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Abstract 1 

Neurons integrate from thousands of synapses whose strengths span an order of magnitude. 2 
Intriguingly, in mouse neocortex, the few ‘strong’ synapses are formed between similarly tuned cells, 3 

suggesting they determine neuronal spiking output. This raises the question of how other computational 4 

primitives, including ‘background’ activity from the many ‘weak’ synapses, short-term plasticity, and 5 

temporal factors contribute to spiking. We combined extracellular stimulation and whole-cell recordings 6 

in mouse barrel cortex to map excitatory postsynaptic potential (EPSP) amplitudes and paired-pulse 7 

ratios of excitatory synaptic connections converging onto individual layer 2/3 (L2/3) neurons. While net 8 

short-term plasticity was weak, connections with EPSPs > 2 mV were exclusively depressing. There 9 

was no evidence for clustering of synaptic properties on individual neurons. Instead, EPSPs and paired-10 
pulse ratios of connections converging onto the same cells spanned the full range observed across 11 

L2/3, which critically constrains theoretical models of cortical filtering. To investigate how different 12 

computational primitives of synaptic information processing interact to shape spiking, we developed a 13 

computational model of a pyramidal neuron in the rodent L2/3 circuitry, which was constrained by our 14 

own experiments and published in vivo data. We found that the ability of strong inputs to evoke spiking 15 

depended on their high temporal synchrony and high firing rates observed in vivo and on synaptic 16 

background activity – and not primarily on synaptic strength, which further amplified information 17 

transfer. Our results provide a framework of how cortical neurons exploit complex synergies between 18 
temporal coding, synaptic properties, and noise to transform synaptic inputs into output firing.  19 
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Introduction 20 

Pyramidal neurons in neocortex compute spiking responses on the basis of synaptic inputs they receive 21 
from thousands of neurons in the surrounding brain tissue. The strengths of these inputs span one 22 

order of magnitude and typically follow a lognormal distribution: while the majority of synaptic 23 

connections evoke small excitatory postsynaptic potentials (EPSPs), a small minority elicits comparably 24 

large EPSPs (Markram et al., 1997; Tarczy-Hornoch et al., 1999; Song et al., 2005; Feldmeyer et al., 25 

2006; Buzsáki and Mizuseki, 2014; Cossell et al., 2015). Intriguingly, in mouse primary visual cortex 26 

(V1), such ‘strong’ connections were found to occur predominantly between those neurons that also 27 

exhibit the most similar receptive field properties in vivo (Cossell et al., 2015). From these observations, 28 

a simple organizational principle of synaptic strength was proposed, in which the majority of the synaptic 29 
excitation necessary for action potential firing is provided by a small fraction of strong synaptic inputs, 30 

which determine the spike output of the postsynaptic neuron (Cossell et al., 2015). The notion that 31 

synaptic strength is the primary determinant for the functional properties of neocortical circuits is 32 

attractive because it suggests that mapping the strongest connections in functional or structural 33 

analyses reveals the true underlying functional organization of neocortical circuits. However, a more 34 

complex picture recently emerged from ferret V1, where the response selectivity of neurons to visual 35 

stimulation was found to be determined by the cumulative weight of all co-active synapses, and could 36 

not simply be predicted from the tuning of synapses with large EPSPs (Scholl et al., 2020).  37 
Several other observations give further weight to the notion that synaptic strength alone is 38 

insufficient to explain neuronal response properties. Synapses are complex biophysical devices, whose 39 

response during ongoing activation is insufficiently captured by only a single weight parameter. It is 40 

intriguing that those cortical synapses that elicit the largest EPSPs also tend to exhibit the most 41 

pronounced short-term depression (Reyes and Sakmann, 1999; Jouhanneau et al., 2015; Lefort and 42 

Petersen, 2017), which can vastly reduce the total charge a synapse can deliver to its postsynaptic 43 

partner during repeated activation (Stratford et al., 1996; Castro-Alamancos and Oldford, 2002; Chung 44 
et al., 2002; Abbott and Regehr, 2004; Boudreau and Ferster, 2005; Bruno and Sakmann, 2006). Thus, 45 

synaptic connections with large EPSPs recorded in vitro may operate in a significantly depressed state 46 

in vivo due to ongoing spontaneous and stimulus-evoked activation (Boudreau and Ferster, 2005). 47 

Furthermore, even the largest EPSP amplitudes provide only a fraction of the depolarizing charge 48 

necessary to drive the membrane potential of a cortical neuron through the spike threshold. Thus, 49 

temporal coincidence in presynaptic spike trains must necessarily be an important factor for information 50 

coding in neocortex (Bruno and Sakmann, 2006; Banitt et al., 2007; Wang et al., 2010; Schoonover et 51 

al., 2014; Scholl et al., 2020). Finally, neurons in vivo operate in the presence of significant synaptic 52 
background activity. Spontaneous firing rates of pyramidal cells in the superficial layers of rodent 53 

sensory areas range between 0.08 to 0.39 Hz in vivo (Waters and Helmchen, 2006; de Kock et al., 54 

2007; Kerr et al., 2007; de Kock and Sakmann, 2009; Niell and Stryker, 2010, 2010; O’Connor et al., 55 

2010). Because pyramidal neurons in rodent sensory areas are estimated to receive input from up to 56 

~8000 synapses (Schüz and Palm, 1989), they must experience hundreds to thousands of spontaneous 57 

synaptic events per second. In rodent V1, synaptic connections with small EPSPs occur predominantly 58 

between cells that display different response properties and thus fire with little temporal synchrony 59 
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during visual stimulation (Cossell et al., 2015). Thus, in rodent sensory areas, the vast majority of 60 

excitatory synapses formed with any given pyramidal neuron provide a constant bombardment of 61 

excitation that seems relatively unrelated to the tuning of that neuron. Therefore, to compute spiking 62 

responses from their synaptic inputs, neocortical neurons operate in a complex parameter space. While 63 
much research has been conducted on the computational role of synaptic strength [e.g. (Lefort et al., 64 

2009; Cossell et al., 2015; Scholl et al., 2020)], short-term plasticity [e.g. (Abbott et al., 1997; Castro-65 

Alamancos and Oldford, 2002; Chung et al., 2002; Banitt et al., 2007; Rothman et al., 2009; Díaz-66 

Quesada et al., 2014)], and the temporal structure within synaptic inputs [e.g. (Bruno and Sakmann, 67 

2006; Banitt et al., 2007; Wang et al., 2010; Schoonover et al., 2014)], it remains much less studied 68 

how these parameters act together to shape information transfer in sensory areas. 69 

Here, we combined experimental work and data-driven computational modeling to investigate 70 

systematically how this complex parameter-space could shape the spiking responses of pyramidal 71 
neurons in L2/3 of mouse barrel cortex (S1). The distributions and patterns of action potential firing 72 

rates (de Kock et al., 2007; de Kock and Sakmann, 2009; Sakata and Harris, 2009; O’Connor et al., 73 

2010), synaptic strength (Lefort et al., 2009; Cossell et al., 2015; Seeman et al., 2018), correlations 74 

within neuronal activity (Kerr et al., 2007; Sato et al., 2007), and temporal correlations within synaptic 75 

inputs converging onto the same neuron (Cossell et al., 2015) have been well-characterized for L2/3 in 76 

rodent sensory areas in vivo. However, even though paired-pulse ratios have been measured for 77 

excitatory synapses across all cortical layers and different areas and species, most studies relied on 78 

small datasets that aimed to detect general differences in the mean (Reyes and Sakmann, 1999; 79 
Feldmeyer et al., 2006; Costa et al., 2013; Jouhanneau et al., 2015; Lefort and Petersen, 2017; Seeman 80 

et al., 2018). Thus, a detailed characterization of the exact statistical distribution of short-term plasticity 81 

in mouse sensory L2/3 is missing. Likewise, the relationship between synaptic strength and short-term 82 

plasticity has not been characterized clearly for L2/3. Finally, it remains unknown whether synaptic 83 

connections that converge onto the same neuron exhibit a systematic bias of EPSP amplitudes 84 

(Koulakov et al., 2009) or short-term plasticity, which could endow individual neurons with low-pass 85 

filter or high-pass filter properties, if they were to receive predominantly depressing or facilitating 86 
synapses, respectively (Chance et al., 1998; Fortune and Rose, 2000, 2001; Abbott and Regehr, 2004). 87 

We addressed these questions by combining whole-cell recordings of L2/3 pyramidal neurons in barrel 88 

cortex slices with extracellular stimulation of putatively single axons of passage. Then, we developed a 89 

computational model of a L2/3 pyramidal neuron that received excitatory inputs from 270 other L2/3 90 

neurons (Sarid et al., 2013), whose synaptic strengths and short-term plasticity were modeled after our 91 

experimental data. Presynaptic inputs were set to display temporal firing patterns constrained by in vivo 92 

data: the few synaptic connections eliciting large EPSPs fired temporally correlated spikes at high 93 

frequencies and were termed ‘strong’ inputs, while the more numerous connections triggering small 94 
EPSPs – termed ‘weak’ inputs – fired uncorrelated spikes at lower frequencies (Cossell et al., 2015). 95 

By selectively manipulating the relationship between synaptic strength, short-term plasticity, and 96 

temporal structure in the synaptic inputs, we characterized the importance of each of these parameters 97 

and their interdependencies in our simulation.  98 
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Results 99 

Mapping synaptic strength and short-term plasticity in L2/3 100 

We characterized the distribution of EPSP amplitudes and corresponding paired-pulse ratios of 101 

excitatory synaptic connections formed with regular-spiking neurons in barrel cortex L2/3 and tested 102 

the theoretical prediction that synaptic connections converging on the same postsynaptic cell may have 103 

systematically biased strengths (Koulakov et al., 2009) or short-term plasticity properties. In order to be 104 

able to characterize multiple, different synaptic connections formed with a given L2/3 neuron, we 105 

measured somatic whole-cell responses to extracellular paired-pulse stimulation of single axons at 106 
multiple locations in the surrounding L2/3 (Fig. 1 A, B). 107 

We obtained recordings from 20 regular-spiking neurons for which we identified a total of 74 108 

sites at which minimal extracellular stimulation evoked EPSPs (mean of 3.7 synaptic connections per 109 

neuron). For a subset of these regular-spiking cells, we performed post-hoc biocytin histology to confirm 110 

that they were indeed pyramidal neurons (Fig. 1 A; see Methods). Additionally, we recorded from 4 fast-111 

spiking neurons (i.e., interneurons, as confirmed by post-hoc histology) for which we found a total of 17 112 

extracellular stimulation sites (4.3 synaptic connections per neuron). Thus, our complete dataset 113 
contained 91 evoked EPSPs recorded across 24 L2/3 neurons. We applied stringent quality controls to 114 

ensure that we activated single axons of passage with our minimal stimulation protocol (see Methods) 115 

and that we did not stimulate the same axon of passage multiple times. Briefly, we only included 116 

synaptic connections for which the smallest observable EPSP was evoked in an all-or-none manner in 117 

a fraction of trials and if the mean EPSP amplitude and failure rate remained constant throughout the 118 

recording (Larkman et al., 1991; Allen and Stevens, 1994). Moreover, different synaptic connections 119 

converging onto the same postsynaptic cell were only included when their location of stimulation was > 120 

50 µm away from all previous stimulation locations. 121 
The distribution of peak amplitudes across the 74 EPSPs recorded in regular-spiking cells 122 

ranged from 0.29 mV to 4.15 mV (mean ± s.d.: 1.23 ± 0.75 mV), was markedly right-skewed, and could 123 

be fit well with a lognormal distribution (R2 = 0.97) (Fig. 1 D). The mean coefficient of variation was 0.19 124 

± 0.06, the mean EPSP onset latency was 2.14 ± 1.12 ms and the mean 10 – 90% rise time was 2.54 125 

± 0.86 ms. For all 74 synaptic connections, we also recorded the paired-pulse ratio at an inter-spike 126 

interval of 20 ms. Interestingly, the distribution of paired-pulse ratios appeared noticeably symmetrical 127 

with a mean ± s.d. of 0.93 ± 0.20 and could be fit well with a normal distribution (R2 = 0.93) (Fig. 1 E). 128 

A similar picture emerged for the 17 EPSPs recorded in the fast-spiking cells: their amplitudes 129 
ranged from 0.52 mV to 3.03 mV (mean ± s.d.: 1.49 ± 0.75 mV) and were best captured by a lognormal 130 

distribution (R2 = 0.65) (Fig. 1 D). The mean coefficient of variation was 0.18 ± 0.06, the mean onset 131 

latency was 2.44 ± 0.99 ms, and the 10 – 90% rise time was 0.83 ± 0.4 ms. The distribution of 132 

corresponding paired-pulse ratios was also markedly symmetrical with a mean of 0.87 ± 0.25 (Fig. 1 E) 133 

and could be fit well with a normal distribution (R2 = 0.69). 134 

Given their different symmetries (lognormal versus normal, respectively), the question arose of how 135 

EPSP amplitudes and their corresponding paired-pulse ratios could be mapped onto one another, i.e., 136 

whether there was a systematic relationship between synaptic strength and short-term plasticity. 137 
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Interestingly, a scatter plot of the response amplitudes to the 2nd stimulation pulse against the response 138 

amplitudes to the 1st stimulation pulse (corresponding to the EPSP amplitude) showed the tendency 139 

that synaptic connections with larger EPSPs were depressing, while connections with smaller EPSPs 140 

exhibited a range of facilitating and depressing paired-pulse ratios (Fig. 1 C, F). However, there was no 141 
significant correlation in our dataset between EPSP amplitude and short-term plasticity for connections 142 

formed with either regular-spiking or fast-spiking neurons. A significant negative correlation only 143 

emerged when we pooled all synaptic connections recorded in the study (Fig 1 F). Thus, EPSP 144 

amplitude and short-term plasticity appeared to be only weakly correlated across a larger number of 145 

excitatory synaptic connections in L2/3. Because of the limited number of synaptic connections 146 

recorded in fast-spiking neurons, however, we excluded these data from further analysis and focused 147 

the rest of our study on the synaptic connections recorded in regular-spiking neurons. 148 

 149 
To investigate this question further, we binned our dataset of synaptic connections recorded in regular-150 

spiking neurons depending on their EPSP amplitude (into 0.5 mV bins, not shown). Critically, we found 151 

that in all bins with EPSP amplitudes below 2 mV, synaptic connections displayed a range of facilitating 152 

and depressing paired-pulse ratios (not shown). By contrast, all connections with EPSP amplitudes 153 

above 2 mV were depressing (n = 10) (Fig. 1 F). When we split the dataset accordingly, we found that 154 

connections below 2 mV had a mean paired-pulse ratio of 0.95 ± 0.20 (i.e., exhibiting little net short-155 

term plasticity), while connections above 2 mV had a significantly lower mean paired-pulse ratio of 0.83 156 

± 0.10 (Fig. 1 F). 157 
 158 

 159 
 160 

Figure 1. EPSP amplitudes and paired-pulse ratios of excitatory synaptic connections in barrel cortex L2/3. 161 
A Example of recorded regular-spiking L2/3 neuron in mouse barrel cortex visualized through post-hoc biocytin histology. Blue 162 
dots indicate locations of successful extracellular stimulation, blue pipette signifies extracellular stimulation electrode. The 163 
neuron's responses to stimulation at three different positions (labeled 1-3) are shown in B. 164 
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B Somatic voltage recordings following 20 ms paired-pulse stimulation in the locations indicated by numbers. Grey traces, 165 
individual trials; black traces, average response; paired-pulse ratios (PPR) indicated. For timing of extracellular stimulation pulses 166 
(dashed lines), note the electrical stimulation artifact in somatic voltage responses.  167 
C Scatter plot showing, for all recorded excitatory synaptic connections, the responses to the second pulse versus the response 168 
to the first pulse (corresponding to the EPSP amplitude) of the paired-pulse stimulation paradigm. Circles, synaptic connections 169 
formed with regular-spiking (RS) neurons; squares, connections formed with fast-spiking neurons (FS). Data points below 170 
diagonal indicate depressing synaptic connections, dots above diagonal indicate facilitating connections. Voltage traces, same 171 
as traces 2 and 3 in B with identical same scale bars. 172 
D Distribution of EPSP amplitudes recorded in regular-spiking (blue) and fast-spiking L2/3 (white) L2/3 neurons; histograms were 173 
fit with lognormal functions (R2, goodness of fit). 174 
E Distribution of paired-pulse ratios recorded in regular-spiking (green) and fast-spiking L2/3 (white) L2/3 neurons; histograms 175 
were fit with Gaussian functions (R2, goodness of fit). 176 
F Left, scatter plot showing relationship of EPSP amplitude and paired-pulse ratio for excitatory synaptic connections formed with 177 
regular-spiking (circles, n = 74) and fast-spiking (squares, n = 17) cells; light green, facilitating connections; dark green, 178 
depressing connections. Non-parametric Spearman correlation statistics indicated; line was fit to all datapoints with linear 179 
regression. Right, comparison of paired-pulse ratios of synaptic connections formed with regular-spiking neurons that were 180 
binned into ‘small’ (EPSP < 2 mV) and ‘large’ (EPSP > 2 mV) synaptic connections (parametric Welch’s t test). 181 
 182 

No clustering of connections with similar paired-pulse ratios on L2/3 neurons  183 

Next, we investigated whether EPSP amplitudes and short-term plasticity across those synaptic 184 

connections formed with the same regular-spiking L2/3 neurons followed the same distributions as 185 

those of all 74 connections across all regular-spiking neurons. Alternatively, the synaptic inputs onto a 186 

given cortical neuron may be statistically correlated, i.e. individual neurons could receive synaptic 187 

connections with systematically biased EPSP amplitudes or paired-pulse ratios that deviate from the 188 

overall distributions found across L2/3, which may constitute a mechanism to endow individual cells 189 

with high-pass or low-pass filtering properties (Fortune and Rose, 2001; Abbott and Regehr, 2004). For 190 

a total of 8 regular-spiking neurons, we were able to characterize at least 5 different afferent synaptic 191 
connections (47 connections in total, mean of 5.9 connections per cell). We will refer to the distribution 192 

of paired-pulse ratios and EPSP amplitudes across all our recorded synapses as the “population 193 

distribution” and to the distributions of paired-pulse ratios and EPSPs of synaptic connections 194 

converging onto a single cell as “cell distributions”. We used the non-parametric Kolmogorov-Smirnov 195 

test to detect if there was a significant difference between the respective cell distributions and the 196 

population distribution. Interestingly, for all 8 cells, the cell distributions were not significantly different 197 

from the population distribution for both EPSP amplitude and paired-pulse ratios (Fig. 2 A, B). 198 

Precise quantification of synaptic short-term plasticity requires electrophysiological recordings. 199 
Using whole-cell patch-clamp recordings in combination with minimal stimulation of axons of passage, 200 

however, limits the number of synaptic connections that can be recorded for any given neuron, yielding 201 

low statistical power on the level of individual cells. Therefore, we conducted a power analysis to 202 

estimate the detectable effect sizes in our dataset (see Methods for details). For detecting a significant 203 

(α = 0.05) difference between each of the 8 paired-pulse ratio cell distributions and the population 204 

distribution, the Kolmogorov-Smirnov test had an average power of 17% for an effect size of 0.1, a 205 

power of 53% for an effect size of 0.2, and a power of 85% for an effect size of 0.3, where effect size 206 
corresponds to a systematic difference in the means of the cell distributions. Thus, the statistical power 207 
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was low on the level of individual experiments. Because we could repeat the experiment 8 times, 208 

however, even small systematic differences between cell distributions and population distribution, while 209 

undetectable in single experiments, should have been revealed in at least one or a few of the 8 neurons 210 

we recorded from. To investigate this further, we used a binomial model (see Methods) to assess the 211 
power of the entire experimental series by asking: what systematic difference in paired-pulse ratios 212 

should have been observed in at least one of the 8 experiments at the 95% significance level? We 213 

found that the probability to detect a significant difference across our entire dataset was 78% for an 214 

effect size of 0.1 and 99.7 % for an effect size of 0.2, with the 95% significance level at an effect size 215 

of 0.15. Critically, an effect size of 0.15 is below the paired-pulse ratio difference of 0.16 that we 216 

detected between the small- and large-EPSP connections formed with pyramidal neurons in L2/3 (Fig. 217 

2 C). Thus, our experimental series achieved the statistical power necessary to detect differences in 218 

paired-pulse ratios at physiological magnitudes that we found to exist in L2/3. This suggests that short-219 
term plasticity of excitatory synapses formed with individual regular-spiking cortical neurons in L2/3 220 

spans the full range observed in L2/3 and is not markedly functionally clustered on the level of single 221 

neurons.  222 

Likewise, for detecting a significant difference between each of the 8 EPSP cell distributions 223 

and the population distribution, the Kolmogorov-Smirnov test had an average power of 4.9% for an 224 

effect size of 0.2 mV, a power of 15% for an effect size of 0.4 mV, and a power of 46% for an effect size 225 

of 0.6 mV. Analogous Monte Carlos simulations showed that the probability of detecting a significant 226 

difference in the mean EPSP amplitudes across our entire dataset was 72% for a systematic effect size 227 
of 0.4 mV and 99.3 % for a systematic effect size of 0.6 mV, with the 95% significance level at 0.52 mV 228 

(Fig. 2 C). In summary, these are important experimental results that contradict the theory-inspired 229 

hypothesis that synaptic inputs onto single cortical neurons may be statistically correlated (Koulakov et 230 

al., 2009). 231 

 232 

 233 
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Figure 2. Excitatory synaptic connections formed with regular-spiking L2/3 neurons do not exhibit a systematic 234 
clustering of EPSP amplitude and short-term plasticity.  235 
A Top, distribution of EPSP amplitudes recorded across all regular-spiking neurons (population distribution). Bottom, distributions 236 
of the EPSP amplitudes across the 8 regular spiking neurons, for which at least 5 synapses were found (cell distributions). N, 237 
number of synapses recorded per cell; p, non-parametric Kolmogorov-Smirnov test between each cell distribution and the 238 
population distribution, medians are indicated.  239 
B Representation of short-term plasticity data, panel layout as in A; light green, facilitating synaptic connections; dark green, 240 
depressing connections, means are indicated. 241 
C Estimation of the effect sizes that are detectible across the experimental series at a 5% significance level. 242 

 243 
Modeling the interplay of synaptic strength, short-term plasticity, and temporal 244 

input structure 245 

We generated a two-compartment, conductance-based model of a L2/3 pyramidal neuron to investigate 246 

how synaptic strength, short-term plasticity, and temporal structure in synaptic inputs interact within the 247 

L2/3 circuitry to shape the response properties of cortical neurons (Fig. 3 A – C; see Methods for 248 

details). For this purpose, we developed a data-driven modeling approach: we constrained firing rates 249 

and pairwise correlations of presynaptic inputs by in vivo observations and synaptic strength and short-250 
term plasticity by our experimental data recorded in regular-spiking neurons.  251 

Briefly, the model neuron received excitatory inputs from 270 presynaptic neurons (Feldmeyer 252 

et al., 2006; Sarid et al., 2013), whose synaptic weights (Fig. 3 D) and short-term plasticity properties 253 

(Fig. 3 E) were constrained following our extracellular stimulation experiments (see Methods). Note that 254 

this number of presynaptic L2/3 cells is based on the assumption that L2/3 neurons form on average 3 255 

anatomical synapses with their postsynaptic partners in L2/3 (Feldmeyer et al., 2006; Sarid et al., 2013). 256 

In our model, this is captured by the fact that the axons of passage we activated with minimal stimulation 257 

must have also formed multiple synapses with the recorded neurons on average. This is evident when 258 
comparing the range of EPSP amplitudes we recorded with minimal stimulation (0.29 – 4.15 mV) with 259 

EPSP amplitudes obtained from paired recordings (0.15 – 2.25 mV), for which the number of anatomical 260 

synapses per connection (mean of 1.6) was additionally established from EM (Holler et al., 2021). The 261 

temporal input correlations (Cossell et al., 2015) (Fig. 3 F) and the firing rates (O’Connor et al., 2010) 262 

(Fig. 3 G) across the 270 synaptic inputs were constrained by published in vivo data for rodent cortex 263 

(see Methods), such that a small number of strong synaptic inputs fired temporally correlated spikes at 264 

high frequencies and exhibited large EPSP amplitudes and corresponding short-term depression. The 265 
remaining majority of weak synapses, providing ‘background’ activity, were set to fire at low frequencies 266 

and in a temporally uncorrelated pattern, resembling a random Poisson process, and exhibited low 267 

EPSP amplitudes without pronounced net short-term plasticity (Fig. 3 A, B). 268 

 269 

After the model was set up in this manner, we verified that all parameters were distributed following 270 

experimental data and that the interdependencies between EPSP amplitude and short-term plasticity 271 

and EPSP amplitude and temporal correlation structure (Cossell et al., 2015) were preserved (Fig. 4). 272 

The model EPSP amplitude distribution (Fig. 3 D, Fig. 4 A; mean ± s.d.: 1.23 ± 0.69 mV, n = 270) and 273 

paired-pulse ratio distribution for a 20 ms paired-pulse interval (Fig. 3 E, Fig. 4 B; mean ± s.d.: 0.91 ± 274 
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0.19, n = 270) did not differ from the distributions we had measured in regular-spiking neurons in vitro 275 

(p = 0.90 and p = 0.67, respectively; non-parametric Kolmogorov-Smirnov tests). The mapping between 276 

EPSP amplitude and short-term plasticity across the model inputs (Fig. 4 A, B) followed the same 277 

relationship as observed in vitro: EPSP amplitudes > 2 mV had significantly lower paired-pulse ratios 278 

(mean ± s.d.: 0.82 ± 0.08) compared with EPSP amplitudes < 2 mV (Fig 3 E; mean ± s.d.: 0.92 ± 0.20; 279 

p < 0.0001, parametric Welch’s t test), and due to the larger sample size compared to our in vitro data, 280 

there was a negative correlation between EPSP amplitude and paired-pulse ratio (r = -0.26, p < 0.0001, 281 

n = 270, non-parametric Spearman correlation coefficient). In accordance with electrophysiological 282 

recordings obtained from rodent sensory L2/3 in vivo (O’Connor et al., 2010), the firing rates of the 283 

inputs followed a lognormal distribution (R2 = 0.88) with a mean of 1.9 ± 2.4 Hz (Fig. 4 C), the strong 284 

synaptic inputs had a mean firing rate of 6.4 ± 4.1 Hz (maximum: 17.7 Hz), and the weak synaptic inputs 285 

had a mean firing rate of 1.2 ± 0.9 Hz (Fig. 3 G). The strong inputs exhibited the highest pairwise 286 

correlation coefficients (mean ± s.d.: 0.24 ± 0.09; range: 0.11 to 0.45), while the weak inputs exhibited 287 

little correlation (mean ± s.d.: 0.02 ± 0.04; range: -0.05 to 0.15)(Fig. 3 F)(Cossell et al., 2015). 288 

 289 

To examine information transfer between the synaptic inputs and the output firing pattern of the model 290 

neuron, we measured the Pearson correlation coefficient between each input spike train and the model 291 

neuron’s output spike train. We further characterized the neuronal gain of the model cell by mapping its 292 

input-output relationship (i.e., the probability of spiking as a function of the number of coincident synaptic 293 

inputs). By selectively manipulating the relationship between synaptic strength, short-term plasticity, 294 

and temporal structure in the synaptic inputs, we then systematically characterized the contribution of 295 
each of these parameters on information transfer and neuronal gain. Each experiment was repeated 296 

for a total of 100 simulation runs; whereby for each iteration, we randomly re-generated a new set of 297 

270 input spike trains. 298 
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 299 
 300 

Figure 3. Default setup of the L2/3 neuron model. 301 
A Example of input spike trains fed to the model cell. Strong inputs (top) fired with higher frequencies and temporal correlation 302 
(color coded), compared to weak inputs (bottom). Vertical grey bands indicate the resulting spike timing in the model cell (same 303 
as in C). Note that some weak inputs did not spike in the depicted 200 ms time window because of their low firing rates. 304 
B Strong inputs were set to have larger EPSP amplitudes and corresponding short-term depression, while weak inputs were set 305 
to evoke smaller EPSPs and correspondingly weak net short-term plasticity, in accordance with our in vitro recordings. 306 
C Simulated membrane potential of model neuron following activation with the input spike trains shown in A. 307 
D Left, EPSP amplitudes across the 270 input spike trains. Center, comparison of EPSP amplitudes between strong and weak 308 
inputs (median, 25 – 75 % percentile, and ranges are indicated). Right, same data plotted as histogram. 309 
E Left, 20 ms paired-pulse ratios across the 270 input spike trains. Center, comparison of paired-pulse ratios between strong and 310 
weak inputs (median, 25 – 75 % percentile, and ranges are indicated). Right, same data plotted as histogram. 311 
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F Left, Pearson correlation coefficients of the 270 input spike trains with the template spike train that was used to generate the 312 
pairwise correlation structure (see Methods); color code as in A, B. Center, comparison of correlation with template spike train 313 
between strong and weak inputs (median, 25 – 75 % percentile, and ranges are indicated). Right, same data plotted as histogram. 314 
G Left, firing rates of the 270 input spike trains. Center, comparison of firing rates between strong and weak inputs (median, 25 315 
– 75 % percentile, and ranges are indicated). Right, same data plotted as histogram. 316 
 317 
 318 

 319 
 320 
Figure 4. Mapping between synaptic strength, short-term plasticity, and correlation in input spike trains. 321 
The relationships between parameter distributions reflects our in vitro data and in vivo data adopted from Cossell et al. (2015). 322 
A EPSP distribution for 270 inputs generated from our in vitro recordings. 323 
B 20 ms paired-pulse ratio distribution for 270 inputs generated from our in vitro recordings. 324 
C Pairwise-correlation coefficients for 270 inputs generated from in vivo data adopted from Cossell et al. (2015).  325 
D Scatter plot of relationship between EPSP amplitudes and 20 ms paired-pulse ratios for the 270 inputs. 326 
E Scatter plot of relationship between EPSP amplitudes and pairwise-correlation coefficients for the 270 inputs. 327 
F Scatter plot of relationship between 20 ms paired-pulse ratios and pairwise-correlation coefficients for the 270 inputs. 328 
 329 

First, we ran the simulation in its default ‘physiological’ setup, i.e., with parameters and parameter-330 

mappings as found in our in vitro recordings and published in vivo data (Fig. 3, 5). Critically, without 331 

further tuning, the model neuron reproduced key properties of rodent L2/3 pyramidal neurons in vivo. It 332 

generated output spike trains with an average firing rate of 4.81 ± 0.71 Hz (Fig. 3 C, 5 F), which is in 333 

excellent agreement with experimental measurements of in vivo spike rates in mouse barrel cortex L2/3 334 

(O’Connor et al., 2010). The average membrane voltage (Vm) of the model neuron was -65.93 mV ± 335 
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7.82 mV (Fig. 5 B, D), comparable to in vivo whole-cell recordings in mouse L2 (Jouhanneau et al., 336 

2015). As expected, the strong synaptic inputs shared the highest Pearson correlation coefficients 337 

(mean ± s.d.: 0.11 ± 0.038; range: 0.064 to 0.20) with the resulting output spike train of the model 338 

neuron (Cossell et al., 2015), while the weak inputs displayed correlation coefficients one order of 339 
magnitude smaller (mean ± s.d.: 0.012 ± 0.013; range: -0.0041 to 0.065) (Fig. 5 E). Across all inputs, 340 

spike trains with decreasing intrinsic correlation, smaller EPSP amplitudes, and lower spike rates 341 

displayed increasingly lower correlation coefficients with the output spike train (Fig. 5 E). We confirmed 342 

that the Pearson correlation coefficients indeed detected correlations in spike timing rather than in firing 343 

rates by randomizing the output spike times following a random Poisson process while keeping the 344 

output firing rate identical. Reassuringly, the correlations between all inputs and the output spike train 345 

then dropped to -0.0005 ± 0.0032 (not shown). 346 

 347 

Synaptic background activity enhances information transfer of strong inputs 348 

We probed the relative influence of the strong versus weak synaptic inputs on the output spiking of our 349 

model cell. Critically, when we removed the weak inputs (Fig. 5 A, B), the mean correlation between 350 

the strong inputs and the output spike train was reduced to 0.068 ± 0.019 (range: 0.034 to 0.10) (Fig. 5 351 

E, F). The output firing rate of the model neuron dropped to 1.26 ± 0.34 Hz (Fig. 5 F) and its average 352 
Vm was hyperpolarized to -68.39mV ± 4.57mV. Despite the sharp drop in information transfer of the 353 

strong synaptic inputs, those inputs with the highest intrinsic correlation and synaptic strength still 354 

maintained the highest correlation with output spiking (Fig. 5 E). Removal of weak inputs also resulted 355 

in a steeper slope of the input-output curve (Fig. 5 G), confirming that synaptic ‘background noise’ has 356 

a divisive effect on neuronal gain. This noise broadens a neuron’s sensitivity to the range of temporal 357 

correlations in input spike trains by increasing the time window over which coincident inputs can be 358 

integrated to evoke spiking, a finding in agreement with previous studies (Silver, 2010). 359 

Conversely, when we removed the strong synaptic inputs from the simulation (Fig. 5 C), 360 
uncorrelated activity provided by the weak inputs was by itself unable to drive the postsynaptic neuron 361 

above spiking threshold and the output firing rate dropped to 0.045 ± 0.068 Hz (Fig. 5 F). This is because 362 

the 235 weak inputs fired at an average frequency of 1.2 ± 0.9 Hz with mean EPSP amplitudes of 1.03 363 

± 0.42 mV, which resulted in a mean membrane potential of 67.68 ± 1.67 mV that rarely crossed the 364 

spike threshold (Fig. 5 D). Thus, uncorrelated activity of weak synapses alone was incapable of evoking 365 
spikes and did not transfer information encoded in its own spike trains (Fig. 5 E). Importantly, however, 366 

it had a powerful computational effect on neuronal activity because it enhanced information transfer of 367 

the strong, correlated inputs by a factor of 2. 368 

 369 
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 370 
Figure 5. Uncorrelated activity from weak inputs enhances information transfer of strong synaptic inputs 371 
A Schematic of model setup with weak inputs removed. 372 
B Example spike train of the model cell in its default setup (grey) and when weak inputs are removed (red). 373 
C Schematic of model setup with strong inputs removed. 374 
D Example spike train of the model cell in its default setup (grey) and when strong inputs are removed (purple). 375 
E Pearson correlation coefficients of the 270 input spike trains with the output spike train of the model cell. Results of three model 376 
setups are shown: default simulation (all inputs, as in Fig. 3) and setups introduced in A, C. Shaded regions, 95 % confidence 377 
bounds for correlation coefficients obtained from 100 runs of the simulation. 378 
F Top, Pearson correlation coefficients between the strong synaptic inputs and the output spike train of the model neuron for the 379 
default simulation and setup introduced in A. Bottom, output firing rate of model cell for the default simulation and the setups 380 
introduced in A-C. (Data are averages across 100 simulation runs; median and 25 – 75 % percentile indicated; non-parametric 381 
Kolmogorov-Smirnov test, * p < 0.0001.) 382 
G Probability of output spiking as a function of coincident spikes across all input spike trains. (Note that the maximum number of 383 
coincident inputs within the 20 ms measurement window was 12 when only strong inputs were included, thus determining the 384 
maximum x-value for the red curve.) 385 
 386 
 387 
Output spiking requires correlation and high firing rates of strong inputs 388 

Next, we decoupled the high temporal correlation and high firing rates of strong inputs from their larger 389 

synaptic strengths by randomly assigning the EPSP amplitudes and their corresponding short-term 390 

plasticity properties across the input spike trains (Fig. 6 A). Note that the original coupling between 391 
EPSP amplitude and short-term plasticity was maintained in this experiment, i.e., synapses with larger 392 

EPSPs still exhibited depression and synapses with smaller EPSPs exhibited facilitation.  393 
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When the model was set up in this manner, the firing rate of the output neuron decreased to 394 

1.11 ± 0.68 Hz (Fig. 6 B, D). Critically, inputs with higher temporal correlation and higher firing rates still 395 

contributed more strongly to the firing of the model neuron (Pearson correlation mean ± s.d.: 0.056 ± 396 

0.016; range: 0.035 to 0.095) compared to inputs with lower temporal correlations and lower firing rates 397 
(mean ± s.d.: 0.009 ± 0.008; range: -0.004 to 0.042) (Fig. 6 C). This means that synaptic strength by 398 

itself did not determine which inputs transmitted the most information to the spike train of the output 399 

neuron. Instead, in our simulation, the combination of high temporal correlation and elevated firing rates 400 

of strong synaptic inputs was the primary determinant for evoking correlated spiking in the output 401 

neuron. However, matching larger EPSP amplitudes to inputs that fired with high temporal correlation 402 

and high firing rates (i.e., our default setup), as observed for the strong synaptic inputs in vivo (Cossell 403 

et al., 2015), increased their correlation with the spike train of the model neuron by a factor of 2 and 404 

enhanced their information transfer (Fig. 6 C, D). Decoupling the large EPSP amplitudes from the 405 
correlated inputs (by shuffling EPSP amplitudes amongst all input spike trains) furthermore resulted in 406 

a flatter slope of the model’s input-output curve and a reduced responsiveness to coincident inputs 407 

(maximum spike probability (Pmax) of 0.15; Fig 6 E). This suggests that assigning the largest EPSP 408 

amplitudes to those inputs that fired at high temporal correlation has a multiplicative effect on neuronal 409 

gain, leading to signal amplification as a mechanism to increase efficient information transmission of 410 

strong inputs (Silver, 2010). 411 

 412 

 413 
Figure 6. Temporal correlation and firing rates primarily determine output spiking, synapse strength enhances response. 414 
A Schematic of model setup with shuffled EPSP amplitudes; note that the relationship of EPSP amplitude and short-term plasticity 415 
was maintained. 416 
B Example spike train of the model cell in its default setup (grey) and with shuffled EPSP amplitudes (blue). 417 
C Pearson correlation coefficients of the 270 input spike trains with the output spike train of the model cell. Results of two model 418 
setups are shown: default simulation (as in Fig. 3) and setup introduced in A. Shaded regions, 95 % confidence bounds for 419 
correlation coefficients obtained from 100 runs of the simulation. 420 
D Top, Pearson correlation coefficients between the strong synaptic inputs and the output spike train of the model neuron for the 421 
default simulation and setup introduced in A. Bottom, output firing rate of model cell for the default simulation and the setup 422 
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introduced in A. (Data are averages across 100 simulation runs; median and 25 – 75 % percentile indicated; non-parametric 423 
Kolmogorov-Smirnov test, * p < 0.0001.) 424 
E Probability of output spiking as a function of coincident spikes across all input spike trains. 425 
 426 

Short-term plasticity balances the computational effects of strong and weak 427 

inputs 428 

Next, we removed the short-term plasticity mechanism from all synapses, such that they exhibited 429 

paired-pulse ratios of 1 for all inter-spike-interval durations, i.e., synaptic strength remained static during 430 

repeated stimulation (Fig. 7 A, B). 431 

When running the simulation in this setup, the model neuron fired at 17.4 ± 0.63 Hz, which was 432 

an even higher frequency than exhibited by those input spike trains with the highest firing rates (Fig. 7 433 

F). At the same time, the mean correlation coefficient of the strong inputs with the output spike train of 434 
the model neuron had doubled to 0.20 ± 0.082, with the largest values exceeding 0.4 (Fig. 7 E, F). Also 435 

the correlation coefficients of the weak inputs with the output spike train had increased to 0.018 ± 0.023 436 

(Fig. 7 E). Notably, because the weak synaptic inputs had been only mildly depressing on average in 437 

our default setup (Fig. 3 E), removing their short-term plasticity mechanism should only have a small 438 

net boosting effect on their total excitatory drive. To confirm this, we additionally removed the weak 439 

inputs from the model entirely (Fig. 7 C, D) and found that this indeed had no significant effect on the 440 

correlation coefficients between the strong inputs and the resulting spike train of the model neuron (Fig. 441 
7 E, F) nor on the output firing rate of the model cell (Fig. 7 F). Thus, after removing short-term plasticity, 442 

the computational effect of the weak inputs in maximizing information transfer of strong inputs had 443 

become entirely redundant. In this regime, the strong synapses alone could determine the spiking 444 

properties of the model neuron. 445 

Furthermore, the slopes of the input-output curves were markedly steeper when the short-term 446 

plasticity mechanism was removed and when the weak inputs were removed in addition (Fig. 7 G), 447 

which confirms that short-term depression of strong inputs has a divisive impact on neuronal gain 448 

(Abbott et al., 1997; Rothman et al., 2009), therefore broadening the neuron’s responsiveness to 449 
temporal correlations in input spike trains (Silver, 2010). 450 
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 451 
 452 
Figure 7. Short-term plasticity balances the computational effects of strong and weak inputs 453 
A Schematic of model setup with short-term plasticity mechanisms removed; note that all spike trains exhibit a paired-pulse ratio 454 
of 1. 455 
B Example spike train of the model cell in its default setup (grey) and when short-term plasticity mechanisms are removed (light 456 
green). 457 
C Schematic of model setup with short-term plasticity mechanisms removed and the weak inputs removed in addition. 458 
D Example spike train of the model cell in its default setup (grey) and when short-term plasticity mechanisms and weak inputs 459 
are removed (dark green). 460 
E Pearson correlation coefficients of the 270 input spike trains with the output spike train of the model cell. Results of three model 461 
setups are shown: default simulation (as in Fig. 3) and setups introduced in A, C. Shaded regions, 95 % confidence bounds for 462 
correlation coefficients obtained from 100 runs of the simulation.  463 
F Top, Pearson correlation coefficients between the strong synaptic inputs and the output spike train of the model neuron for the 464 
default simulation and setups introduced in A-C. Bottom, output firing rate of model cell for the default simulation and the setups 465 
introduced in A-C. (Data are averages across 100 simulation runs; median and 25 – 75 % percentile indicated; non-parametric 466 
Kolmogorov-Smirnov test, * p < 0.0001.) 467 
G Probability of output spiking as a function of coincident spikes across all input spike trains. 468 
  469 
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Discussion 470 

We combined experimental work and computational modeling to investigate how the spiking responses 471 
of L2/3 pyramidal neurons are shaped by the complex parameter-space of temporal structure within 472 

synaptic inputs, synaptic strength, and short-term plasticity. 473 

As a first step, we mapped experimentally the distribution of synaptic strength and short-term 474 

plasticity in barrel cortex L2/3. We found that short-term plasticity follows a symmetrical distribution with 475 

large variance and is mildly depressing on average. Interestingly, synaptic strength and short-term 476 

plasticity were only weakly negatively correlated across our dataset. Instead, their relationship was well-477 

captured by the simple rule that synaptic connections with EPSP amplitudes below 2 mV span the full 478 

range of depression and facilitation and exhibit no pronounced average short-term plasticity. By 479 
contrast, connections with EPSP amplitudes above 2 mV are exclusively depressing, which raises the 480 

intriguing question of what the computational role is for depression of strong synapses.  481 

Our computational model of a L2/3 neuron suggested that the ability of the strong synaptic 482 

inputs to evoke spiking in postsynaptic cells relies predominantly on their high temporal correlation and 483 

high firing rates, as well as on synaptic background activity from the numerous weak synapses, and not 484 

primarily on their synaptic strength. Pairing those ‘driving’, co-tuned synaptic connections with strong 485 

synaptic weights, however, as has been reported for rodent V1 (Cossell et al., 2015), does amplify their 486 

ability to transmit information to the output spike train. 487 
 488 

Technical considerations of minimal stimulation 489 

We used minimal stimulation of axons of passage to map EPSP amplitudes and paired-pulse ratios of 490 

multiple, different synaptic connections formed with the same postsynaptic neurons. This study design 491 

rendered paired whole-cell recordings unfeasible, as the number of synaptic connections that can be 492 
identified with paired recordings is usually low. To ensure that EPSPs originated from single axons, we 493 

carefully followed established protocols (Larkman et al., 1991; Allen and Stevens, 1994) and imposed 494 

strict data inclusion criteria (see Methods). Minimal extracellular stimulation of axons of passage is a 495 

classical technique in neuroscience [e.g. (Larkman et al., 1991, 1992; Allen and Stevens, 1994; 496 

Volgushev et al., 1995; Stratford et al., 1996)] and although it cannot be ruled out that several afferent 497 

axons may be activated in principle, previous work suggests that this is unlikely to occur in practice. For 498 

example, studies that mapped synaptic connections with minimal stimulation have reported similar 499 

EPSP amplitudes [(Stratford et al., 1996; Hardingham and Fox, 2006); our data] and numbers of release 500 
sites (Hardingham and Fox, 2006) when compared with paired recordings of the same connections 501 

(Stratford et al., 1996; Silver et al., 2003; Hardingham et al., 2010; Holler et al., 2021). Thus, the 502 

possibility of synaptic connections arising from several afferent axons was assumed to be negligible in 503 

our dataset. 504 

 505 

Short-term plasticity in barrel cortex L2/3  506 

While mild average depression in rodent barrel cortex L2/3 is in agreement with previous reports (Reyes 507 

and Sakmann, 1999; Feldmeyer et al., 2006), other studies have found excitatory L2/3 synapses in 508 
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sensory areas to be moderately facilitating on average (Jouhanneau et al., 2015; Lefort and Petersen, 509 

2017; Seeman et al., 2018). Intriguingly, Jouhanneau et al. (2015) and Lefort and Petersen (2017) used 510 

paired recordings in layer 2 (L2). While Seeman et al. (2018) conducted paired recordings across the 511 

entire thickness of L2/3, they reported only mild average facilitation with large overall heterogeneity. 512 
We recorded from neuronal somata in superficial L2/3, likely corresponding to the layer 513 

investigated by Jouhanneau et al. (2015) and Lefort and Petersen (2017), but stimulated axons of 514 

passage across the entire depth of L2/3. Thus, differences between these datasets may indicate 515 

differences in synaptic properties between L2 recurrent connections (Jouhanneau et al., 2015; Lefort 516 

and Petersen, 2017) and the L3 -> L2 pathway. This is in line with a growing body of literature describing 517 

structural (Karimi et al., 2020) and functional (Crochet et al., 2011; Petersen and Crochet, 2013) 518 

differences between the neuronal circuits in L2 and L3 and further supports the notion that L2 and L3, 519 

which are routinely considered to constitute a single computational entity, may in fact possess different 520 
computational properties (Petersen and Crochet, 2013; Karimi et al., 2020). 521 

 522 
No evidence for a statistical bias of synaptic innervation on L2/3 neurons  523 

Interestingly, we found no statistical bias of synaptic strength or short-term plasticity of synaptic 524 

connections formed with the same pyramidal neurons in L2/3. Instead, our data suggest that synaptic 525 

inputs formed with a given L2/3 neuron are not markedly correlated, but that their strengths and short-526 
term plasticity instead follow the same distribution as that of all synaptic connections across the 527 

neuropil. Such statistical biases have been hypothesized to explain lognormal firing rate distributions in 528 

cortex (Koulakov et al., 2009) and have been proposed as a potential mechanism for endowing neurons 529 

with high-pass or low-pass filter properties that may underlie integration and differential activation 530 

(Lisman, 1997; Fortune and Rose, 2001; Abbott and Regehr, 2004). Importantly, by demonstrating the 531 

absence of such systematic biases on the single-cell level, our experimental results provide a critical 532 

biological constraint for theoretical models of how these particular computations may arise in L2/3.  533 
Because we have characterized synaptic strength and short-term plasticity through somatic 534 

whole-cell recordings, we cannot exclude the intriguing possibility that statistical biases of synaptic 535 

innervation may exist on the level of dendritic branches, in which case such computations may be 536 

implemented on a sub-cellular level (Kastellakis et al., 2015; Bloss et al., 2018). Further experiments 537 

will be necessary to investigate this possibility. 538 

 539 

L2/3 neuron model reproduces key computation properties of cortical circuits 540 

To address the computational role of depression of strong connections and to investigate how synaptic 541 

strength, short-term plasticity, and temporal properties in presynaptic spike trains within the L2/3 542 

circuitry shape the firing properties of neurons, we generated a simplified model of a L2/3 pyramidal 543 

neuron and systematically manipulated these parameters in our simulation. The synaptic inputs to the 544 

model neuron were constrained by physiological data obtained from our own in vitro recordings and 545 

with in vivo data adopted from the literature (O’Connor et al., 2010; Cossell et al., 2015). To focus our 546 
study on the L2/3 circuitry, we constrained the model neuron to receive synaptic connections only from 547 

other L2/3 neurons, i.e., connections from layer 4 and the deep layers were not modeled, such that it 548 
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was not necessary to include inhibitory synapses in the simulation to balance excitation. Reassuringly, 549 

without further parameter tuning, the model exhibited key computational properties of cortical neurons 550 

that have been characterized in experiments and simulations before: the model cell produced sparse 551 

firing at around 5 Hz, which is in excellent agreement with the average spike rate reported for mouse 552 
barrel cortex L2/3 (O’Connor et al., 2010), and its output spike train exhibited the highest temporal 553 

correlation with the strong synaptic inputs (Cossell et al., 2015). In addition, our simulations could 554 

reproduce the effects of multiplicative gain modulation through synaptic background activity (Salinas 555 

and Sejnowski, 2001; Chance et al., 2002) and through short-term depression of strong synapses 556 

(Abbott et al., 1997; Rothman et al., 2009). 557 

We found that synaptic background activity carried through the weak synapses contributed 558 

critically to information transfer of strong inputs through a stochastic resonance-type effect (Faisal et 559 

al., 2008): while being incapable of evoking spiking by itself, the weak  inputs enabled the model neuron 560 
to operate in a regime in which the cell became sensitive and responsive to coincident strong inputs 561 

(Bulsara et al., 1991; Hô and Destexhe, 2000; Chapeau-Blondeau and Rousseau, 2002; London et al., 562 

2002; McDonnell and Abbott, 2009; Durand et al., 2013). Even then, the high firing rates and the 563 

synchronous activity of multiple strong synapses were needed to evoke spiking in the model neuron 564 

(Bruno and Sakmann, 2006; Banitt et al., 2007; Wang et al., 2010; Schoonover et al., 2014; Martin and 565 

Schröder, 2016). Notably, synaptic strength alone did not determine which presynaptic cells could 566 

evoke spikes (Scholl et al., 2020). 567 

 568 

Short-term depression balances the synaptic drive of strong inputs 569 

The computational role of the relationship between short-term plasticity and synaptic strength has not 570 

been addressed in detail in studies of cortical processing. Interestingly, the pronounced short-term 571 

depression we observed for synaptic connections eliciting large EPSPs in vitro proved necessary to 572 

counterbalance the high firing rates, high temporal correlations, and large EPSP amplitudes of strong 573 
inputs during ongoing stimulation and was critical for maintaining the responsiveness of the 574 

postsynaptic neuron towards input spike trains with the highest temporal correlation. This suggests that 575 

short-term depression could act as one of the mechanisms that prevent runaway excitation in the 576 

recurrent L2/3 circuitry. 577 

 578 

A framework for orientation tuning in columnar and ‘salt-and-pepper’ cortices 579 

The notion that the minority of strong synaptic inputs determines the response properties of cortical 580 

neurons (Cossell et al., 2015; Znamenskiy et al., 2018; Goetz et al., 2021) has recently been challenged 581 

by apparently conflicting findings made in V1 of the ferret (Scholl et al., 2020). In mouse V1, neurons 582 

with the most similar receptive field properties in vivo also formed the strongest synaptic connections 583 

with each other, as assessed in vitro (Cossell et al., 2015). By contrast, the response selectivity of 584 

neurons in ferret V1 in vivo was shown to be determined by the cumulative weight of all driving synapses 585 

– weak and strong. Intriguingly, the response selectivity could not be predicted from the tuning of strong 586 
synapses alone (Scholl et al., 2020). 587 
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Our result that spiking in the model neuron was driven predominantly by high temporal input 588 

correlation and high firing rates, while synaptic strength further enhanced information transfer of these 589 

driving inputs may provide a framework to reconcile these apparently contradictory findings. In the 590 

columnar V1 of carnivores (Hubel and Wiesel, 1962), presentation of simple visual stimuli activates 591 
populations of neighboring neurons within the same orientation column (Ohki et al., 2005). The axons 592 

of pyramidal cells in the superficial layers of V1 form a primary cluster of synaptic boutons around their 593 

own somata (Martin et al., 2014). Thus, unlike in rodents, these neurons are excited by many 594 

neighboring neurons with the same orientation tuning and ocular dominance. Therefore, ‘columnar’ 595 

orientation maps, which are found in visual areas of higher mammals (Gilbert and Wiesel, 1989; Malach 596 

et al., 1994; Bosking et al., 1997; Sincich and Blasdel, 2001) may provide the basis for the “strength by 597 

numbers” necessary to generate tuned responses (Scholl et al., 2020), without the additional 598 

requirement of stronger synapses between co-tuned neurons. Our finding that the high temporal 599 
correlation and firing rates of strong inputs, and not their larger synaptic strength primarily drive spiking 600 

supports this idea and is consistent with the observation that spikes in cat V1 are phase-locked with the 601 

local field potential, which reflects synchrony within local neuronal populations (Martin and Schröder, 602 

2016). 603 

By contrast, the ‘salt-and-pepper’ organization of rodent V1 (Girman et al., 1999), means that 604 

oriented stimuli activate a spatially diffuse network (Ohki et al., 2005). Therefore, neurons may receive 605 

fewer synaptic connections overall from similarly tuned cells and temporal correlation and firing rates 606 

alone may be insufficient to achieve orientation tuning. Our observation that pairing large EPSP 607 
amplitudes with correlated input spike trains further enhances the capacity of driving inputs to transmit 608 

information suggests that this predicted ‘lack of strength by numbers’ in rodent V1 may be compensated 609 

for by stronger synapses between similarly tuned neurons (Cossell et al., 2015). This, however, leads 610 

to the prediction that in mouse V1, the temporal structure in input spike trains from similarly tuned 611 

neurons also plays a key role in generating orientation tuning in vivo, a prediction that could be tested 612 

experimentally. 613 

In summary, our results provide a framework for how cortical neurons could utilize interactions 614 
between the biophysical properties of chemical synapses, the temporal structure of input spike trains, 615 

and ‘noise’ in neuronal networks for efficient computation.  616 
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Methods 617 

Animals 618 

Cortical slices were obtained from 13 male B6/C57 mice between 22 and 29 postnatal days of age 619 

under the license of Kevan A.C. Martin (Institute of Neuroinformatics, University of Zurich & ETH Zurich, 620 

Zurich, Switzerland). Animal handling and experimental protocols were approved by the Cantonal 621 

Veterinary Office, Zurich, Switzerland. 622 

 623 

Slice preparation 624 

Animals were anesthetized with isoflurane, decapitated, and their brains were removed quickly and 625 

immersed in ice-cold slicing artificial cerebrospinal fluid (ACSF, containing, in mM: 87 NaCl, 75 sucrose, 626 

26 NaHCO3, 10 glucose, 7 MgSO4, 2.5 KCl, 1 NaH2PO4, and 0.5 CaCl2, continuously oxygenated with 627 

95% O2, 5% CO2). Coronal slices containing the barrel cortex were cut at a thickness of 300 μm on a 628 

vibratome and transferred to a chamber containing recoding ACSF (containing, in mM: 119 NaCl, 26 629 

NaHCO3, 10 glucose, 1.3 MgSO4, 2.5 KCl, 1.25 NaH2PO4, and 2.5 CaCl2, continuously oxygenated 630 

with 95% O2, 5% CO2). The slices were kept in recording ACSF at room temperate until the recordings. 631 

 632 

Electrophysiology 633 

Patch pipettes (pipette resistance: 5-7 MΩ, pipette tip diameter: 2 μm) were pulled from borosilicate 634 

glass using a P-97 puller (Sutter Instruments) and filled with intracellular solution (containing in mM: 635 

105 K-gluconate, 20 KCl, 10 Na-phosphocreatine, 2 Mg-ATP, 2 Na-ATP, 0.3 GTP, and 10 HEPES, pH 636 

was set to 7.2 with KOH). Biocytin (0.5%) was added to the intracellular solution to stain the recorded 637 

neurons. Whole-cell patch-clamp recordings were obtained at 34-36 °C from visually identified L2/3 638 

neurons in barrel cortex under an Olympus BX61W1 microscope equipped with infrared differential-639 
interference contrast optics and a 10x and a 60x water-immersion objective. Data were acquired with a 640 

Multiclamp 700A amplifier (Axon Instruments), sampled at 10 kHz, filtered at 3 kHz (Digidata 1322A, 641 

Axon Instruments) and monitored with the software pClamp (Molecular Devices). We did not add 642 

GABAA (Allen and Stevens, 1994; Volgushev et al., 1995; Hardingham and Fox, 2006) or NMDA 643 

antagonists to the bath (Allen and Stevens, 1994; Volgushev et al., 1995), as previous studies have not 644 

reported any discernible effects on the EPSP waveform from including these blockers in minimal 645 

extracellular stimulation experiments (Larkman et al., 1991, 1992, 1997). 646 

Following break-in, the access resistance was typically in the range of 15-30 MΩ and recordings 647 
with an access resistance > 30 MΩ were discarded. The bridge potential was compensated and liquid-648 

junction potential was not corrected. Vm after break-in ranged from -85 to -70 mV. If Vm drifted during 649 

recordings, a holding current was injected to keep the membrane at its initial resting potential, which 650 

was rarely necessary. Because Vm was close to the reversal potential of GABAA in all experiments, we 651 

expect there was no contamination of our recorded EPSPs by inhibitory connections. 652 

We then performed minimal stimulation of single axons of passage according to established 653 

protocols (Larkman et al., 1991; Allen and Stevens, 1994), as follows. After establishing whole-cell 654 
recordings, we identified presynaptic axons forming synapses with the recorded cells by carefully 655 
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moving a monopolar extracellular stimulation electrode (filled with ACSF) through L2/3 at an oblique 656 

angle and delivering repeated 0.1 ms current pulses of 10-12 μA amplitude using an A360 stimulator 657 

(World Precision Instruments) until an EPSP was detected in the patched neuron. Synaptic connections 658 

were typically detected when the stimulation electrode was located 20-400 μm distant from the soma 659 
of the recorded cell. To achieve stimulation of single axon fibers synapsing onto the patched neuron, 660 

we then decreased the stimulation amplitude until the EPSP was not elicited anymore and subsequently 661 

increased the stimulation amplitude until the smallest observable EPSP was evoked reliably in an all-662 

or-none manner in a fraction of trials (Larkman et al., 1991; Allen and Stevens, 1994). The final 663 

stimulation amplitude was set to this level (typically 5-16 μA). We only recorded synaptic connections 664 

that showed little or no variability in the latency of evoked EPSPs from trial to trial. We then performed 665 

20 ms paired-pulse stimulation at a low frequency (0.2 Hz) for at least 30 sweeps. After recordings, we 666 

carefully assessed each sweep by eye in pClamp 9 (Molecular Devices) and included only those 667 
sweeps in the final dataset for which an EPSP was evoked following both extracellular stimulation 668 

pulses and whose evoked EPSPs were not contaminated by spontaneously occurring EPSPs. As an 669 

additional control to ensure that we were stimulating single axons of passage (Allen and Stevens, 1994) 670 

and that the synaptic connection remained stable throughout the recording period, we only included 671 

synaptic connections when the EPSPs at the end the recording had the identical average amplitude, 672 

latency, and shape compared to the first evoked minimal stimulation EPSPs. Our final dataset contained 673 

on average 11.2 ± 5 sweeps per synaptic connection (range of 6 to 35 sweeps). 674 

Following the minimal stimulation protocol, we carefully moved the extracellular stimulation 675 
electrode to other locations in the L2/3 neuropil to identify different axon fibers forming synapses with 676 

the same recorded neuron. Great care was taken not to record from the same stimulation location 677 

multiple times, and synaptic connections were only included when their location of stimulation was > 50 678 

µm away from all previous stimulation locations, as assessed in 10x overview images during recordings. 679 

At the end of each experiment, we injected current steps into each neuron to characterize its firing 680 

pattern as regular-spiking (i.e., putatively excitatory/ pyramidal neuron) or fast-spiking (putatively 681 

inhibitory/ interneuron). 682 
 683 

Histology  684 

After recordings, slices were immediately fixed in 15% picric acid, 4% paraformaldehyde, and 0.5% 685 

glutaraldehyde in 0.1 M phosphate buffer (PB) overnight. Fixed slices were then washed in PB, 686 

incubated in an ascending sucrose ladder for cryoprotection, quickly frozen in liquid nitrogen, and 687 

treated in 3% hydrogen peroxide and 10% methanol in phosphate-buffered saline (PBS) to quench 688 
endogenous peroxidases. After washing in PBS and tris-buffered saline (TBS), the slices were treated 689 

with the Vectastain ABC Kit (Vector Laboratories, catalog # PK-6100, RRID: AB_2336819) in TBS at 4 690 

°C overnight. Following washing in TBS, biocytin was visualized using nickel-diaminobenzidine (Ni-691 

DAB) tetrahydrochloride and hydrogen peroxide treatment, followed by a series of washes in PB to 692 

terminate the reaction. Sections were then embedded in Mowiol (Sigma Aldrich) and cover-slipped. Z-693 

stacks of the recovered neurons were imaged under an Olympus BX61 microscope to cross-check the 694 

previously determined electrophysiological cell type with anatomy. Pyramidal cells and interneurons 695 
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were identified on the basis of their dendrite morphology (e.g., spiny dendrites versus smooth dendrites, 696 

respectively) and corresponded with the previously recorded regular-spiking firing pattern and fast-697 

spiking firing patterns, respectively. 698 

 699 

Analysis of electrophysiological data 700 

We analyzed each postsynaptic potential evoked with paired-pulse stimulation with Stimfit individually 701 

(Guzman et al., 2014) and measured its peak amplitude, coefficient of variation, onset latency (i.e., the 702 

time from the onset of the extracellular stimulation artifact to the onset of the evoked postsynaptic 703 

potential) and 10% - 90% rise time. The EPSP was defined as the postsynaptic potential evoked by the 704 

first pulse of the paired-pulse paradigm, i.e., before STP took place. The paired-pulse ratio was defined 705 
as the peak amplitude of the second evoked postsynaptic potential divided by the peak amplitude of 706 

the first evoked postsynaptic potential (i.e., the EPSP). Further statistical analyses were done in Matlab 707 

(MathWorks) and Prism (GraphPad). 708 

To obtain an unbiased population distribution for a given experiment, we excluded all afferent 709 

synaptic connections formed with the postsynaptic neuron in that experiment, but otherwise included 710 

all other connections recorded in regular spiking neurons. The cell distribution for a given experiment 711 

included all afferent synaptic connections formed with the postsynaptic neuron in that experiment. 712 
 713 

We conducted a post-hoc Monte-Carlo power analysis to estimate which effect sizes (i.e., systematic 714 

differences between mean EPSP amplitudes or mean paired-pulse ratios between the cell distribution 715 

and the population distribution) were detectable given the sample sizes in our dataset. We did this for 716 

each experiment individually by bootstrapping new cell distributions with systematically different means 717 

and then performing Kolmogorov-Smirnov tests against the population distribution. 718 

Specifically, for the power analysis for paired-pulse ratios, we first formalized the paired-pulse 719 

ratio population distribution for each experiment as a normal distribution with the same mean and 720 
standard deviation as the experimentally observed paired-pulse ratio population distribution for that 721 

experiment. To test which effect sizes were detectable, we then formalized a range of possible 722 

underlying generator distributions for the paired-pulse ratio cell distribution for that experiment by 723 

varying the mean of the population distribution in steps of ± 0.1 units. By doing so, we designed a range 724 

of generator distribution for the paired-pulse ratio cell distribution with systematically different means. 725 

For each one of these cell generator distributions, we then drew the same number of random samples 726 

that were present in the experimentally observed cell distribution (i.e., between 5 and 8) and ran a 727 

Kolmogorov-Smirnov tests against a random sample drawn from the formalized population distribution 728 
(containing the same number of entries as the population distribution for that experiment). This analysis 729 

was repeated 10,000 times for each cell generator distribution and the statistical power for detecting an 730 

effect of a certain size (i.e., the systematic difference in the means between the underlying cell 731 

generator distribution and the population distribution) was defined as the fraction of trials that yielded a 732 

significant p-value (α = 0.05), see Results. The power analysis for EPSP amplitudes was done in an 733 

analogous fashion with the only exception that lognormal distributions were used instead of normal 734 

distributions, in accordance with our results. 735 
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Because our dataset contained 8 experiments for which at least 5 afferent connections were 736 

mapped, there were 8 chances for detecting a significant difference between a cell and the population 737 

distribution across our experimental series. Thus, a simple binomial model can be used to ask: which 738 

systematic difference in paired-pulse ratios should have been observed in at least one of these 8 739 
experiments at the 95% significance level? To answer this, we computed the probability density 740 

functions for obtaining zero as a realization (i.e., the likelihood of observing no significant difference 741 

across any of the 8 experiments) of simple binomial functions with N = 8 (i.e., the number of our 742 

independent experiments) and P = the average probability of observing a given effect size in a single 743 

experiment (as derived above, see Results). We then repeated these analyses in an analogous fashion 744 

for the EPSP amplitude distributions. 745 

 746 

Conductance-based model of L2/3 neuron 747 

We generated a simplified two-compartment, conductance-based model (Pinsky and Rinsky, 1994; 748 

Mainen and Sejnowski, 1996; Larkum, 2004; Yi et al., 2017) of a L2/3 pyramidal neuron in the NEURON 749 

software (Hines and Carnevale, 1997). The model neuron consisted of an active soma (diameter of 20 750 

µm) with a Hodgkin-Huxley spiking mechanism and a passive dendrite receiving all synaptic inputs 751 

(diameter of 2 µm; length of 100 µm). We set up the model in accordance with experimentally measured 752 
passive electrical properties of barrel cortex pyramidal cells, previous models of L2/3 neurons, and our 753 

own experimental data. 754 

Because the exact ion-channel compositions for L2/3 neurons are not well established, passive 755 

biophysical parameters are routinely modelled as being homogenously distributed in models of L2/3 756 

neurons (Branco et al., 2010; Smith et al., 2013; Ferrarese et al., 2018). It has been determined 757 

experimentally that the specific axial resistance (Ri) of pyramidal neurons ranges between 70 Ohm cm 758 

to 100 Ohm cm (Stuart and Spruston, 1998), we set Ri of the dendrite to 100 W cm (Wang et al., 2010) 759 

to account for the shorter dendrite length and Ri of the soma to 1 W cm (Wang et al., 2010). In 760 

accordance with previous models, we set the specific membrane capacitance (Cm) of the dendrite to 761 

1.3 μF cm-2 to account for dendritic spines, which were not modeled explicitly, and to 1.7 µF cm-2 for 762 

the soma (Wang et al., 2010). The passive membrane resistivity (Rm) was set to 8000 Ohm cm2 (Branco 763 

et al., 2010; Branco and Häusser, 2011; Smith et al., 2013; Ujfalussy et al., 2018), corresponding to a 764 

dendritic leak conductance (gleak) of 0.126 mS/cm2; gleak of the soma was set to 0.0379 mS/cm2 765 

(Lajeunesse et al., 2013), and Vm was set to -70 mV in accordance with our electrophysiological 766 

recordings. To generate action potentials at the soma, we inserted NEURON’s custom Hodgkin-and-767 
Huxley-spiking mechanism at the somatic compartment and used its default values for the active 768 

voltage-gated potassium (gk of 0.036 S / cm2) and sodium conductance (gNa of 0.12 S / cm2). 769 

We inserted 270 synaptic conductances on the dendritic compartment (equidistant to the soma) 770 

whose spike times, synaptic weights and short-term plasticity parameters were set as described in the 771 

following sections. Briefly, we first constructed 270 spike trains whose pairwise correlation coefficients 772 

and firing rates reproduced in vivo observations from rodent L2/3 (see Results). We then assigned 773 

these spike trains with EPSP amplitudes and corresponding paired-pulse ratios that reproduced our in 774 

vitro data. Synaptic strength was then tuned such that the EPSP amplitudes at the soma of the model 775 
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neuron matched exactly the somatic EPSP amplitudes we had measured in vitro (see below). 776 

Importantly, because of this, EPSP amplitudes were independent of the choice of passive biophysical 777 

model parameters and there was no need to test the robustness of our simulations towards different 778 

sets of passive biophysical model parameters. 779 
 780 

Generating input spike trains with temporal correlations following in vivo data 781 

We generated 270 input spike trains whose pairwise correlation coefficients matched the in vivo data 782 

reported by Cossell et al. (2014), i.e., the minority of (strong) input spike trains exhibited high pairwise 783 

correlation coefficients, while the remaining majority of (weak) input spike trains were subsequently less 784 

correlated. We first generated a template spike train of 10 s duration that exhibited a sparse and 785 
irregular temporal structure by using an inhomogeneous Poisson renewal process and sampling inter-786 

spike interval durations from a gamma distribution (shape k = 1.1, inter-spike interval mean of 40 ms) 787 

at 1 ms time steps, which resulted in an average firing rate of 25 Hz. We convolved the template spike 788 

train with Gaussian envelopes of different standard deviations (sGaussian) to generate a set of 270 new 789 

spike trains with precisely defined correlation statistics (Azouz, 2005). We divided the 270 inputs into 790 
strong (n = 35, i.e., 13 % of inputs) and weak inputs (n = 235, i.e., 87 % of inputs) based on the 791 

relationship between EPSP amplitude and short-term plasticity we had found in vitro (i.e., synapses 792 

with EPSP amplitudes > 2 mV (10 / 74 synaptic connections, i.e., 13.5 %) were exclusively depressing, 793 

while synapses with EPSP amplitudes < 2 mV displayed the full range of short-term plasticity). In order 794 

to set up these two populations of input spike trains with corresponding temporal correlation statistics, 795 

we sampled sGaussian from two uniform distributions for strong (sGaussian between 5 and 10 ms, n = 35) 796 

and weak synaptic inputs (sGaussian between 10 and 100 ms, n = 235) (Azouz, 2005). The resulting 270 797 

sGaussian values were ranked and assigned to the 270 input spike trains. For each one of the 270 input 798 

spike trains, we convolved the spike times of the template spike train with a Gaussian envelope whose 799 

standard deviation was set by each spike train’s respective sGaussian. By doing so, for each spike train, 800 

we obtained a 10 s time course consisting of a sum of Gaussian distributions representing the 801 

respective spike probability over time. Because of the iteratively increasing sGaussian, this spike 802 

probability distribution for spike trains with increasing indices continuously broadens and flattens with 803 

respect to the template spike train. We then generated the discrete spike times for each input spike 804 

train by drawing spike times from these time-dependent spike probability distributions using an 805 

inhomogeneous Poisson process. The resulting 270 spike trains had continuously lower pairwise 806 

correlation coefficients with the template spike train. 807 

Finally, we accounted for the fact that, in barrel cortex in vivo, correlated synaptic inputs tend 808 

to fire at higher frequencies, while uncorrelated inputs fire at lower rates (O’Connor et al., 2010; Cossell 809 
et al., 2015). We parametrized the lognormal firing rate distribution measured by O’Conner et al. (2010) 810 

in mouse barrel cortex L2/3 in vivo (mean ± s.d.: 4.16 ± 8.33 Hz) and drew 270 random ‘target firing 811 

rates’ from it. These values were ranked and assigned to the 270 input spike trains, such that spike 812 

trains with higher pairwise correlations with the template spike train also displayed higher target firing 813 

rates. We then removed stochastically individual spikes from each input spike train such that the 814 

average firing rate of each spike train matched the respective target firing rate. 815 
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After the 270 input spike trains had been generated in this manner, we verified that their 816 

pairwise correlation coefficients (Cossell et al., 2015) and firing rates (O’Connor et al., 2010) matched 817 

experimental data obtained in rodent L2/3 in vivo (see Results, Fig. 4). This process was repeated 100 818 

times to generate 100 different sets of spike trains to be run in the model. 819 
 820 

Generating EPSP amplitude and corresponding paired-pulse ratio distributions 821 

To assign realistic EPSP amplitudes to the 270 model inputs, we parametrized the EPSP amplitude 822 

distribution we measured in regular-spiking neurons in vitro with a lognormal distribution (Fig. 1 D, see 823 

Results) and randomly drew 270 EPSP amplitude values from it. We then generated corresponding 824 

paired-pulse ratios for these 270 EPSP amplitudes by parametrized the relationship between the 825 
second pulse (EPSP2) and the first pulse (i.e., the EPSP amplitude) of the paired-pulse stimulation 826 

paradigm that we had recorded in vitro (Fig. 1 C) with an exponential decay function. Critically, the jitter 827 

of the experimentally recorded EPSP2 values around this fitted curve did not differ significantly from a 828 

Gaussian distribution (non-parametric Kolmogorov Smirnov Test, p value of 0.48) with a mean ± s.d. of 829 

1.6 * 10-9 ± 0.192. This standard deviation captures the natural variance of the ratio of EPSP2 to EPSP1 830 

and was subsequently used to generate our modeling data. For each of the selected 270 EPSP 831 

amplitudes, we first assigned a corresponding EPSP2 by using the value predicted by the fitted 832 
exponential decay function for the given EPSP1 (i.e., the EPSP amplitude). We then added variance to 833 

the selected value as a number drawn from a random Gaussian process with a mean of 0 and a 834 

standard deviation of 0.192. Finally, we verified that the resulting EPSP distribution, paired-pulse ratio 835 

distribution, and their mapping corresponded to our in vitro recording data (see Results). 836 

 837 

Modeling short-term plasticity dynamically during presynaptic spike trains 838 

The paired-pulse ratio captures a synapse’s short-term plasticity response for two subsequent release 839 

events at a stereotypical time interval. To model short-term plasticity dynamically for ongoing activation 840 

during spike trains with variable inter-spike intervals, we formalized the short-term plasticity properties 841 

of our synapses into a general form by utilizing the widely-used extended Tsodyks-Markram model 842 

(Markram et al., 1998; Tsodyks et al., 1998): 843 

 844 
𝑑𝑅(𝑡)
𝑑𝑡 =

1 − 𝑅(𝑡)
𝜏!"#

− 𝑢(𝑡) ∙ 𝑅(𝑡) ∙ 𝛿-𝑡 − 𝑡$%. (1) 

 845 

 
𝑑𝑢(𝑡)
𝑑𝑡 =

𝑈 − 𝑢(𝑡)
𝜏&'#()

+ 𝑓(1 − 𝑢(𝑡)) ∙ 𝛿-𝑡 − 𝑡$%. (2) 
 

 846 

Briefly, short-term depression (equation 1) is modeled as the depletion of the synaptic vesicle pool 847 

available for release 𝑅(𝑡), with 𝑢(𝑡) ∙ 𝑅(𝑡) following a preceding release event at time 𝑡$%, which is 848 

counterbalanced by vesicle pool recovery at a time constant 𝜏!"#. Short-term facilitation (equation 2) is 849 

modeled as an increase in release probability 𝑢(𝑡), with 𝑓(1 − 𝑢(𝑡)) following a preceding spike at 𝑡$%, 850 

which decays to the baseline release probability 𝑈 with a time constant 𝜏&'#(). Thus, a continuum of 851 
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synaptic depression to facilitation can be modeled by specifying the values of the parameter set Θ =852 

3𝜏!"# , 𝜏&'#() , 𝑈, 𝑓5 (Costa et al., 2013; Ghanbari et al., 2017). 853 

To do so, we derived Θ for each one of the 270 model synapses as a function of their paired-854 

pulse ratio, as follows. A computationally optimized form of equations (1) and (2) was derived by Costa 855 

et al. (2013) by integrating between spikes 𝑛 and 𝑛 + 1 at time Δ𝑡𝑛* apart: 856 

 𝑅*+, = 1 − (1 − 𝑅*(1 − 𝑢*))	𝑒
-∆/!0"#$ (3)  

 857 

 𝑢*+, = 𝑈 + (𝑢* + 𝑓(1 − 𝑢*)	−	𝑈)	𝑒
- ∆/!
0%&$'( (4)  

 858 

The EPSP amplitude at spike 𝑛 can be calculated as: 859 

 𝐸𝑃𝑆𝑃* = 𝐴 ∙ 𝑅*𝑢* 
(5) 

  

(Markram et al., 1998), where 𝐴 is an adjustable weight parameter that convolves phenomenologically 860 

several physiological strength parameters, such as the number of release sites, quantal size, and cable 861 

filtering properties. The paired pulse ratio 𝑃𝑃𝑅 is the ratio of the EPSP at spike 𝑛 + 1 and the EPSP at 862 

spike 𝑛: 863 

 𝑃𝑃𝑅 =	
𝐴 ∙ 𝑅*+,𝑢*+,
𝐴 ∙ 𝑅*𝑢*

 (6)  

 864 

At time 𝑡 = 0, when no preceding spike occurred, the steady-state value of 𝑅* = 1 and of 𝑢* = 𝑈, and 865 

equation (6) can be simplified to: 866 

 𝑃𝑃𝑅1 =	
𝑅*+,𝑢*+,

𝑈  (7)  

 867 

By inserting equations (3) and (4) for 𝑅*+, and 𝑢*+,, we can rewrite equation (7) as 868 

 

 

𝑃𝑃𝑅1 =	
?1 − 𝑈	𝑒-

∆/!
0"#$@?𝑈 + 𝑓(1	−	𝑈)	𝑒

- ∆/!
0%&$'( 	@

𝑈  

 

 

(8)  

 869 

Critically, 𝑃𝑃𝑅1 in equation (8) at Δ𝑡𝑛* = 20	𝑚𝑠 (i.e., 𝑃𝑃𝑅1213$) describes exactly our experimental 870 

paired-pulse stimulation protocol. This allowed us to obtain a parameter set Θ for each synapse as a 871 

function of its 20 ms paired-pulse ratio. 872 

 873 

Defining the short-term plasticity parameter set 𝚯 for each synapse 874 

To do so, we varied Θ on a continuum ranging from strong depression to strong facilitation according 875 

to Costa et al. (2013) (Table 1), which resulted in a large dataset of uniquely defined Θs and 876 

corresponding 𝑃𝑃𝑅1213$ values. For each of our 270 model synapses, we then chose the parameter set 877 

Θ, whose resulting 𝑃𝑃𝑅1213$ value matched most closely the paired-pulse ratio we had previously 878 

assigned to that synapse (see above). By obtaining a unique parameter set Θ for each synapse, we 879 
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could then compute its 𝑅*+, and 𝑢*+, during continuous spike trains using equations (3) and (4), 880 

respectively. 881 

 882 
Table 1. Parameter sets 𝚯 for strongly depressing and strongly facilitation synapses, adopted from Costa et al. (2013). 883 
 884 

Synaptic short-term plasticity 𝜏!"# 𝜏&'#() U f 𝑃𝑃𝑅1213$ 

Strong depression 1700ms 20ms 0.7 0.05 0.3 

Strong facilitation 20ms 1700ms 0.1 0.11 1.8 

 885 

 886 

Modeling EPSP amplitude and paired-pulse ratio in the NEURON simulation 887 

We modeled the input synapses by using the ExpSyn point process in NEURON, which allows for the 888 
synaptic strength to be set precisely by means of a weight parameter. We defined the weight parameter 889 

as the product of the desired somatic EPSP amplitude and a scaling factor. To determine this scaling 890 

factor, we generated a single test spike for each of the 270 EPSP amplitudes (using its respective 891 

desired EPSP amplitude) and measured the resulting somatic EPSP amplitude. We found that the ratio 892 

of the desired EPSP / test EPSP was a constant factor across all 270 input synapses, which allowed 893 

us to use this ratio as the universal scaling factor. 894 

By deriving paired-pulse ratios using equation (6), we were able to adjust the EPSP amplitudes 895 

dynamically in the simulation to incorporate short-term plasticity. To cross-check again that the 896 
simulated EPSP amplitudes and short-term plasticity properties reproduced the desired values, each 897 

synapse in the NEURON simulation was activated with two pulses at a 20 ms inter-spike interval and 898 

the somatic EPSP amplitudes and paired-pulse ratios measured at the soma of the model neuron. 899 

Reassuringly, we found that the resulting somatic EPSP amplitude distribution and paired-pulse ratio 900 

distribution exactly matched the target distributions we had generated (as described above). 901 

 902 

Modeling the interplay of synaptic strength, short-term plasticity, and temporal 903 

correlation in presynaptic spike trains 904 

After the model was set up in this manner, we simulated the somatic voltage response of the model 905 

neuron following activation of the 270 input synapses with the corresponding presynaptic spike trains. 906 

We convolved the discrete spike times of the output spike train of the model neuron and each one of 907 

the 270 input spike trains into continuous functions with an exponential filter (t = 10ms) (van Rossum, 908 

2001) and computed the pairwise Pearson’s correlation coefficients between each input spike train and 909 

the output spike train. Additionally, we quantified the input-output relationship of the model neuron as 910 
the probability of spike generation as a function of the number of coincident inputs in the 20 ms time 911 

window preceding the output spike. As described in the Results, we then manipulated the respective 912 

population of active synapses and their synaptic parameters in the simulation to investigate the interplay 913 

of synaptic strength, short-term plasticity, and temporal correlation in presynaptic spike trains. We 914 

computed mean correlation coefficients, input-output curves and corresponding 95 % confidence 915 

intervals by repeating each simulation setup for the 100 sets of spike trains (see above). 916 
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