
Disentangled multi-subject and social behavioral representations
through a constrained subspace variational autoencoder (CS-VAE)

1 Appendix1

A Experimental Methods and Preprocessing for the Multi-Subject Dataset2

In our work, we employed a subset of the behavioral dataset detailed in Musall et al., 2019 [1]. Briefly, the3

task entailed pressing a lever to initiate the task, after which a visual stimulus was displayed towards the left4

or the right. After a delay period, the spouts come forward, at which time the mouse makes its decision by5

licking the spout corresponding to the direction of the visual stimulus (left or right). Finally, the mice receive6

a juice reward if they choose correctly.7

We tested the CS-VAE on the behavioral data for the four mice performing a visual task, and randomly8

chose 388 trials per mouse each of the trial has 189 number of frames. Each frame was pre-processed and9

resized to have both the length and width being 128. One example trial for each mouse can be found in10

Supplementary Material 1.11

Before inputting the data into the model, we sorted the trials by the amount of variance in the images,12

and shuffled the first half (high variance) and the second half (low variance) of the dataset separately. This13

was done to speed up training by training the model on high variance trials first. We tested our model by14

randomly choosing 4 trials from all trials for each mouse 5 times. The same procedure was applied when15

training the model on the simulation dataset, i.e., the doctored data for one subject.16

B Experimental Methods and Preprocessing for the Freely-Moving Social Be-17

havior Dataset18

The dataset consists of a 16-minute video of two adult novel C57BL/6J mice, a female and a male, interacting19

in a clean cage. Prior to the recording session the mice were briefly socially isolated for 15 minutes to increase20

interaction time. This dataset was collected by one of the authors. The original data has 24917 number of21

frames with length and width being 1920 and 1080, respectively. The example fraction of the video can be22

found in Supplementary Material 6.23

The nose, ears, and tail base of each mouse were manually annotated using AlphaTracker. We kept 1965924

number of frames that have the labels for precrocessing and training. We perform several preprocessing steps25

to align and crop the video as well as the labels based on one of the two mice (Mouse 1, female). All of the26

preprocessing steps were based on the AlphaTracker labels. For each frame, we first rotate it to ensure that27

the nose and tailbase for Mouse 1 are on the same horizontal line, with the central point for rotation as the28

left ear. Next, we aligned the frame such that the left ear of Mouse 1 was at the same location across all29

frames. Finally, we resize the frame to be 128 × 128 and consequently the AlphaTracker labels. For this30

dataset, since there was a relatively low number of frames, we obtained the CS-VAE MSE and label R2 for31

the entire dataset.32

C Methodological details of the Partitioned Subspace VAE33

The Partitioned Subspace VAE (PS-VAE) was introduced in [2], and we borrow the notation used in that34

paper when detailing the CS-VAE. Thus, we include here a full description of the model.35

First of all, we define the input frame as x, and the corresponding pose estimation tracking label as y.36

The reconstructed variables are termed x̂ and ŷ, respectively. The supervised latent space is denoted as zs,37



unsupervised latent as zu, and the background latent as zb. In a VAE model, we would like to minimize the38

distance, typically the KL divergence, between the posterior distribution of the latent variables p(z|x) and a39

chosen distribution q(z|x). However, since p(z|x) is an unknown distribution, the Evidence Lower Bound40

(ELBO) is introduced as an alternative method to reduce the KL divergence:41

42

L′
ELBO = Eq(z|x)[log(p(x|z)]−KL[q(z|x)||p(z)] (1)

Following [2], if we have a finite dataset {xn}Nn=1, and we treat n as a random variable with a uniform43

distribution p(n) while defining q(z|n) := q(zn|xn), we can rewrite the ELBO as:44

LELBO = Ep(n)[Eq(z|n)[log(p(x|z)]]− Ep(n)[KL[q(z|n)||p(z)]] (2)

We define the loss over frames Lframes as the first of the two terms above. In the PS-VAE model, there are45

two inputs: frames x and labels y. Therefore, in Equation (2), instead of writing the input likelihood as46

p(x|z), we can now write it as p(x, y|z). A simplifying assumption is made that x and y are conditionally47

independent given z, and thus we can directly write Lframes+labels as Lframes + Llabels, where Llabels is48

calculated by replacing x with y in Lframes.49

After assuming the prior p(z) has a factorized form: p(z) =
∏

i p(zi), the KL term LKL can be split as the
addition of ℓKL−s and ℓKL−u, i.e., the KL terms for the supervised and unsupervised latents, respectively.
We decompose the KL term for the unsupervised latent as the following [2].

LKL−u = LICMI + LTC + LDWKL

= KL[q(zu, n)||q(zu)p(n)] +KL[q(zu)||
∏
j

(zu,j)] +KL[q(zu,j)||
∏
j

(zu,j)] (3)

where j represents the latent dimension, LICMI is the index-code mutual information, which measures how50

well the latent encodes the corresponding input data. The term TC is short for total correlation, which51

measures the interdependency of each latent dimension. The third term, LDWKL is the dimension-wise KL,52

which calculates the KL divergence for each dimension individually. Finally, the resulting subspace is forced53

to be orthogonal by applying orthogonal weights across all the different latents.54

The authors in [2] introduce an extension to PS-VAE for modeling multi-session data. The Multi-Session55

PS-VAE (MS-PS-VAE) can only work with a labeled set of discrete sessions, as described in the Introduction.56

The images from each session are labeled, and the session-specific latents are enforced to be static over57

time, thus capturing the image-related details. To enforce the background latents to be static over time in a58

particular session, and to maximize the difference in the background latents across different sessions, the59

triplet loss is introduced in MS-PS-VAE. As described in the Introduction, this loss term artificially places60

the latents from the same session together while separating the latents from different sessions. The triplet61

loss is computed as the following.62

Ltriplet = max{d(a, p)− d(a, n) +m, 0} (4)

Here, a is the anchor point, p is the positive point, n is the negative point, and m is a margin. The function63

pulls the point p towards point a, and pushes the point n away from point a. While training, the data from64

multiple sessions is included in each mini-batch. The data from each session is split in three, and each third65

from the same session acts as an anchor and positive point, while the data from another session acts as a66

negative point. Practically, this requires as many sessions as possible in the same mini-batch during the67

training for accurate results. As the number of sessions increases, this method becomes computationally68

intractable, and may lead to unsatisfactory reconstruction results. Moreover, this loss does not allow for69

varying backgrounds across any one session.70

In the MS-PS-VAE model, the triplet loss was applied as a supervised manner to pull the data from the71

same subject being closer while pushing the different subjects away from each other. This method is only72

useful when the number of sessions is known, and is not applicable in an open-field setting, for example while73

modeling freely-moving social behavior as in this manuscript.74

Therefore, in this manuscript, we introduce a regularization term that can automatically separate different75

subjects in the background latent space without specifying the number of sessions or labeling each frame as76

belonging to a specific session.77



Table 1: Hyperparameter for different dataset

Dataset α β σ γ

Various contrast 1000 5 5 500
Multi-subject 1000 5 15 500
Social behavior 1200 N/A 20 200

Table 2: Latent dimensions and the prior distribution for different dataset

Dataset supervised unsupervised constrained prior distribution

Various contrast 5 2 3 Swiss roll
Multi-subject 5 2 2 circle
Social behavior 2 0 3 hollow cylinder

D Model Architecture and Training78

Our computational experiments were carried out using TensorFlow and Keras. The image decoder we use79

is symmetric to the encoder, with both of them containing 14 convolution layers. We applied the Adam80

optimizer with learning rate as 10−4. For the multi-subject dataset, we fixed our batch size to be 256 and81

trained for 50 epochs. For the freely-moving social behavior dataset, we trained for 500 epochs with batch82

size 128.83

E Choice of Hyperparameters84

In the multi-subject dataset, four coefficients need to be decided for the objective function as indicated above:85

{α, β, σ, γ}. There is a balance between the choice of β and γ: properly choosing the values could separate86

the latent in the unsupervised space and the latents in both unsupervised and background space as well. A87

large separation of the background latent may potentially lead to unsatisfactory reconstruction results. The88

choice of kernel size σ depends on the dataset, and should be larger than the number of distinct groups in89

our dataset; since in our current experiments, we have at most four groups, we set σ = 15. Moreover, we set90

α to 1000, β to 5, γ to 500. We set the dimensionality of the supervised latent space equal to the number of91

tracked video parts, which is 5 in our case. We set the dimensionality of the unsupervised latent space as 2,92

while that of the background latent space as 2.93

In the social behavior task, we track the nose location as the supervised latent, since the other labels do94

not have a high variance (due to the alignment process). Additionally, we do not need any unsupervised95

latents to explain the individual’s behavior. The CS latent in this setting has 3 dimensions. Here, α is 1200,96

γ is 200, and the kernel size is 20.97

The hyperparameters chosen for all three datasets are shown in Tables 1 and 2.98

F Motif Generation99

A switching linear dynamical system (SLDS) consists of discrete latent state zt ∈ {1, 2, ..K}, continuous100

latent state xt ∈ RM , and the observation state yt ∈ RN . Here, t = 1, 2, 3, .., T is the time step, T is the101

length of the input signal; K is the number of discrete states; M is the number of latent dimensions; N is the102

observation dimensions. The discrete latent state zt follows the Markovian dynamics with the state transition103

matrix expressed as:104

Qi,j = P (zt = j|zt−1 = i) (5)

The continuous latent state xt has the following linear dynamical relations that determined by zt.105

xt+1 = Azt+1xt + Vzt+1ut + bzt+1 + wt (6)

Here, Azt+1 is the dynamic matrix at state zt+1; ut is the input at time t, with Vzt+1 being the control106

matrix; bzt+1
is the offset vector and wt being the noise which is generally the zero mean Gaussian. Here, our107



Figure 1: Loss curve for A. training the multi-subject dataset B. training the freely behaving dataset with
the specified hyperparameters as in Tables 1 and 2.

observation model is in Gaussian case; therefore, the observation yt is expressed as:108

yt = Cztxt + Fztut + dzt + vt (7)

Here, Czt is the measurement matrix at state zt; Fzt is the feedthrough matrix which directly feed the109

input into the observation; dzt is the offset vector and vt is the noise. Here the update was accomplished by110

the Expectation-Maximization(EM) algorithm. In the E-step, the model updates the hyperparameters. In111

the M-step, the log-likelihood in Eq.7 is being maximized.112

To implement the SLDS, we adopted the open source software from Linderman et al.[3]. We fit the SLDS113

using different latent dimensions, where the observation dimension was the order of latent dimension and114

the number of states was determined by visualizing the videos. We use SLDS’s to model the motifs in the115

multi-subject dataset since the behaviors are well separated using their dynamics. We use K-means to model116

the motifs in the freely-moving social behavior dataset since the behaviors are well separated directly in state117

space. An autoregressive HMM (a simpler model than an SLDS) applied to the CS latents in the social118

behavior dataset leads to similar results as the K-means.119

G Loss Curves120

We show the learning curve for each loss term for both dataset to precisely quantify the model, in Fig. 1. For121

the multi-sujbect dataset (Fig. 1A), for the unsupervised latents, the final loss for dimension-wise KL, total122

correlation, and the mutual information are 11.7, −4.8, and −4.6, respectively. The final KL loss for the123

supervised latents is 5.06 and the final CSD loss for the CS latents is 0.1. For the free behaving dataset, the124

loss curves for each loss term are shown in Fig. 1B. By the end of the training process, the KL loss for the125

supervised latents is 7.01 and the CSD loss for the CS latents is 1.15.126

H SVM127

To further quantify the separation of the latents between different subjects, we applied a supervised classifica-128

tion method to decode the identity of the subject using each latent.129



Figure 2: Latent traversals for the multi-subject dataset for the four mice with the same base image A. an
example supervised latent, B. an example unsupervised latent, and C. an example CS latent. We see that the
same base image (Mouse 3) is transformed into a different mouse each time when changing the CS latent.

After randomly shuffling all the latents, we split all the trials into training trials and test trials, with130

each mouse having 368 trials in the training set and 20 trials in the test set, and repeated this 5 times with131

different random seeds.132

I Latent traversal133

For the multi-subject dataset, we tested the latent traversal with the same base image to validate the results,134

shown in Figure 2. Here, we randomly chose a frame from a mouse and changed each individual latent within135

different ranges as detailed in the Methods. For example, in Figure 2, the first row contains the output136

when the corresponding latent is changed to take on the maximum value from the range of Mouse 1. As in137

the figures in the main text, the upper images are the latent traversal images while the lower ones are the138

difference between the upper image and the original image. We see that the base image from Mouse 3 can be139

flexibly changed to produce a different mouse when changing the CS latent. Moreover, when changing the140

supervised and unsupervised latents for the different mice, Mouse 3 seems to be flexibly changing with these141

latents from different mice.142

To better visualize the specialization of each latent, we generated the latent traversal videos for each143

latent with different base images. For different mouse, we first of all find the maximum and the minimum144



value for the specific latent. Then, change the latent within that range with 0.5 per step. Finally, concatenate145

all the latent traversal images into videos. The videos can be found in Supplementary Material 3.146

We performed a similar visualization on the freely-moving social behavior dataset for the CS latents. The147

latent traversal videos can be found in Supplementary Material 4, and some clips from the videos are shown148

in Fig 3.149

J Neural decoding models150

The trials were first shuffled and then split into training and testing. Next, we employed the CS-VAE151

generated latent, and choose one example subject to decoded the behavior at time t using the neural activity152

recorded between t − 0.15s and t. We applied four types of model to compare the performance. A linear153

model which directly map the neural activities into the behavior. A multilayer perceptron (MLP) with three154

dense layers to train the decoder. We used the Adam optimizer with learning rate decay from 0.1 with 0.3155

decay rate for every 5 step. The batch size was fixed to be 150 and trained for 200 epochs. A LSTM model,156

which begin with a dense layer followed by a LSTM layer with drop out rate being 0.5 and another dense157

layer at the end. We applied the same training strategy as in MLP model.158

We introduced a model based on transfer learning to perform the decoding test on the previously tested159

subject. The rest of the three mice were the input to the original training model. The procedures were similar160

as before, after the trials were being shuffled and split, we decoded the behavior directly with the raw neural161

activities with the time window being 0.15s. After that, we implemented three perceptron layers for each of162

the three mice before the output of which went into a recurrent neural network (RNN). The RNN consisted163

of one long short-term memory (LSTM) layer with unit number of 64 and a drop out layer with rate being164

0.5. We applied the Adam optimizer with learning rate decay from 0.1 with 0.3 decay rate for every 5 steps.165

The batch size was 150 and we trained for 200 epochs. After we finished training the original network, we166

transferred the RNN model to the new model which was applied to train for the fourth mouse alone. For the167

fourth mouse, the trials were split with different training and testing ratio. After applying the same steps to168

the data, the neural activities then went through a new perceptron layer before went through the pre-trained169

RNN model. We applied the Adam optimizer with the same learning rate decay procedures as well. We170

again, trained for 200 epochs with batch size being 128 this time. The trade-off between accuracy and time171

for different models can be found in Tables 3 and 4.172

K Code173

The code for training the CS-VAE can be found in Supplementary Material 7. The code can be executed by174

simply compiling the script ‘train.py’.175
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Figure 3: Latent traversals on the CS-latents for the freely-moving social behavior dataset. We see that the
latents all encode for social interactions between the two mice.



Figure 4: Neural decoding for CS-VAE vs. PS-VAE.
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Table 4: Training size vs time usage for multi-subject dataset

Training size Linear model Dense model LSTM model Transfer learning model

67712 1.442± 0.282 115.946± 1.559 169.801± 5.961 169.482± 5.041
58512 1.130± 0.212 80.428± 1.586 146.734± 5.063 151.771± 4.162
49312 0.937± 0.194 68.879± 1.257 122.500± 2.283 125.240± 4.479
40112 0.679± 0.114 56.449± 1.119 100.336± 2.212 102.923± 3.391
30912 0.484± 0.079 44.427± 0.808 78.850± 1.771 79.907± 2.608
21712 0.309± 0.050 31.968± 0.574 57.670± 1.681 56.032± 1.549
12512 0.162± 0.008 19.573± 0.369 35.557± 1.050 33.409± 0.741
3312 0.104± 0.034 7.292± 0.092 13.318± 0.342 11.365± 0.336
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