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Abstract— Finding novel drug-target associations is vital for 

drug discovery. However, screening millions of small molecules 

for a select target protein is challenging. Several computational 

approaches have been developed in the past using Machine 

learning methods for computational drug-target association 

(DTA) prediction predominantly use structural data of drugs 

and proteins. Some of these approaches use knowledge graph 

networks and link prediction. To the best of our knowledge 

there have been no approaches that use both structural learning 

that offers molecular-based representations and knowledge 

graph-based learning which offers interaction-based 

representations for DTA discovery. Based on the premise that 

multimodal sources of information acting complimentarily 

could improve the robustness of DTA predictions, we developed 

GraMDTA, a multimodal graph neural network that learns 

both structural and knowledge graph representations utilizing 

multi-head attention to fuse the multimodal representations. We 

compare GraMDTA with other computational approaches for 

DTA prediction to demonstrate the power of multimodal fusion 

for discovery of DTA. 

Keywords—Graph Neural Networks, Multimodal, Drug 

Discovery, Attention, Virtual Screening 

INTRODUCTION 

The drugs approved for various indications often have 
unintended activities or drug-induced adverse events (AEs). 
This is often attributed to a drug’s off-target effect, binding 
other known or unknown targets. While such off-target 
binding is one of the underlying causes for several drug-
induced AEs, they can also be beneficial and may lead to drug 
repositioning or discovery of new indications for an approved 
drug. One of the important goals in drug discovery is to 
identify a drug lead that has minimal off-target effect with 
high binding affinity to selected target. Virtual screening is 
used for faster and economical discovery of potential drug-
target associations (DTA), where computational screening of 
chemical libraries is performed using a target of interest. 

In recent years, machine learning-based approaches are 
increasingly used for predicting DTA [1]. These methods 
typically compute drug and target similarities to predict the 
association or binding affinity scores. Recent advances in deep 
learning have enabled extraction of latent features directly 
from raw data. Previously to train deep learning models for 
predicting DTAs, the drug and target inputs, which are 
represented as SMILES1 and FASTA2 sequence respectively, 
are one-hot encoded. For instance, DeepDTA [2] and 

 
1 Drugs are represented as SMILES (Simplified Molecular Input Line Entry System) 
which translates a 3-dimensional structure into a string of symbols. 

DeepConv-DTI [3] applied 1D convolution to the 1-hot 
encoded sequences and aggregate potential patterns from raw 
sequence information to predict drug-target affinity [2].  

Text-based representations are fixed and are inflexible for 
additional atom or bond level features. Whereas graphs are 
flexible to incorporate such auxiliary information. Recently, 
graph neural networks have demonstrated their effectiveness 
for computational drug discovery [4]–[6]. Hence as an 
alternative, representing drugs as molecular graphs have been 
proposed for feature rich molecule representations. 
GraphDTA [7] and Graph-CPI [8], for example, have 
leveraged graph neural networks to learn the graph 
representation of molecules along with their additional atom 
and bond features [9], [10] for DTA predictions. Alternatively, 
DTA problem can also be considered as a link prediction task 
utilizing the bi-partite drug-target association network and 
their heterogeneous annotations. Through integration of 
various heterogeneous data, several methods have been 
proposed for drug-target relationship discovery [11]–[14]. 
NeoDTI, for instance, integrated heterogeneous network data 
from diverse data sources and utilized GraphSAGE [15] for 
predicting DTAs.  

In majority of these approaches, drugs and target proteins 
are represented either as text or graph modality to learn their 
respective representations. In other words, the drug 
embeddings are learnt through text, molecular graphs or 
through its heterogeneous neighbors using graph neural 
networks. Similarly, protein embeddings are learnt through its 
FASTA-text sequence representation using convolutional nets 
or through its heterogeneous neighbors using graph neural 
networks. Most of these approaches however rely on single 
modal representation of drugs and proteins. Multi-modal 
representation learning on the other hand offers robustness 
when any of the modality is incomplete or corrupted and 
further the modalities act complementary to each other [16]. 
Hence, we report Graph Neural Networks for Multimodal 
biomedical datasets to predict Drug-Target Association 
(GraMDTA).  

We collect structural and knowledge graph associations of 
drugs and proteins from various sources. We harmonize the 
collected modalities of the data. Our approach involves a 
pretraining phase where we train graph neural network on 
knowledge graph. Next, we incorporate the knowledge graph-
based embeddings in GraMDTA. Further, for drugs 

2  Proteins are represented as FASTA sequences (amino acids) in a text-based 
format. 
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represented as molecular graphs, we use graph attention 
network. For proteins represented as FASTA sequence, we 
use convolutional neural network for learning representations. 
Therefore, unlike previous works [2], [3], [7], [13], [17], [18], 
GraMDTA learns representations for drugs and proteins from 
structures and their corresponding knowledge graphs. We 
aggregate the multiple modalities of drugs and proteins using 
multi-head attention weighting mechanism to learn relevant 
information while eliminating the noisy information cascades. 
To assess the effectiveness of our model, we use it for drug 
target association prediction and drug target affinity score 
prediction problems by postulating the model as classification 
and regression methods. We perform systematic analysis to 
test the robustness of our framework on benchmark datasets 
through ablation studies. Our performance comparison with 
baseline models and ablation studies suggests that, 
multimodal learning has significant advantage over single 
modal learning. Our results from case study on select 
druggable target proteins from the Illuminating the Druggable 
Genome (IDG) [19], [20] database highlights the translational 
utility of GraMDTA. 

MATERIALS AND METHODS 

In this section, we describe our collected datasets i.e., 
drug-target association dataset, chemical structure dataset, 
protein sequence dataset, and relevant heterogeneous 
networks. Then we explain the components involved in 
pretraining and GraMDTA.  

Datasets 

Pretraining Datasets: Our pretraining datasets consists of 

knowledge graphs of drugs and proteins. We collected and 

normalized the heterogeneous associations of drugs and 

targets from publicly available datasets as described 

previously [11]. More specifically, we collected associations 

for all the heterogeneous entities from datasets such as 

DrugBank [21], RepoDB [22], DisGeNET (curated) [23], 

DrugCentral [24], STRING [25] and Pharos[19]. For entity 

normalization, we used DrugBank identifiers for drugs, 

UMLS concepts for diseases, UniProt identifiers for targets, 

and MESH identifiers for drug’s categories (Table 1).  

 
Benchmark Datasets: The benchmark datasets consist of 

known DTAs from 3 resources, namely, Drugbank [21], 
KIBA [26], and DAVIS [27]. The Drugbank dataset consists 
of drug-target binary associations. Out of 35,022 interactions 
in Drugbank, 17,511 interactions are positive and remaining 
are random negative interactions. KIBA and DAVIS datasets 
consists of affinity scores between drug-targets (Table 2). As 
part of pre-processing, we use RDKit software [28] and 
convert the SMILES representation of drugs to molecular 
graph representation where nodes represent atoms and edges 
represent bonds. The features which characterize the atoms 
and bonds are encoded in one-hot fashion similar to [29] and 
are used along with the molecular graph. For protein sequence, 
we one-hot encode the FASTA sequence text similar to 
previous works [2], [3], [7]. 

Pretraining  

The pretraining stage consists of graph encoding and edge 

decoding phases. In the graph encoding phase, the feature 

information is aggregated from node neighborhood using 

graph neural network. In edge decoding phase, we perform 

 

Figure 1: Overview architecture of GraMDTA for predicting association between drug and target protein using multiple modalities of the entities. 

 
Table 1: Knowledge graph information for drugs and target knowledge 

graph datasets.  

Dataset Adjacency Size Edges 

Drug KG Drug-Diseases 6647 x 2958 8,957 

 Drug-Categories 6647 x 2124 35,277 

Target KG Disease-Targets 5442 x 4294 32,379 

 Target-Target 

(PPI) 

4294x4294 13,889 

 

Table 2: Benchmark datasets and their statistics  

Dataset #Drugs #Targets #Interactions 

Drugbank 6655 4294 35,022 

KIBA 2068 225 116,350 

DAVIS 68 379 25,772 
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link prediction based on the learnt node representations. In 

Figure 2, we show the encoding and decoding phases for drug 

and protein KG as generic representation. 

 

Graph Encoding: In the encoding phase of pretraining, we 

use GraphSAGE for learning node representation. 

GraphSAGE aggregates the features of target node 

neighborhoods and concatenates the node’s current 

representation along with the aggregated neighborhood 

vector. This way the algorithm iteratively updates the node 

representation as: 

ℎ𝑢
′ = 𝑊1ℎ𝑢 + 𝑊2. 𝐴𝑔𝑔𝑣∈𝑁(𝑢)(ℎ𝑣) 

where 𝑁(𝑢) is the neighborhood of node of u, 𝑊1 and 𝑊2 are 

the weights associated to learn representation, and Agg(.) is 

the aggregate function such as mean or sum. We use mean 

aggregator in our implementation.  

 

Similarly, we use CNN to encode the drug or protein 

sequence i.e., molecule or FASTA sequence using 1D 

convolutions. We use adjacently with knowledge graph 

encoding to alleviate the representation issue for isolated 

nodes in knowledge graph. For drugs or proteins that lack 

interactions, structural information is used and 

representations are generated. Our convolutional encoding 

mechanism is similar to protein sequence encoding 

mechanism discussed in the GraMDTA section.  
 

Edge Decoding: Here we define the edge decoding where we 

concatenate the representations of nodes and use feed forward 

layer to predict the link between them.  
 �̂�  = 𝑓(ℎ𝑥 ⊕ ℎ𝑦) (1) 

 

where ⊕  indicates concatenation of node embeddings ℎ𝑥 

and ℎ𝑦, and  𝑓(. ) is feed-forward neural network. We apply 

sigmoid activation to the output i.e., 𝜎(�̂�) , to predict the 

probability of link being associated between two nodes. We 

train the network using binary cross entropy loss function for 

both drug and protein knowledge graph datasets. The 

embeddings of drug and protein are extracted to further train 

with GraMDTA. 

GraMDTA 

GraMDTA has three types of encoding networks with 
each encoder corresponding to a modality. The molecular 
graphs are represented as homogeneous networks; protein 
FASTA sequence is represented as text; and drug and target-
related annotations as knowledge graph embeddings of 
heterogeneous networks (Figure 1). We define graph neural 
networks and convolutional neural net encoders according to 
each modality and then aggregate the encoded representations 
through a multi-headed attention mechanism. Further, we 
perform classification on the aggregated embeddings 
predicting DTA as probabilities or affinity score based on 
benchmark dataset. In the following sections, we define the 
encoders and corresponding loss function. 

Encoding Molecular Graphs 

Molecular graphs are homogeneous networks where each 
node belongs to same node type (atoms) and edge type 
(bonds). To learn homogeneous graphs using neural networks, 
we define the GNN notations. A graph 𝐺 = (𝑉, 𝐸) , 
represented as an adjacency matrix 𝐴, consists of 𝑛 ∈ 𝑉 nodes 
and 𝑚 ∈ 𝐸  edges. The sparse adjacency 𝐴  can be 

preprocessed by converting to normalized Laplacian �̂� which 

is defined as a symmetric positive semidefinite matrix as  �̂� =

𝐼 −  𝐷
−1

2⁄ 𝐴𝐷
−1

2⁄ . We use graph attention network (GAT) 
[30]  to learn molecular representation  which applies linear 
transformation for every node by a weight matrix 𝑊. Then for 
each node, attention coefficients are computed using their 
first-order neighbor nodes as follows 

 𝑒𝑖𝑗 =  𝑎(𝑊𝑚𝑜𝑙𝑖 , 𝑊𝑚𝑜𝑙𝑗) (2) 

Where 𝑖 is the target node index, 𝑚𝑜𝑙𝑖 is the target node 
(atom) embedding of graph 𝑚𝑜𝑙, 𝑚𝑜𝑙𝑗 is the neighbor node 

(atom), 𝑎 is a function to compute attention coefficients, and 
𝑒𝑖𝑗  is node 𝑗 ’s influence over node 𝑖  which quantifies the 

importance of the relationship. The scores are normalized 
using a SoftMax function as  

 
 

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

∑ exp(𝑒𝑖𝑘) 𝑘∈ 𝒩𝑖

 
(3) 

 

Using the normalized attention scores, node embeddings 
are computed using a non-linearity function 𝜎 as follows: 

 
 

Figure 2: Overview architecture of pretraining model for training the 

knowledge graph 
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𝑚𝑜𝑙�̂� = 𝜎 ( ∑ 𝛼𝑖𝑗𝑊𝑚𝑜𝑙𝑗

𝑗 ∈ 𝒩𝑖

) 

(4) 

 

In this work, we use two layers of 𝐺𝐴𝑇(. ) to generate 

graph embedding 𝑚𝑜𝑙̂ . We further use a rectified linear unit 
(ReLU) as an activation function over the learnt embedding. 
The overall molecular graph embedding is simplified in the 
following notation 

 𝑚𝑜𝑙̂ =  𝑅𝑒𝐿𝑈(𝐺𝐴𝑇(𝐺𝐴𝑇(ℎ)))) (5) 

 

Encoding FASTA Sequences 

For 1D protein sequence, we one-hot encode and served as 
input for 1D-convolutions. The 1D convolutions are efficient 
in learning important local patterns within the sequence [2], 
[7]. The filters of convolutions slide through protein 
sequences effectively capturing relationships of an amino 
acids group. We denote the learnt representations of protein 
sequence (𝑝) using convolution as  

 �̂� = 𝑅𝑒𝐿𝑈 (𝐿𝑖𝑛𝑒𝑎𝑟(𝑐𝑜𝑛𝑣(𝑝))) ( 1 ) 

Where 𝑐𝑜𝑛𝑣(. ) is the convolutional operator, 𝐿𝑖𝑛𝑒𝑎𝑟(. ) 
is the fully connected linear layer, and 𝑅𝑒𝐿𝑈(. )  is the 
activation function. 

Encoding Knowledge Graphs 

The pretrained embeddings of knowledge graph are fed to 
feed forward neural network as: 

 𝑘�̂� = 𝑅𝑒𝐿𝑈(𝑓(𝑘𝑑)) (6) 

 𝑘�̂� = 𝑅𝑒𝐿𝑈 (𝑓(𝑘𝑝)) (7) 

where 𝑘𝑑  and 𝑘𝑝  are knowledge graph-based 

representations of drugs and proteins, respectively. 

Modal Attention – Fusing Multiple Modalities 

Here we discuss the modal attention to fuse multiple 
modalities. Before we dive into the details of fusing 
modalities, we first summarize the notations of each modality. 
For a drug, there are two modalities i.e., molecular graph and 
heterogeneous network associations. The molecular graph 

representation of the drug is denoted 𝑚𝑜𝑙̂  and the knowledge 

graph representation of the drug is represented as 𝑘�̂� . 
Similarly, the protein sequence has two modalities i.e., protein 
FASTA-text sequence and heterogeneous network 
associations. The protein sequence representation is denoted 
as �̂�  and the knowledge graph representation of protein is 

denoted 𝑘�̂�.  

We first concatenate the multiple modal representations of 
drugs and proteins. Then we use multi-head attention akin to 
attention in sentence transformers [31] where each modality 
acts as a word and the concatenation of the modalities is a 
sentence. With this analogy, we represent the modalities to 
multi-head attention as 

𝑧 =  𝑀𝐻𝐴(𝑚𝑜𝑙̂  ⊕ 𝑘�̂�  ⊕ �̂�  ⊕ 𝑘�̂� ) 

where ⊕ indicates concatenation and MHA(.) is multi-head 
attention which learns key features within and across 

modalities from different representation subspaces. Given 
each input as query 𝑄, key 𝐾, and value 𝑉, the single head 
attention is defined as 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑡

√𝑑
) 𝑉 

Since multi-head attention computes k attention heads, the 
final multi-head attention would be concatenation of all the 
attention heads (𝛼1 … 𝛼𝑘) with trainable parameter (𝑊)i.e., 
𝑊. (𝛼1 ⊕ 𝛼2 ⊕ … ⊕ 𝛼𝑘). We feed the final MHA(.) output 
i.e., �̂� to 3-layer feed forward neural net along with dropout 
and ReLU activation function to predict the output.  

Loss Functions 

Based on the task at hand, we define loss function for the 
benchmark datasets. For classification task using Drugbank 
dataset, we use cross entropy loss which is given as 

𝐿(�̂�, 𝑦) =  − ∑ 𝑦𝑖

𝑁

𝑖=1

log (�̂�𝑖) 

For regression task using KIBA and DAVIS datasets, we use 
mean squared error loss i.e., 

𝑀𝑆𝐸(�̂�, 𝑦) =  
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)2 

𝑁

𝑖=0

 

 

EXPERIMENTAL SETUP AND RESULTS 

 
In this section, we perform experiments on our collected 

benchmark datasets and compare with baseline models.  

Hyperparameter setting: Our GraMDTA model is 
implemented in PyTorch [32]. We use scikit to split the 
datasets into training, test, and validation sets. We consistently 
used the same sets to train baselines and our model for fair 
comparison. Additionally, we used Adam optimizer [33] 
where the learning rate is varied using cosine annealing with 
learning rate scheduler.  We set the initial learning rate (η) set 
to 0.01. We trained the model for 1000 epochs and used early 
stopping when F1 score did not improve for 10 consecutive 
epochs. We trained our baselines similarly during comparison.  

Up-sampling Drugbank Dataset: While the associations 
between the drug and targets constitute the positive set, there 
is no negative set. To address the negative set issue, we pair 
random drug-target associations as negative set, similar to 
previous works [3], [7], [17].  This leads to a high-imbalance 
dataset depending on number of random parings being 
considered for each drug or target. Due to the high-imbalance 
of the associations, we limit to construct three datasets based 
on the up-sample ratios i.e., 1:1, 1:5, and 1:10. The 1:1 ratio 
has equal number of positives and negative associations where 
positive means there exists a drug-target association and 
negative association means no association between them. 
Then, we construct 1:5 where for every one positive 
association of a drug or target, we perform negative sampling 
of 5 associations with random pairing of target or drug 
respectively. We make sure that the randomly sampled drug-
target association does not have any association across the 
training, validation, and test sets. Similarly, we construct a 
dataset having a ratio of 1:10 negative sampling where for one 
positive association we sample 10 negative samples.  
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Baselines 

We compare our results with existing works with all the 
aforementioned experimental settings. Following are our 
baseline models: 

DeepDTA [2]: A convolutional neural net model for 
learning SMILES and FASTA sequences which are one-hot 
encoded. In their methodology, they concatenate the 
representations of drug and target, then use fully connected 
layers to learn to predict the association. 

HyperAttentionDTI [17]: This work learns 
representations using convolutions and applies attentions 
within and across drug and target sequences. 

GraphDTA [7]: This work utilizes graph neural networks 
for molecules by representing SMILES as molecular graph 
and apply convolutions on FASTA sequence. Variants of 
GraphDTA are proposed using graph convolutions [34], graph 
attention [30], and graph isomorphism network [9] to 
aggregate the representations of molecular graph. In our 
experiments, we use both the variants to compare as baselines. 
Fully connected layers are further used to concatenate 
molecule and protein sequence embeddings to predict 
association. 

Results 

We evaluate our results on benchmark datasets i.e., 
Drugbank, KIBA and DAVIS. We segregate the results in to 
two task types i.e., classification and regression tasks.  

To quantitatively evaluate the models, we adopt the 
metrics based on the task. For classification task, we use the 
standard metrics such as precision-recall (AUPR), area under 
receiver operating characteristic curve (AUROC) and F1 
scores. To compute F1-score, we identify optimal threshold 
through based on elbow method of precision-recall curve. For 
regression task, we compute mean squared error (MSE), and 
concordance index (CI). 

Task 1 – Classification on Drugbank dataset: We conduct 

experiments with our model using three up-sampling ratios as 

three experiment settings and compared results with the 

baseline models. The results in Table 3 show that, with 

increasing negative sampling size, the performance of the 

models declines. This suggests that performance of all 

models is affected with data imbalance. GraphDTA 

performed consistently better than baseline models with 

increase in negative sample ratio. Our model achieved 

superior AUPR and F1 scores across all the sampling ratios. 

Although, GraMDTA is marginally inferior with respect to 

AUROC in 1:1 and 1:5 sampling ratios, our model showed 

improvement over HyperAttentionDTI at 1:10 sampling. 

This demonstrates the model robustness with increase in 

negative samples. 

 

Task 2 – Regression on KIBA and DAVIS datasets: 

Similar to Task 1, we conduct experiments evaluating the 

KIBA and DAVIS datasets as regression task. In Table 4, we 

show the performance results on both the datasets. With 

respect to KIBA dataset, GraMDTA achieved superior 

performance compared to all the baseline models. Our model 

achieved over 33% reduction in MSE and 6% improvement 

in CI when compared to the second-best reported work i.e., 

GraphDTA – GAT model. However, with respect to DAVIS 

dataset, HyperAttentionDTI had marginally improved 

performance with respect to MSE and CI. This suggests that 

there is room for improvement with respect to pretraining 

graph neural networks and GraMDTA encoding choices.  

 
Ablation study: We conduct ablation studies on GraMDTA 
to understand the effectiveness and contributing components 
of the model by removing or substituting parts of the model. 
For the following ablation studies, we use 1:10 negative 
sampling from Drugbank dataset. The first row in Table 5, is 
the baseline score achieved from training Drugbank data with 
1:10 negative sampling. 

First, we test our model by removing knowledge graph 
modalities of drug and target. We train the model with 
molecular graphs and FASTA sequence. This is equivalent to 
GraphDTA – GAT model along with modal attention 
component. The results in Table 5 suggest that removing 
knowledge graph embeddings (without KG) from the model 

Table 4: Regression performance comparison on KIBA and DAVIS 

datasets (MSE: mean squared error; CI: concordance index) 

 KIBA DAVIS 

Model MSE CI MSE CI 

DeepDTA 0.149 0.852 0.151 0.919 

GraphDTA - GCN 0.19 0.823 0.192 0.901 

GraphDTA - GAT 0.103 0.88 0.166 0.915 

GraphDTA - GIN 0.214 0.811 0.166 0.923 

HyperAttention 0.231 0.81 0.108 0.947 

GraMDTA 0.069 0.933 0.113 0.942 

 

Table 3: Classification performance comparison on Drugbank dataset 

 1:1 1:5 1:10 

Model AUPR AUROC F1 AUPR AUROC F1 AUPR AUROC F1 

DeepDTA 0.8439 0.8462 0.7815 0.6826 0.8759 0.641 0.5621 0.8666 0.5479 

GraphDTA - GCN 0.773 0.8131 0.776 0.6497 0.8577 0.6172 0.5626 0.8687 0.5623 

GraphDTA - GAT 0.8114 0.8312 0.7752 0.6773 0.8735 0.647 0.591 0.8837 0.62 

GraphDTA – GIN 0.783 0.8101 0.7666 0.5757 0.8313 0.6566 0.5232 0.843 0.5428 

HyperAttention 0.8766 0.8802 0.8099 0.7398 0.9079 0.6946 0.6706 0.9054 0.6386 

GraMDTA (Ours) 0.8807 0.8767 0.803 0.7595 0.9041 0.7099 0.7245 0.9163 0.6861 
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led to 3% decrease in performance. Despite the removal of 
pretrained KG embeddings, the performance of GraMDTA 
without KG  is still 3% better than GraphDTA – GAT, and 2% 
better than HyperAttentionDTI. This suggests that multi-head 
based modal attention have promising impact in learning 
representations.  

Second, we remove the non-KG components i.e., 
molecular graph representation and sequence-based 
representation. While preserving modal attention component, 
we train the model using only pretrained KG embeddings. As 
shown in  Table 5, without non-KG components, the 
performance of the model goes down by about 20%. This 
suggests that molecular graphs and protein sequence 
information are extremely vital for our GraMDTA model 
performance.  

Next, we delete the modal attention component from 
GraMDTA and train the network. Although there is a marginal 
decline, our model performed better than the rest of the 
baseline models even after removing modal attention. Thus, 
demonstrating that attention improves the GraMDTA 
performance.  

Finally, we change the pretraining encoder to Graph 
Attention Network (GAT) and pretrain the model for drug and 
protein knowledge graphs. We extract the embeddings and 
train GraMDTA with new embeddings. With GAT 
pretraining, there is 2% decrease in performance. Thereby, our 
results from ablation studies suggest that multimodal learning 

complements with structure-based learning i.e., SMILES and 
FASTA sequences, and further improves the performance of 
the model.  

Interpreting Modal Attention: We extract modal attention 
for naltrexone (FDA-approved drug used to prevent relapses 
into alcohol or drug abuse) and its predictions. Our choice of 
the drug is arbitrary, and the goal of this analysis is to 
understand the attention contribution across multiple 
modalities. In Figure 3, ‘Molecule’ represents the molecular 
graph representation, ‘Drug KG’ represents drug KG 
representation, ‘FASTA seq’ represents sequence 
representation of protein, and ‘Protein KG’ represents protein 
KG representation. Each row in the subplot represents the 
attention scores computed through SoftMax normalization. 
The attention score suggests the importance of knowledge 
graph especially protein knowledge graph being consistently 
important for naltrexone and its protein associations. 
Similarly, molecular self-attention followed by FASTA 
sequence attention has shown to be consistently important. As 
seen in the figure, the attention scores for targets OPRD1, 
OPRM1, and OPRK1 have similar heatmaps suggesting 
identical binding associations. To validate this, we ran 

enrichment analysis on these genes using ToppGene Suite 
[35]. We found that the selected genes are enriched (p-
value<0.01; FDR Benjamini and Hochberg) for gene ontology 
functions targeting opioid receptor activity (G-protein-
coupled opioid receptor activity G-protein-coupled opioid 
receptor signaling pathway (GO:0038003) suggesting that 
GraMDTA can identify binding capacity for homologous 
structures and predict efficiently.  This could be in part due to 
the high protein KG attention with each modality for the 
targets. On the other hand, although naltrexone and target 
SIGMAR1 have high molecule attention, the predictive 
probability is zero. This suggests that although attention 
signifies the importance of the input modalities, it alone may 
not be enough for predicting DTAs or potential mechanism of 
action [36], [37].  

CASE STUDY 

To demonstrate the translational utility of GraMDTA, we 
selected minoxidil drug and its target predictions as our case 
study. Minoxidil was initially developed to treat high blood 
pressure or hypertension [38]. Later, the drug was 
repositioned to treat hair loss or alopecia [39]. In Figure 4, we 
show the network visualization of minoxidil predictions 
consisting of targets which are both known and predictions. 
We performed enrichment analysis on targets predicted with 
high confidence (probability score >= 90%) using ToppGene 
suite [35]. Our results from ToppGene enrichment show that 
GraMDTA-predicted targets not only recover known 
indications but also potential candidates for repositioning. For 
example, enrichment analysis of GraMDTA-predicted 
minoxidil targets showed hypertension and alopecia, known 
and repositioned indications of minoxidil, respectively. 
Additionally, among the target functional enrichment are 
other diseases or biological processes such as arterial stiffness, 
breast cancer, and cognition suggesting the repositioning 
potential of minoxidil for other diseases. Indeed, literature 
review showed published studies in support of these. For 
instance, a recent study using breast cancer cells, reported that 
minoxidil, a known potassium channel opener, could inhibit 
cellular invasiveness in breast cancer. This study also reported 

 

Figure 3: Attention scores for Naltrexone drug and its corresponding 

proteins ORPD1, OPRM1, OPRK1, and SIGMAR1. ‘Prob.’ in the 

subplot title indicates probability of drug and protein association. 

Table 5: Ablation results on GraMDTA 

Model F1 score 

GraMDTA 0.686 

without pretrained-KG weights 0.653 

with pretrained-KG weights only 0.480 

Without Modal Attention 0.66 

Pretraining GAT + GraMDTA 0.665 
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that in combination with ranolazine, another ion channel 
blocker, minoxidil was synergistically effective as an anti-
metastatic agent [40]. Another study on minoxidil revealed 
that the drug helps in reducing vascular or arterial stiffness 

[41], known to be associated with early-onset cognitive 
impairment and dementia [42], [43].  Likewise, modulation of 
potassium channels is known to play an important role in the 
regulation of memory processes [44]. Although, this example 
demonstrates the utility of GraMDTA for discovery of 
potential drug repositioning opportunities, it should be noted 
that mere enrichment of disease or phenotype does not always 
suggest a novel indication and may also suggest potential 
drug-induced adverse events. For instance, while multiple 
evidence suggest benefits of minoxidil in cognitive disorders, 
there are also conflicting reports in the literature reporting that 
minoxidil may cause cognitive impairment issues [45]. 
Nevertheless, the discovery of novel drug-phenotype 
associations through prediction of DTAs using GraMDTA 
and similar approaches are powerful in formulating translation 
hypotheses for drug repositioning or characterizing drug-
induced adverse events. 

CONCLUSION 

In this paper, we report GraMDTA, a novel multimodal 
graph neural network based screening for discovery of drug-
target associations. When compared using benchmark 
datasets, multi-modal aggregation outperformed other 
existing approaches. Our ablation studies further suggest that 
GraMDTA is robust in performance and demonstrate that 
supplementing pretrained knowledge graph representations to 
structural representations can improve the performance of the 
model. Our case study using minoxidil demonstrates that 
GraMDTA predictions could be useful for hypothesizing 
drug-phenotype associations (drug repositioning or drug-
induced adverse events). Although pretraining knowledge 

graph using GraphSAGE supplemented GraMDTA, our 
pretraining could be further improved. An important future 
direction we plan to pursue is utilizing graph neural networks 
which are heterogeneous content aware [46]. More 
specifically utilizing context-specific gene expression (from 
human patients or animal models) information, and 
aggregating feature vectors accordingly. Secondly, we plan to 
expand our work on geometrical structures of protein as 
another modality in lieu with geometrical deep learning 
literature [47]–[49]. Finally, to encourage reproducibility of 
the work, we provide the source code and benchmark datasets 
at https://github.com/yellajaswanth/GraMDTA.  
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