and
chloramphenicol resistant.)

Table S3: Additional details on the strains that were used; ASC990 and ASC1004 were used in the
manuscript, and are based on ASC838 and ASC839 respectively.
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Figure S8: Growth rates during the experiments. Each panel plots growth-rate data for a single colony;
panels are grouped by growth condition. The gray lines show single lineage traces, the black lines the
population average. Colored lines highlight example single lineage traces to illustrate single cell behavior.
Dashed and dotted lines indicate 4𝜎 and 5𝜎 boundaries from the overall mean respectively. As before,
the displayed conditions are (A) wild type cells, (B) cAMP-fixed* cells growing on 80 μM cAMP, (C)
cAMP-fixed cells growing on 800 μM cAMP and (D) mutant cells growing on 5000 μMcAMP.
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Figure S9: Cross-correlations between the C-sector reporter, 𝜙𝑌 , and 𝜆, together with their null ex-
pectation (gray areas around 0, see section 4.3 for details of the calculation). The black lines in this
figures are the light-blue lines in top panels of Figure S7. Error bars are calculated by dividing each
microcolony into four parts and comparing statistics in each part. As before, the displayed plots are from
independent microcolonies growing under the following conditions: (A) wild type cells, (B) cAMP-fixed
cells growing on 80 μM cAMP, (C) cAMP-fixed cells growing on 800 μM cAMP and (D) cAMP-fixed
cells growing on 5000 μM cAMP.
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Figure S10: Toy model fits the mean behavior of the reporters and the growth rate (see for details
section 6). (A) The sum of reporter concentrations is approximately constant in all conditions. (B)
Steady state relationship 𝜙𝑌 = 𝜋𝑌 /𝜆 (black straight line) holds closely for all conditions. The best fit
(dashed line), however, has a slight offset. (C) Fitted parabolic relationship of 𝜙𝐶 between the growth
conditions. See also S3). (D) Relationship between 𝜋𝑌 and 𝜆 as calculated from the toy model (6).
(E) Steady state relationship for the C-sector reporter. (F-G) The C-sector reporter concentrations and
production rates for each condition fall on the curve calculated from the toy model (not fitted). Colour
coding is as in other figures (blue: wild type, red: low cAMP mutant, green: medium cAMP mutant,
orange: high cAMP mutant). Y: C-sector reporter, H: constitutive reporter.
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Figure S11: Overview of promoter sequences used in this manuscript. The top row indicates the original
LacZ upstream region including start codon ATG (NCBI; gene ID 945006, NC 000913.3), whilst the 2nd
and 3rd row give the sequence of the engineered CRPr and nCRPr promoters. Colour indicates CRP
binding sites according to [8] (yellow), [9] (green) or both (purple), and the LacI binding site (blue)
according to [8]. In grey, changes in the engineered promoters are indicated.
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